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Compressed sensing

Engineering Challenges in CS :
• What is the right signal model?

Sometimes obvious, sometimes not. When can we exploit additional 
structure?

• How can/should we sample?

Physical constraints; can we sample randomly; effects of noise; exploiting 
structure; how many measurements?

• What are our application goals?

Reconstruction? Detection? Estimation?
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CS today – the hype!

Papers published in Sparse Representations and CS [Elad 2012]

Lots of papers….. lots of excitement…. lots of hype….
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CS today: - new directions & challenges

There are many new emerging directions in CS and many challenges 
that have to be tackled.

• Fundamental limits in CS 

• Structured sensing matrices

• Advanced signal models

• Data driven dictionaries

• Effects of quantization

• Continuous (off the grid) CS

• Computationally efficient solutions

• Compressive signal processing
Measurements

Measurement
Matrix

Sparse Signal
k nonzero rows

m×l m×n n×l
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Compressibility and Noise Robustness
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Noise/Model Robustness

CS is robust to measurement noise (through RIP). What about 
signal errors, Φ � � � � �, or when � is not exactly sparse?  

No free lunch!

Wideband spectral sensing
• Detecting signals through wide band receiver noise: noise folding!

– 3dB SNR loss per factor of 2 undersampling [Treichler et al 2011]

MC – solid
MWC - dashed

Theory: -3 dB 
per octave

input SNR = 20dB 

input SNR = 0dB 

input SNR = 10dB 



IDCOM, University of Edinburgh

Noise/Model Robustness

Compressible distributions
• Heavy tailed distributions may not be well 

approximated by low dimensional models
• Fundamental limits in terms of compressibility 

of the probability distribution [D. & Guo. 2011; 
Gribonval et al 2012]

Implications for Compressive Imaging
• Wavelet coefficients not exactly sparse

• Limits CS imaging performance

Adaptive sensing can retrieve lost SNR 
[Haupt et al 2011]
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Sensing matrices
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Generalized Dimension Reduction

Information preserving matrices can be used to preserve information 
beyond sparsity. Robust embeddings (RIP for difference vectors): 

�1 	 
� � 	 �′ 
 � Φ�� 	 ��� 
 � 1 � 
 � 	 �′ 


hold for many low dimensional sets.
• Sets of n points [Johnston and Lindenstrauss 1984]

�~��
�
 log ��

• d-dimensional affine subspaces [Sarlos 2006]

�~��
�
��

• Arbitrary Union of � k-dimensional subspaces [Blumensath and D. 2009]

�~��
�
�� � log ���

• Set of r-rank n � � matrices [Recht et al 2010]

�~��
�
��� � �� log ���

• d-dimensional manifolds [Baraniuk and Wakin 2006, Clarkson 2008]

�~��
�
��
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Structured CS sensing matrices

i.i.d. sensing matrices are really only of academic interest.

Need to consider wider classes, e.g.:

• Random rows of DFT [Rudelson & Vershynin 2008]


-RIP of order k with high probability if:

�~�(� 
�
log� )

Fourier 

matrix

M x1 M x N N x N N x1
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Structured CS sensing matrices

i.i.d. sensing matrices are really only of academic interest.

Need to consider wider classes, e.g.:

• Random samples of a bounded orthogonal system [Rauhut 2010]

Also extends to continuous domain signals.


-RIP of order k with high probability if:

�~�(� ! Φ,Ψ 

�
log� )

where ! Φ,Ψ = max
'()*+(,

Φ) , Ψ+ is called the mutual coherence

Ψ

M x1 M x N N x N N x1

Φ∗

N x N
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Structured CS sensing matrices

i.i.d. sensing matrices are really only of academic interest.

Need to consider wider classes, e.g.:

• Universal Spread Spectrum sensing [Puy et al 2012]

Sensing matrix is random modulation followed by partial 
Fourier matrix. 
-RIP of order k with high probability if:

�~�(� 
�
log. )

Independent of basis /!

Ψ

M x1 M x N N x N N x1

Fourier 

matrix

N x N
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Fast Johnston Lindenstrauss Transform (FJLT)

Can generate computationally fast dimension reducing transforms 
[Alon & Chazelle 2006]

• The FJLT provides  optimal JL dimension reduction with 
computation of �( log )

• Enables fast approx. nearest neighbour search

• Used in related area of sketching…

m x1 m x N

Fourier/Hadamard

matrix

N x N

Φ

N x N

diagonal ±1s
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Related ideas of Sketching

e.g. want to solve �
-regression problem [Sarlos 06]:

�⋆ = argmin
3

	 5� − � 
	

with � ∈ ℝ8, A ∈ ℝ8×:. 

Computational cost using normal equations: �(��
)

Instead use Fast JL transform S ∈ ℝ<×8 to solve:
x= = argmin

3
	 (>5)� − >� 
		

If �~� ?
⁄ 	then this guarantees:

5�= 	− � 
 ≤ (1 + ?) 	 5� − � 
	

with high probability and at a computational cost of: �(��	log	� + poly(� ?⁄ ))

– Many other sketching results possible including for constrained LS, 
approximate SVD, etc… 

M x N

Fourier/Hadamard

matrix

N x N
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Advanced signal models & algorithms
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CS with Low Dimensional Models

What about sensing with other low dimensional signal models?

