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Abstract. This paper addresses the problem of optimal alignment of
non-rigid surfaces from multi-view video observations to obtain a tempo-
rally consistent representation. Conventional non-rigid surface tracking
performs frame-to-frame alignment which is subject to the accumulation
of errors resulting in drift over time. Recently, non-sequential tracking
approaches have been introduced which re-order the input data based on
a dissimilarity measure. One or more input sequences are represented in a
tree with reducing alignment path length. This limits drift and increases
robustness to large non-rigid deformations. However, jumps may occur in
the aligned mesh sequence where tree branches meet due to independent
error accumulation. Optimisation of the tree for non-sequential tracking
is proposed to minimise the errors in temporal consistency due to both
the drift and jumps. A novel cluster tree enforces sequential tracking
in local segments of the sequence while allowing global non-sequential
traversal among these segments. This provides a mechanism to create a
tree structure which reduces the number of jumps between branches and
limits the length of branches. Comprehensive evaluation is performed
on a variety of challenging non-rigid surfaces including faces, cloth and
people. This demonstrates that the proposed cluster tree achieves better
temporal consistency than the previous sequential and non-sequential
tracking approaches. Quantitative ground-truth comparison on a syn-
thetic facial performance shows reduced error with the cluster tree.

Keywords: dense motion capture, non-rigid surface alignment, non-
sequential tracking, minimum spanning tree, cluster tree, dissimilarity

1 Introduction

Over the last decade, there has been an increasing research effort in spatio-
temporal reconstruction of dynamic surfaces using multi-view video and/or depth
acquisition. An important challenge is to transform the sequences of independent
surface measurements at each frame into the aligned sequences with consistent
temporal structure and correspondence. The problem of dense tracking for sur-
faces undergoing fast complex non-rigid motions over longer time periods has
been tackled by a number of techniques. They can be divided into two broad
groups according to the type of information they are primarily based on: image-
based techniques work directly with multi-view video sequences; geometry-based
techniques with a sequence of unregistered meshes reconstructed per frame.
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Image-based techniques commonly estimate a scene flow [1] between pairs
of frames based on image constraints from multiple views. Multi-view 2D opti-
cal flows combined with per-frame geometry of the surface yield a 3D motion
field which deforms a template mesh throughout the sequence [2]. Pons et al.[3]
use a variational formulation of matching image information across views and
over time to directly compute the surface shape and its motion field in alter-
nation. The shape and motion computation can also be joined into a single
complex optimisation [4]. Carceroni and Kutulakos [5] propose more efficient 3D
tracking of independent surface patches with their own shape and appearance
properties. Neumann and Aloimonos [6] iteratively refine shape and motion of
the multi-resolution subdivision surface model by optimisation of individual sur-
face patches. The patches can also be associated with triangle fans of a mesh
deformed over time [7, 8]. Their shape changes with the tracked mesh which
improves alignment of their textures with changing surface appearance in multi-
view videos. Accumulation of tracking errors is reduced by fixed patch textures
from the reference frame.

Geometry-based techniques directly create a temporally consistent represen-
tation of unregistered surface geometries [9–11] or fit a prior shape model to the
unregistered sequence [12]. Cagniart et al.[10] perform hierarchical matching of
overlapping rigid surface patches to sequentially track a sequence of multi-view
reconstructions. Wand et al.[9] propose so-called urshape representing the sur-
face and optimise its time-varying deformation field to fit a point cloud sequence.
The animation cartography approach [11] employs geometric feature tracking to
map surface regions to the 2D embedding space and build up a map of the com-
plete surface from partial observations. Existing image-based or geometry-based
approaches process input data sequentially which results in error accumulation
causing a drift of the tracked mesh or a complete failure if the frame-to-frame
alignment cannot handle rapid non-rigid deformation of the surface.

Non-sequential methods for surface tracking have been proposed which re-
order the input sequence to overcome the problems of drift and failure. Beeler
et al. [13] identify similar frames across a sequence of facial performance and
use them to anchor a sequential alignment of intermediate frames using multi-
view optic flow. In contrast, Budd et al. [14] optimise the traversal among all
frames of whole-body performance by introducing the use of a minimum span-
ning tree in shape similarity space to re-order the frame-to-frame alignment pro-
cess. Non-sequential alignment has been extended to register multiple non-rigid
mesh sequences [15, 14].

