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Limitations of Deep Learning

Robust Deep Learning

fragile (adversarial examples)

Data-Efficient Deep Learning 

small data, big models (few-shot learning 
and reinforcement learning)

Flexible Deep Learning 

continual learning (online learning & model building)

well calibrated uncertainty estimates: 
deep learning is often confidently wrong 

leverage heterogenous data sources (multi-task learning)

active learning (RL exploration-exploitation)

correct ostrichdiff
prediction confidence
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probabilistic modelling
+

probabilistic inference
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Logistic Regression as a motivating example
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Logistic regression: A single neuron
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Logistic regression: Maximum Likelihood Estimation

ML

maximum likelihood estimate: parameters that make observed data most probable

observe data: estimate parameters
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Logistic regression: Maximum Likelihood learning
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data and prediction objective

maximum likelihood estimate: parameters that make observed data most probable

observe data: estimate parameters

model: data:

ML

iteration
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Logistic regression: Maximum Likelihood learning

maximum likelihood estimate: parameters that make observed data most probable

observe data: estimate parameters

model: data:
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Bayesian approaches to logistic regression
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1Probabilistic model

Probabilistic inference

encodes prior assumptions in a recipe for generating 
datasets

1. "right" answer is a probability distribution over all possible settings of 
     the weights that indicates the plausiblity of that setting given data 

2. apply the sum and product rules of probability to compute the 
    plausibility of any setting of any unknown variable 

only way to be coherent, Cox 1946  

only way to protect against 
Dutch books, Ramsey 1926  

sum rule: 

product rule:

Bayes' rule: 
implies
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The posterior distribution over weights
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1Probabilistic model

Probabilistic inference

encodes prior assumptions in a recipe for generating 
datasets

sum rule: 

product rule:

Bayes' rule: 

posterior prior
what we know 

after seeing data
what we knew 

before seeing data

likelihood of 
what the 

data told us

structure of model
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The predictive distribution over class labels
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1Probabilistic model

Probabilistic inference

encodes prior assumptions in a recipe for generating 
datasets

sum rule: 

product rule:

Bayes' rule: 

structure of model
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Bayesian Inference in Action: 1D Classification Example

10 0 1010

0

10

2 0 2 4
0

0.5

1

posteriorprior
what we know 

after seeing data
what we knew 

before seeing data

likelihood of 
what the 

data told us

11 / 31

Bayesian Inference in Action: 1D Classification Example
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Bayesian Inference in Action: 1D Classification Example
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Bayesian Inference in Action: 1D Classification Example

posteriorprior

what we know 
after seeing data

what we knew 
before seeing data

likelihood of 

what the 
data told us
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Bayesian Inference in Action: 1D Classification Example

posteriorprior

what we know 
after seeing data

what we knew 
before seeing data

likelihood of 

what the 
data told us
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Why be Bayesian (distributional estimates of weights)?

maximum-likelihood Bayes

learning

prediction

ensemble over 
weight settings

requires
approximation

Robust Deep Learning
point estimates over-confident, averaging over weight settings less so
Bayesian methods are more robust to adversarial examples (hard to fool ensemble of networks + uncertainty)

single weight setting

Data-efficient Deep Learning

Flexibile Deep Learning

small data, big model: build models 'the size of a house' & let data prune/learn structure
leverage heterogeneous data sources (multi-task learning) using shared parameters

continual learning: use old posterior as prior
active learning: select data that are expected to reduce uncertainty in parameter estimates the most

ML

ML
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Approximate Bayesian Inference
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Laplace’s approximation: MacKay 1991 (Saddle point approximation)

Taylor expand log-prob to 2nd order about MAP est:

0

Prediction requires additional approx.:

Hessian

simple 
Monte Carlo
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Laplace’s approximation: MacKay 1991 (Saddle point approximation)

Prediction requires additional approx.:

might not converge        Hessian not positive definite

cubic cost in the number of parameters

simple 
Monte Carlo

1. optimise to find MAP solution

2. compute Hessian at optimum to form approximate
    posterior and marginal likelihood

3. predict using local linearisation of network about
    MAP weights

1

2

3

16 / 31

Laplace’s approximation: Classification Example

prior

what we know 
after seeing data

what we knew 
before seeing data

likelihood of 

what the 
data told us

Laplace approx.

1

2

posterior
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Variational Inference: the KL Divergence

Kullback–Leibler (KL) divergence

1. non-negative

2. zero (minimised) when

0
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Variational Inference: the KL Divergence

Kullback–Leibler (KL) divergence

1. non-negative

2. zero (minimised) when

3. can be computed up to an additive constant w/o needing normalisation for 

divergence
measures 'distance' 

between distributions

suitable for approximate inference
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Variational Inference

requires
reparameterisation

trick

Kullback–Leibler (KL) divergence equality when

3. can be computed up to an additive constant w/o needing normalisation for 

1&2

Use KL to optimise an approximation          to the true posterior

1&2 3

suitable for approximate inference
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Variational Inference: Classification Example

approximate family: 
factorised Gaussian

optimise w.r.t.

VI converts inference into optimization
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Variational Inference vs Laplace: Classification Example

Variational Inference (factorised)Laplace Approximation (diagonal Hessian)
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Case study 1. Robust Deep Learning

Uncertainty calibration & adversarial

examples
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Towards Robust Deep Learning

fragile (adversarial examples) well calibrated uncertainty 
estimates:  deep learning 
is  often confidently wrong 

correct ostrichdiff

prediction confidence
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Case study 2. Flexible Deep Learning

Continual multi-task learning
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What is Continual Learning?

corner cutter line pins

statistics of data 
may change 
over time: 

continuously adapt 
without revisiting 

all old data

?

?

?

"corner cutter" or "line pin"

collect data set online predictions
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What is Continual Learning?

corner cutter line pins caulking iron belay separatorrope making wrench

?

TASK 1 TASK 2

avoid forgetting old tasks 
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A zoo of discriminative continual learning tasks

1. online iid data
      (online learning)

2. online non-iid inputs
(covariate shift)

3. new classes
(k-shot learning)

4. new tasks
(online multi-task learning

transfer learning)
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Continual Learning Test 1: Permuted MNIST (online non-iid inputs, single head)
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Continual Learning Test 2: Split MNIST (new tasks, multi-head)
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Summary

Continual learning is naturally handled by Bayesian inference: allows multi-task

transfer and avoids catastrophic forgetting

Variational Continual Learning is a state-of-the-art continual learning method

Orthogonal research directions: complex models (adapting more than just the head of

the network) and online automatic model building

Variational Continual Learning, ICLR 2018

Streaming Sparse Gaussian Process Approximations, NIPS 2017
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Case study 3: Data E�cient Deep Learning

One-shot learning
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One shot learning using Approximate Bayesian inference

Matching nets (Vinyals et al. 2016)
Meta LSTM (Ravi and Larochelle, 2017)
Neural Stat (Edwards and Storkey, 2017)
Memory Mod (Kaiser et al., 2017)
Prototypical (Snell et al., 2017)
MAML (Finn et al., 2017)
Reptile (Nichol and Schulman, 2018)
Versa (Gordon et al., 2018)

98 99 100 90 95 100 50 5545
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miniImageNet 
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omniglot 
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TASK 1 TASK 2 TASK 3
train

(one shot)

test
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One shot learning using Approximate Bayesian inference
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One shot learning using Approximate Bayesian inference
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