– Matrix completion/rank minimization

– Phase retrieval

– Tree based sparse recovery

– Group/Joint Sparse recovery 

– Manifold recovery

… towards a general model-based CS?

[Baraniuk et al 2010, Blumensath 2011]

Measurements
Measurement

Matrix

Sparse Signal
k nonzero rows

m×l m×n n×l
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Matrix Completion/Rank minimization
Retrieve the unknown matrix C ∈ ℝ,×D from a set of linear observations

	� = Φ C , � ∈ ℝE with � <  �. 

Suppose that C is rank r.

Relax!
as with �' min., we convexify: replace rank(C)	with the nuclear norm 
C ∗ = ∑ I)) 	, where I) are the singular values of C. 

CJ = argmin
K

C ∗ subject to Φ(C) = �

Random measurements (RIP) ⟶ successful recovery if

�~� �  + � log �

e.g. the Netflix prize 

– rate movies for individual viewers.
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Phase Retrieval via Matrix Completion 
[Candes et al 2011]

Phase retrieval
Generic problem: 

Unknown � ∈ ℂ8, 

magnitude only observations: �) = AN�



Applications

• X-ray crystallography 

• Diffraction imaging

• Spectrogram inversion

Phaselift

Lift quadratic ⟶ linear problem using rank-1 matrix C = ��O

Solve: CJ = argmin
K

C ∗ subject to	P(C) = �

Provable performance but lifting space is huge! … surely more efficient 
solutions? Recent results indicate nonconvex solutions better.
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Sparse signal models are type of "union of subspaces" model [Lu & Do 2008,
Blumensath & Davies 2009] with an exponential number of subspaces.

# subspaces Q
,

R

R

(Stirling approx.)

Tree structure sparse sets have far fewer subspaces

# subspaces Q

S T

RU'
(Catalan numbers)

Tree Structured Sparse Representations

Example exploiting wavelet tree structures

Classical compressed sensing: stable inverses exist 
when

�~� � log  �⁄ 	

With tree-structured sparsity we only need [Blumensath & 
D. 2009]

�~� � 	
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Algorithms for model-based recovery

Baraniuk et al. [2010] adapted CoSaMP & IHT to construct provably 
good ‘model-based’ recovery algorithms. 

Blumensath [2011] adapted IHT to reconstruct any low dimensional 
model from RIP-based CS measurements:

�8U' = VP �8 + !ΦW y 	 Φ�8

where !~ /� is the step size, VP is the projection onto the signal 
model.

Requires a computationally efficient VP operator. 

original sparse 
reconstruction

Tree sparse 
reconstruction
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Model based CS for Quantitative MRI

Proposes new excitation and scanning protocols based on the Bloch model   

[Davies et al. SIAM Imag. Sci. 2014]

Random RF pulses random uniform 
subsampling

Individual aliased 
images 

Quantitative Reconstruction
Use Projected gradient algorithm with a 
discretized approximation of the Bloch 
response manifold.
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Compressed Signal Processing
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Compressed Signal Processing

There is more to life than signal reconstruction:

– Detection

– Classification

– Estimation

– Source separation

May not wish to work in large ambient signal space, 

e.g. ARGUS-IS Gigapixel camera

CS measurements can be information preserving (RIP)… offers the 
possibility to do all your DSP in the compressed domain!

Without reconstruction what replaces Nyquist?

YZ ∶ � = Φ�		

Y' ∶ � � Φ \ � � 	

Noise Signal+Noise



IDCOM, University of Edinburgh

Noise Signal+Noise

Compressive Detection

The Matched Smashed Filter [Davenport et al 2007]

Detection can be posed as the following hypothesis test:

YZ ∶ ] = ℎ�													

ℋ' ∶ ] = ℎ \ + � 	

The optimal (in Gaussian noise) matched filter is ℎ = \O

Given CS measurements: � = Φ\, the matched filter (applied to �) 
is: 

ℎ = \OΦ ΦΦO �'

Then

_̀ ≈ a a�' b −
�

 
> c

a	- the Q-function, b	– Prob. false alarm rate

SNR=20dB

[Davenport et al 2010]
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Joint Recovery and Calibration

Estimation and recovery, e.g. on-line calibration.

Compressed Calibration
Real Systems often have unknown parameters d that need to be 
estimated as part of signal reconstruction. 

� = Φ d �

Can we simultaneously estimate � and d?

Example – Autofocus in SAR

Imperfect estimation of scene centre leads to phase errors, e:

f = diag �+h ℎ(C)

C- scene reflectivity matrix, f- observed phase histories, ℎ(⋅)- sensing 
operator.

Uniqueness conditions from dictionary learning theory [Kelly et al. 2012].
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Joint Recovery and Calibration

Compressed Autofocus:
Perform joint estimation and reconstruction (not convex):

min C '
q,r

subject to f − diag � ℎ C s ≤ ?

and �)�)
∗ = 1, t = 1,… ,  

• Fast alternating optimization schemes available

• Provable performance? Open

No phase correction Post-recon. autofocus Compressive autofocus
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Summary

Compressive Sensing (CS)

– combines sensing, compression, processing

– exploits low dimensional signal models and incoherent sensing 
strategies

– Related notion of `Sketching` in computer science allows faster 
computations

Still lots to do…

– Developing new and better model-based CS algorithms and 
acquisition systems

– Emerging field of compressive signal processing

– Exploit dimension reduction in signal processing computation: 
randomized linear algebra,… big data!
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