Non-sequential approaches reduce the drift and improve robustness to track-
ing failures compared to sequential approaches. However, the independent accu-
mulation of errors along different alignment paths can lead to jumps in the result-
ing mesh sequence where different paths meet. This paper addresses the problem
of optimising the tree structure for non-sequential tracking to balance between
drift and jump errors. The proposed concept is generalised for any frame-to-
frame alignment method and variety of non-rigid surfaces. This is demonstrated
by extensive evaluation on challenging datasets of faces, cloth and people.



Towards optimal non-rigid surface tracking 3

2 Problem statement

Input is a sequence of measurements {Ot}Nt=1 of a deforming surface for frames
{t1, ..., tN}. It can consist of multiple segments from independent motions of
the surface. Each measurement Ot consists of a set of images from multiple
viewpoints Ict and a mesh Gt representing the current shape of the surface.
The mesh sequence {Gt}Nt=1 is temporally unregistered, thus each mesh Gt =
(X̂t, Ĉt) has time-varying vertex positions X̂t and time-varying connectivity Ĉt.
The required output is a temporally consistent mesh sequence {Mt}Nt=1 where the
vertex positions Xt of mesh Mt correspond to the same set of surface points in
every frame t and the connectivity of vertices C is fixed throughout the sequence.

Conventionally, the output mesh sequence {Mt}Nt=1 is obtained by sequential
tracking which concatenates frame-to-frame non-rigid alignment between succes-
sive frames ti, ti+1. The frame-to-frame alignment estimates the correspondence
between observations Oti , Oti+1 . Non-sequential tracking processes the input se-
quence {Ot}Nt=1 in an order different from the temporal order. The reordering
of {Ot}Nt=1 is guided by a measure which estimates difficulty of non-rigid align-
ment of measurements Ot between any two frames. Intuitively, the difficulty
of transition between frame ti and tj is represented by the dissimilarity be-
tween respective measurements d(Oti , Otj ). Given d(Oti , Otj ) between all pairs
of frames, paths to every frame are jointly optimised to have minimal length.
This reduces accumulation of alignment errors when the tracking is performed
along the paths.

The paths are represented by a traversal tree T = (N , E) which is a spanning
tree with the nodes N = {n1, ..., nN} corresponding to all frames {t1, ..., tN}
(Figure 1). The edges E = {(ni, nj), ...} are directed and weighted by the dis-
similarity d(Oti , Otj ). The non-sequential nature of tracking using the traversal
tree leads to the presence of cuts in the sequence at places where two different
alignment paths meet (marked red in Figure 1). Independent accumulation of
tracking errors along these paths can potentially manifest as glitches or jumps in
the resulting sequence {Mt}Nt=1. There is a trade-off between the minimisation
of tracking path length and a large number of cuts. Longer paths lead to larger
gradual drift but large amount of cuts introduce sudden glitches and jitter. The
proposed method reflects this trade-off and allows calculation of the traversal
tree which balances between these two kinds of artefacts.

The non-sequential traversal of the input sequence using T can be combined
with any frame-to-frame surface tracking technique working with {Ot}Nt=1. The
dissimilarity measure d has to be proportional to the alignment error of the
selected technique so it is valid for calculating T . However, d is designed as
an approximate measure which is significantly easier to compute than direct
alignment of the mesh M . Given T , a user needs to specify a shape and topology
of the mesh Mtr = (Xtr , C) for the root node nr. Mtr is subsequently tracked
between the pairs of frames along the branches of T from nr towards the leaves.
The result is a temporally consistent mesh sequence {Mt}Nt=1 which can span
across multiple separate captures of the same surface.
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Fig. 1. Structure of a traversal tree T on the input frame sequence {t1, ..., tN}. The cuts
separate adjacent frames which have different alignment paths along tree branches.

