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1 Frame-to-frame surface tracking

The proposed method for non-sequential traversal of input sequences using
traversal tree T can be combined with any frame-to-frame tracking technique
working with the defined input measurements {Ot}Nt=1 (for notation refer to the
main paper). Two different techniques are used for the evaluation of the concept.

1.1 Image-oriented surface tracking (IOST)

The approach presented in [1] is aimed at open surfaces captured by a narrow-
baseline camera setup where the fields of view are significantly overlapping.
The assumed magnitude of frame-to-frame surface motion is moderate but the
achieved precision of alignment is high. This is suitable for facial performance
capture or cloth capture.

Multi-view 3D matching of textured surface patches to Ictj provides initial
motion estimates between frames ti, tj which are weakly constrained by the
shape of Gtj . Subsequent weighted Laplacian deformation regularises raw 3D
vertex displacements and deforms the tracked Mti to Mtj . The tracking error
EIOST for a particular frame-to-frame transition is represented by the average
error of 3D matching across all surface patches.

The dissimilarity measure dIOST for IOST is derived from a sparse set of
strong features robustly tracked in {Ict }Nt=1 by a linear predictor tracker [2]. The
3D trajectories of features are obtained by back-projection of 2D trajectories
onto {Gt}Nt=1. d(ti, tj) represents Euclidean distance between 3D positions of
the features which are rigidly aligned beforehand between respective frames.
The known rigid alignment is used to initialise the full frame-to-frame tracking
algorithm.

1.2 Geometry-oriented surface tracking (GOST)

The approach presented in [?] is aimed at closed surfaces captured by surround-
ing wide-baseline camera setup. The spacious capture volume allows large free-
form motion of the surface between frames. The focus of approach is robustness
for larger frame-to-frame non-rigid deformation (e.g. fast motion) rather than
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high tracking accuracy. The primary application is whole-body performance cap-
ture.

ICP fitting of rigid surface patches from Gti to Gtj provides initial 3D dis-
placements between frames ti, tj . These are combined with a sparse set con-
straints from matching SIFT features between images Icti and Ictj . Initial defor-
mation of the mesh Mti using the combined set of constraints is again performed
by a Laplacian scheme. Mti is deformed further to Mtj in coarse-to-fine fashion
based on the growing number of displacements coming from ICP fitting of grad-
ually smaller patches. The tracking error EGOST for a particular frame-to-frame
transition is represented by the average length of 3D trajectories travelled by
rigid patches during iterative ICP fitting.

The dissimilarity measure dGOST for GOST differs from IOST because it is
difficult to obtain stable 3D trajectories of any features due to the complexity
and variety of surface motion in this scenario. The shape histogram is employed
instead because the motion is generally associated with large shape change for
whole-body data [3]. The volumetric histogram based on spherical partitioning
of the 3D space is calculated for both Gti , Gtj . d(ti, tj) is a sum of squared
differences between the histograms which are optimised to increase correlation
between them. A side product of the optimisation is a rigid alignment between
the unregistered meshes which discards overall pose of the surface for frame-to-
frame non-rigid alignment.

2 Trade-off between drift and jumps

To analyse the trade-off between drift and jumps across the spectrum of trees,
two measures representing each of them are evaluated over tree structure. The
measure SPL (shortest path length) reflects the amount of potential drift in
individual frames. The amount of drift in frame tk is related to the dissimilarity
accumulated along the path nr → nk in the traversal tree Tβ where nr is the
root node. SPL is the sum of path lengths from nr to all other nodes (Equation
1).

SPL =
∑

∀nk∈Tβ

∑
∀(ni,nj)∈nr→nk

D(i, j) (1)

The measure CUT reflects the magnitude of potential alignment inconsistencies
at the cuts given by the structure of Tβ . A difference in drift accumulation
between adjacent frames tk, tl is related to the dissimilarity accumulated along
their individual paths nr → nk, nr → nl in the traversal tree Tβ . The extent
of different error accumulation is described by the length of non-overlapping
parts of both paths (nb → nk) ⊂ (nr → nk), (nb → nl) ⊂ (nr → nl) where
nb is a branching node which the paths separate at. This is evaluated for all
pairs of adjacent frames which are not linked directly by an edge in E of Tβ :
Ē = {(nk, nl) : (nk, nl) /∈ E , |tk − tl| = 1}. Equation 2 for CUT defines the total
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sum of non-overlapping sub-paths for all cuts created by Tβ .

CUT =
∑

∀(nk,nl)∈Ē

 ∑
∀(ni,nj)∈nb→nk

D(i, j) +
∑

∀(ni,nj)∈nb→nl

D(i, j)

 (2)

The profiles of SPL and CUT across different β are depicted in Figures 1, 2 for
all datasets. Table 1 shows the number of clusters for the tested values of β across
individual datasets (equivalent to the graph in Figure 3 in the main paper). Note
that β = 0.0 is equivalent to MST (the number of clusters equals the number of
frames in the sequence) and β = 1.0 is equivalent to purely sequential traversal
(1 cluster).

Table 1. The values of β (with respective numbers of frame clusters) sampled for the
cluster tree calculation across the datasets. β∗ corresponds to the tree which gives the
visually best tracking outcome.

Dataset β(No. of clusters) β∗

SyntheticFace 1.0(1), 0.999(23), 0.996(31), 0.99(41), 0.98(55), 0.97(61),
0.96(69), 0.94(83), 0.92(87), 0.9(97), 0.8(135), 0.7(175), 0.0(355)

0.99

Face 1.0(1), 0.9998(11), 0.9995(15), 0.9992(21), 0.998(25), 0.996(31),
0.994(35), 0.992(41), 0.98(59), 0.95(79), 0.9(99), 0.8(139),
0.6(217), 0.0(355)

0.95

DisneyFace 1.0(1), 0.999(15), 0.996(27), 0.99(37), 0.96(61), 0.9(91), 0.0(346) 0.996

Garment 1.0(1), 0.999(18), 0.997(30), 0.994(40), 0.98(60), 0.96(80),
0.92(104), 0.9(118), 0.8(188), 0.0(320)

0.994

StreetDance 1.0(1), 0.999(22), 0.998(30), 0.996(42), 0.994(52), 0.99(62),
0.97(102), 0.95(130), 0.93(152), 0.9(176), 0.8(250), 0.6(328),
0.0(1050)

0.996
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Fig. 1. SPL and CUT measures across different traversal trees given by β for Syn-
theticFace (a,b), Face (c,d) and DisneyFace (e,f).
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Fig. 2. SPL and CUT measures across different traversal trees given by β for Garment
(a,b) and StreetDance (c,d).