3 Minimum spanning tree

Non-sequential traversal of an input sequence based on the minimum spanning
tree has been introduced by Budd et al.[14]. It is computed in a shape dissimilar-
ity space and used for global alignment of multiple unregistered mesh sequences.
This concept is generalised here for an arbitrary dissimilarity d between multi-
modal measurements Ot in every frame. The space of all possible pair-wise tran-
sitions between frames of the sequence is represented by a dissimilarity matrix
D of size N ×N where both rows and columns correspond to individual frames
(Figure 2(a)). The elements D(i, j) = d(Oti , Otj ) define a cost of alignment be-
tween frames ti and tj . The matrix is symmetric (d(Oti , Otj ) = d(Otj , Oti)) and
has zero diagonal (d(Oti , Oti) = 0). The optimal traversal in this space can be
found through graph formulation of the problem as suggested in [14].

A fully-connected undirected graph G = (N ,D) is built from the matrix
D. The nodes N = {n1, ..., nN} are associated with frames and interconnecting
edges (ni, nj) ∈ D have the weight D(i, j). A traversal visiting all frames is de-
scribed by an undirected spanning tree T ′s = (N , E ′) where E ′ ⊂ D. The optimal
tree T ′MST is defined as the minimum spanning tree (MST) which minimises
the total cost of pair-wise alignment given by d as outlined in Equation 1. This
objective describes total non-rigid deformation of the surface which has to be
overcome following the traversal tree, and is optimised by Prim’s algorithm.

T ′MST = argmin
∀T ′
s⊂G

 ∑
∀(ni,nj)∈T ′

s

D(i, j)

 (1)

The benefit of MST is that low-cost transitions are close to the root and the edges
with larger d are pushed towards the leaves. This reduces the accumulation of
errors along the branches and also limits the extent of a failure due to large
inter-frame dissimilarity to the ends of branches. The drawback of MST is that
it does not take into account the introduction of cuts and tends to temporally
over-fragment the sequence. T ′MST then contains short off-shoots or re-shuffling
of consecutive frames on a single branch as illustrated in the lower right corner of
Figure 2(b). This happens mostly in slow-motion periods where TMST over-fits
to small changes in low range of d.
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(a) (b) (c) (d)

Fig. 2. Dissimilarity matrix D for a part of the dataset SyntheticFace (blue - low values,
red - high values) (a). Traversal tree TMST depicted in D (each directed edge (ti, tj) is
marked black at respective location D(i, j)). TMST is the directed T ′MST with optimal
root by Equation 7 (b). Clustering Sβ illustrated in D as white squares for individual
clusters (c). Traversal tree Tβ based on the clustering Sβ (notice less fragmentation
and longer sequential segments than in (b)) (d).

4 Cluster tree

To address shortcomings of MST the notion of temporal order of frames needs
to be incorporated into the algorithm generating the traversal tree. MST is
independent from the order of frames because the weight of edges in G does not
change with re-ordering of the sequence {Ot}Nt=1. A novel cluster tree is proposed
which enforces sequential tracking locally to reduce the fragmentation of the
sequence. The tree structure is still used to link the sequential segments together
to obtain global non-sequential traversal of the sequence. The resulting tree shape
is simpler with a smaller number of cuts which reduces the jumps/jitter in favour
of relatively smooth sequential drift which is perceptually more acceptable.

4.1 Frame clustering

Intuitively, the segments traversed sequentially should contain little or no defor-
mation of the surface, thus there is a minimal accumulation of errors. Clusters of
similar successive frames form blocks with low d around the diagonal in the ma-
trix D (Figure 2(a)). Ideally, large clusters should be generated in slow-motion
segments and small clusters (even down to individual frames) in the segments
with significant surface motion. The summarisation method by Huang et al. [16]
is modified for the purpose of frame clustering. The clusters do not have any
representative key-frames but all frames are compared to each other to mea-
sure overall intra-cluster consistency. This provides a more general clustering
approach which suits our purpose better than grouping frames around a few
distinct exemplars.

A sequence of frames {t1, ..., tN} can be represented by a clustering S =
{F1, ..., FL} where a frame cluster Fi(tci, ∆ti) is a set of successive frames {tci−
∆ti, ..., tci + ∆ti}. All L clusters have to cover together the whole sequence
F1∪...∪FL = {t1, ..., tN} and be pair-wise disjoint Fi∩Fj = ∅. The inconsistency
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of frames within cluster A(Fi) is defined in Equation 2 as a sum of dissimilarities
among them (the main difference to [16]).

A(Fi) =
1

2

tci+∆ti∑
k=tci−∆ti

(
tci+∆ti∑
l=tci−∆ti

D(k, l)

)
(2)

The clustering S is described by two costs: total intra-cluster inconsistency for
all clusters and the number of clusters L. They are weighted against each other
by the parameter β ∈< 0, 1 > to provide a combined cost which is minimised in
Equation 3.

Sβ = argmin
S

(
βL+ (1− β)

∑
∀Fi∈S

A(Fi)

)
(3)

The optimal set of clusters Sβ for the dissimilarity matrix D (Figure 2(c)) de-
pends on β which influences granularity of the clustering. A value closer to 1
returns smaller number of large clusters while a value closer to 0 returns larger
number of small clusters. For a given β Equation 3 is minimised through a
graph-based formulation as in [16].

4.2 Tree calculation

A non-sequential traversal can be computed on the sequence of clusters instead
of the original frame sequence using MST as described in Section 3. The dissim-
ilarity matrix D is collapsed to a cluster dissimilarity matrix DF of size L × L
where rows and columns correspond to the individual clusters from Sβ . Equa-
tion 4 defines the dissimilarity DF (i, j) between the clusters Fi and Fj as the
minimal cost of transition between the respective clusters in the full matrix D.
A cluster pair (Fi, Fj) is then linked by the pair of frames (tk, tl) with minimal
dissimilarity.

DF (i, j) = min(D(k, l)) ∀tk ∈ Fi,∀tl ∈ Fj (4)

The matrix DF is symmetric with zero diagonal elements as for D. A fully-
connected graph GF = (NF ,DF ) with nodes corresponding to the clusters
{F1, ..., FL} is built from DF . The minimum spanning tree T ′F = (NF , E ′F ) among
the clusters is computed as in Equation 1.

Afterwards, the tree among clusters T ′F needs to be transformed to a full
spanning tree T ′β interconnecting all frames. The set of nodes N for T ′β is ex-
panded to the full sequence of frames {t1, ..., tN}. The set of edges E ′ for T ′β firstly
contains a sparse set of links E ′1 interconnecting the original clusters which is de-
rived from E ′F (Equation 5). Secondly, E ′ contains a set of edges E ′2 linking the
rest of the frames within the clusters to T ′β . Because of low intra-cluster dissim-
ilarity of frames sequential traversal is enforced among them. Thus, E ′2 defines
chains of frames in temporal order for all clusters (Equation 6).

E ′1 = {(nk, nl) : (ni, nj) ∈ E ′F , (Fi, Fj) ∼ (tk, tl)} (5)

E ′2 =
⋃

∀Fi∈Sβ

{(nk, nl) : tk, tl ∈ Fi, |tk − tl| = 1} (6)
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The construction of T ′β does not strictly create cuts at all boundaries between the
clusters. Typically, the minimal transition between temporally adjacent clusters
is the one linking the last frame of the first cluster to the first frame of the
second cluster. Therefore, the algorithm has an option to chain together several
neighbouring clusters into a single sequential segment if it is deemed optimal.

The tree T ′β does not exactly define a traversal of the input sequence because
it is undirected and has no root node. The root node nr has to be selected to
set directions along the paths in T ′β . The selection is made by minimisation of
Equation 7 which is derived from the criterion for a shortest path tree. The
length of weighted paths nl → nk from a candidate root node nl to all other
nodes nk has to be minimal.

nr = argmin
nl∈N

 ∑
∀nk∈T ′

β

∑
∀(ni,nj)∈nl→nk

D(i, j)

 (7)

The final traversal tree Tβ (Figure 2(d)) is created from T ′β by setting the direc-
tion of the edges in E ′ according to the expansion of breadth-first search from
nr towards the leaves.

The shape of Tβ is influenced by the clustering parameter β. The granularity
of clustering Sβ influences a number of branches for Tβ . The cluster tree T0
for β = 0 is equivalent to TMST because all clusters contain one frame. With
increasing β trees become generally thinner with longer sequential branches. T1
for β = 1 is equivalent to purely sequential traversal because a single cluster for
the whole sequence is generated. The spectrum of possible cluster trees allows
a selection of Tβ which balances the trade-off between drift and jumps/jitter
for a given dataset. However, the optimal value of β has to be manually tuned
according to visual evaluation of the tracked mesh sequence.

5 Experiments

The proposed approach has been extensively tested under several different sce-
narios of deformable surfaces undergoing complex non-rigid motions. Table 1
summarises the datasets used which contain facial performances (SyntheticFace,
Face, DisneyFace [13]), whole-body performances (StreetDance [17]) and cloth
deformation (Garment). All datasets provide multi-view image sequences with
camera calibration and an unregistered mesh sequence. The absence of ground-
truth for real data is a common issue in dense surface tracking. To allow quanti-
tative evaluation of the methods the dataset SyntheticFace is artificially created.

Two different frame-to-frame tracking techniques are used according to the
nature of individual datasets. Image-oriented surface tracking (IOST) is used
for the face and cloth datasets [8]. The dissimilarity measure dIOST for IOST
is derived from the 3D trajectories of a sparse set of strong features robustly
tracked in {Ict }Nt=1. Geometry-oriented surface tracking (GOST) is used for the
whole-body performance [14]. The dissimilarity measure dGOST for GOST is
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based on comparison of Gt between frames using a shape histogram. Details of
IOST, GOST and d-measures are given in the supplementary material 1.

Table 1. Description of datasets and frame-to-frame alignment methods used for their
evaluation. StreetDance [17] and DisneyFace [13] are publicly available. |X| denotes
the number of vertices of the tracked mesh M .

Dataset No. of cameras Resolution Fps No. of frames Method |X|
SyntheticFace 4 800× 950 25 355 IOST 2689

Face 4 1920× 1080 25 355 IOST 2689

DisneyFace 7 1176× 864 46 346 IOST 2700

Garment 4 1920× 1080 25 320 IOST 425

StreetDance 8 1920× 1080 25 1050 GOST 3484

The following traversals of the input sequence are compared across all datasets:
the standard sequential traversal (represented by β = 1), the non-sequential
traversal based on MST (represented by β = 0) and the non-sequential traversal
based on cluster tree. Multiple traversal trees Tβ are generated for the proposed
cluster-based approach to explore the spectrum of possible tree shapes between
the sequential traversal and MST. Figure 3 shows the number of clusters for the
tested values of β across individual datasets. The aligned sequence {Mt}Nt=1 is
obtained by applying the respective frame-to-frame alignment algorithm along
the branches of Tβ . The temporal consistency of mesh sequences resulting from
the individual Tβ has been visually assessed from the perspective of gradual
drift versus severity of jitter and rapid glitches (the best traversal tree is noted
in Figure 3). Due to the visual nature of results the reader is encouraged to
watch supplementary videos 1.

5.1 Synthetic facial performance

The dataset SyntheticFace is derived from the real performance Face to achieve
realistic face motion. The aligned mesh sequence obtained for the dataset Face is
temporally smoothed across cuts to remove jumps. This represents the ground-
truth {MGT

t }Nt=1 which is textured with a fixed face texture to avoid introduction
of any inconsistencies between appearance changes and underlying motion. The
textured {MGT

t }Nt=1 is rendered into 4 virtual views to create {Ict }Nt=1 and the
ground-truth meshes serve as {Gt}Nt=1. The dissimilarity dIOST is computed from
3D trajectories of the vertices selected from {MGT

t }Nt=1. The initial mesh Mtr is
taken directly from {MGT

t }Nt=1 in the root frame, so that the resulting {Mt}Nt=1

can be compared directly the ground-truth.
To be valid for tree computation, dIOST needs to be proportional to the diffi-

culty of frame-to-frame alignment observed by IOST technique. This is analysed

1 Supplementary material including videos is available under:
http://cvssp.org/projects/face3d/eccv2012/index.html
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Fig. 3. Number of generated clusters for the tested values of β across the datasets.
The amount of clusters increases from the sequential traversal (β = 1) towards MST
(β = 0). β∗ corresponds to the tree which gives the visually best tracking outcome.

by comparing the values of dIOST with the tracking errors EIOST reported
by the alignment algorithm. The graph in Figure 4(right) aggregates pairs of
(dIOST , EIOST ) for every frame-to-frame transition across all traversals com-
pared for SyntheticFace. The relationship has a scattered monotonically increas-
ing trend. Low dissimilarities (dIOST < 0.4) do not affect the quality of tracking
and EIOST linearly increases for higher values of dIOST . The monotonic profile
validates the use of dIOST with IOST.

The ground-truth error of {Mt}Nt=1 with respect to {MGT
t }Nt=1 is an average

Euclidean distance of corresponding vertices across all frames {t1, ..., tN}. Figure
4(left) shows the graph of error for different β. The sequential tracking (β = 1)
leads to the highest error due to accumulated drift. The profile for cluster trees
demonstrates an improvement over MST (β = 0). In general, all non-sequential
traversals achieve similar average imprecision 0.25 − 0.26mm per vertex which
reflects the high quality of tracking. The ground-truth error reflects accumulation
of the drift, however it does not quantify glitches due to the cuts. Despite this
fact the graph of error correlates with visual assessment of the results and the
cluster tree T0.99 is selected as the best. The sequential result clearly suffers
from significant mesh distortions built up during fast expression changes. The
qualitative differences between T0.99 and MST are fairly small because of the
high-quality alignment achieved by IOST.

5.2 Facial performance

The dataset Face containing fast changes of facial expressions poses a problem
for sequential tracking which results in mesh distortions in the most deforming
eye and mouth regions. The fragmentation in MST does not show as visible
jumps in most cases because IOST produces accurate alignments in spite of weak
skin texture. The best T0.95 yields accurate mesh sequence which improves over
MST by eliminating several small glitches around the eyes and on the lips. The
monotonic relationship of dIOST and EIOST shown in Figure 5(left) validates
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Fig. 4. Graph of the ground-truth error for SyntheticFace across different traversals
given by β (left). The relationship of dissimilarity dIOST and tracking error EIOST for
SyntheticFace (right). Colour scheme marks data samples from the sequential traversal
(red) through β = 1→ 0 to MST(blue).

dIOST for IOST on real data as well. The tracking errors are generally higher
than for SyntheticFace because of large changes in the face appearance during
deformations.

The dataset DisneyFace contains moderately expressive speech which is tracked
even by sequential traversal with small drift. Due to relatively low difficulty of
the sequence the visual differences between MST and the best cluster tree T0.996
amount to few noticeable glitches on the neck. Although the improvement by
the cluster tree is relatively small (similarly for the dataset Face), it is significant
because of the importance of accurate facial tracking for visual effects. Quanti-
tative comparison has been performed on DisneyFace with the state-of-the-art
non-sequential method for facial performance capture [13]. The difference to the
temporally consistent mesh sequence released by Beeler et al.is calculated as for
the dataset SyntheticFace with ground truth. The average vertex distance across
all frames is 0.312mm with the standard deviation 0.357mm for the cluster tree
T0.996. Note that the difference may be due to the errors in either approach.
Qualitatively, both techniques achieve comparable accuracy and temporal con-
sistency.

5.3 Cloth

The dataset Garment contains fast free-form motions of a textured top on a
subject’s upper torso. Sequential alignment leads to fast degradation of the mesh
at the beginning of sequence during rapid waving. Due to the partially repetitive
motion pattern the number of branches of MST is excessive in some parts of
the sequence. The increased presence of cuts causes many noticeable jumps. The
cleaner structure of the cluster tree T0.994 largely eliminates these artefacts apart
from a few visible glitches at the peaks of complicated motions. The difference
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Fig. 5. The relationship of dIOST − EIOST for Face (left) and dGOST − EGOST for
StreetDance (right).

between MST and the cluster tree is more apparent than for the face because of
the more challenging surface deformations complicated by motion blur.

5.4 Whole-body performance

The subject performing break-dance moves in loose uniform clothing is cap-
tured in the dataset StreetDance [17]. The sequence is composited from 3 dif-
ferent performances (Free, KickUp and FlashKick) to demonstrate the ability of
non-sequential approaches to align the data across separate motions. The mono-
tonic trend in Figure 5(right) validates the dissimilarity measure dGOST for the
GOST technique. However, the graph is more scattered in comparison to Figure
5(left) which caused by a more challenging dataset and use of geometry-based
alignment.

The sequential tracking gradually distorts the structure of the mesh but the
result by MST does not suffer from this severe slippage on the real surface.
However, the mesh jitters during static segments of the performance because of
significant re-ordering of frames. The best cluster tree T0.996 enforces sequential
processing of these segments which leads to a more coherent alignment. Figure 6
shows quantitatively this improvement by means of average acceleration across
all vertices. The peaks represent high acceleration related to fast changes of mesh
motion manifested as the jitter. T0.996 significantly reduces acceleration spikes in
a slow-motion segment of StreetDance in comparison to MST. In addition, gross
errors in the mesh shape (e.g. artificial connections between limbs) occur fre-
quently for MST during complex movements such as back-flip. They are largely
eliminated by T0.996 for the price of increased local drift at the peaks of motion.
However, this is perceptually more plausible than fast alternation between quite
differently distorted meshes. Overall, there is a clear superiority of results by the
cluster tree in comparison to MST.
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5.5 Discussion

The experimental results across different types of surfaces prove the existence
of a trade-off between the accumulation of drift and the severity of glitches
caused by cuts in temporal ordering. Perceptually, it is beneficial to increase the
amount of local drift in the temporally consistent mesh sequence in exchange
for the reduced amount of high-frequency jitter or glitches. Cluster trees provide
a mechanism to balance this trade-off and therefore achieve results superior to
fully sequential traversal or MST.

To analyse the trade-off between jumps and drift across the spectrum of trees,
two quantitative measures representing each aspect are proposed. The measure
SPL reflects the amount of potential drift in individual frames by a sum of path
lengths between the root node and all other nodes (similar to Equation 7). The
magnitude of potential glitch between adjacent frames separated by a cut is
expressed as a sum of the non-overlapping parts of paths leading to them from
the root node. The measure CUT is the total of these sums for all cuts created
by the tree. Examples of SPL and CUT profiles across the tree spectrum are
depicted in Figure 7 for the dataset SyntheticFace (graphs for the other datasets
available online1). The trend of SPL across the datasets has a clear maximum for
the completely accumulative sequential approach and generally decreases with
some fluctuations towards MST. The measure CUT decreases from MST with a
large amount of fragmentation towards the sequential traversal without any cuts.
The middle range of both measures fluctuates because the different granularity
of frame clustering given by β can lead to similar tree shapes. Some cluster trees
have worse properties than MST in each measure but the majority of trees show
an improvement in both. Intuitively, SPL and CUT should be combined into a
single criterion which would express optimality of a tree with respect to the drift
and jumps. This would enable automatic selection of the clustering parameter β
defining a tree shape. However, any straightforward combination of the measures
does not rank the trees consistently across different datasets, so that the order
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correlates with visual assessment of the tracking results. A combined criterion
defining the optimal traversal tree for sequences with different types of surface
deformation is an open problem.
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Fig. 7. SPL measure (left) and CUT measure (right) for SyntheticFace across different
traversals given by β (β = 1 - sequential; β = 0 - MST).

Even with the single criterion reflecting sequential drift versus non-sequential
jumps the selected tree is optimal only with respect to the dissimilarity d used.
Because it is an approximate measure, the relationship to the actual difficulty
of frame-to-frame tracking is not likely to be perfectly linear. This is indicated
by the graphs between d and the tracking error E (Figures 4(right),5(left) for
IOST and Figure 5(right) for GOST) where the correlation is monotonic but
non-linear. This trend validates the use of the chosen measures for guiding the
tracking. However, the non-linearity can bias the tree shape away from the ideal
result (such as excessive branching due to over-fitting in low range of d which
does not influence much the quality of tracking). The consequences of the non-
ideal relationship can be alleviated by tuning of the tree shape through β. Even
with a perfect dissimilarity the problem of distributing alignment errors across
the sequence remains and needs to be optimised by the cluster tree.

6 Conclusion

This paper proposes a cluster tree to non-sequential tracking of non-rigid surface
sequences which balances accumulation of errors in frame-to-frame alignment
against jumps due to re-ordering of the data. The approach is generalised for
any type of non-rigid surface tracked by an arbitrary frame-to-frame method.
Evaluation is performed on a variety of datasets including facial, whole-body
performances and deformation of cloth. Results demonstrate qualitatively and
quantitatively improved temporal alignment against previous sequential and
non-sequential minimum-spanning tree approaches.
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