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» Accurate 3D human pose estimation

« 3D Convolutional Neural Network

e Fusion of video and IMUs

 New multi-modal dataset
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Total Capture Dataset
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» 4 X 6 metre capture volume
« 8 x 1080p60 video cameras
* 13 IMU sensors

* Vicon ground truth labelling

* 5 subjects x 12 sequences

http://cvssp.org/data/totalcapture
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Total Capture Dataset

Xsens MTw Awinda wireless motion
trackers

« Calibrated orientation and
acceleration per unit at 60Hz

Vicon motion capture for testing

 Solved skeleton provided in BVH
format, also 60Hz

http://cvssp.org/data/totalcapture
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Overview
MVV pose estimation (3-D convnet) TSP (LSTM) Fusion
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Volumetric Pose Estimation — Probabilistic Visual Hull (PVH)
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« Geometric proxy constructed from MVV

 Capture volume decimated into 1cm? grid

 Voxels assigned probability of occupancy

n‘ &3 * Downsampled to 30x30x30 grid for CNN
—
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Volumetric Pose Estimation — 3D CNN Training

MVV pose estimation (3-D convnet)
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PVH

* Trained with stochastic gradient descent to minimize mean squared error
over 26 3D joint positions
» 100K unique training poses / 50K test from Total Capture dataset

» Augmented during training with random rotation around vertical axis
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Inertial Pose Estimation

13 inertial measurement units (IMUSs)
* Arms and legs, feet, head, sternum and pelvis
« Manual calibration to an initial T-pose

« Joint angles inferred by forward kinematics
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Inertial Pose Estimation — forward kinematics

Assume fixed relative orientation between
each IMU (k € [1,13]) and bone: RE

Global bone orientation R = (R¥)~1 RX Rk

where RE  is IMU reference frame in global coordinates
and local IMU measurement R,
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Inertial Pose Estimation — forward kinematics

Local joint rotation R, = RL(RP*" V)1

Inferred from parent bone, par(i)
by forward kinematics beginning at root node
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Temporal Sequence Prediction (TSP)

LSTM Detail
\

Output * Long Short Term Memory RNN (LSTM)
Input L S . .
"0 Gate o  Exploits temporal nature of motion

X o> l 99\ h, * Independent model for each modality
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2 Hadamard product

9 Sigmoid Function

Gate
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Temporal Sequence Prediction (TSP) — LSTM details

LSTM Detail
\

Input vector x;, output vector h;y = o; ° a,(c;),
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Temporal Sequence Prediction (TSP) — LSTM details

LSTM Detail
|
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2 Hadamard product

@ sismoid Function sigmoid function a,,hyperbolic tangent oy,
vector constant b
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Temporal Sequence Prediction (TSP) — LSTM details

LSTM Detail
\

| Input vector x;, output vector h;y = o; ° a,(c;),
| L oo learnt weights W and U
nput
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X h, Memory cell,
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Temporal Sequence Prediction (TSP) — LSTM details

LSTM Detail
|
{ | Input vector x,, output vector h, = o, ° oy, (c;),
N L oo learnt weights W and U
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2 Hadamard product

@ sismoid Function sigmoid function a,,hyperbolic tangent oy,
vector constant b
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Human 3.6M

SER

T 1
T 1

PVH Only PVH + TSP Ground Truth
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Human 3.6M
Approach Direct.  Discus Eat Greet. Phone  Photo Pose Purch.
Tri-CPM 125.0 111.4 1019 1422 1254 147.6 109.1 133.1
Tri-CPM-TSP 67.4 71.9 65.1 108.8 88.9 112.0 55.6 77.5
PVH-TSP 92.7 35.9 72.3 93.2 36.2 101.2 75.1 78.0

Sit. SitD _ Smke  Wait  W.Dog _ walk _ W. toget.  Mean

Tri-CPM 135.7 142.1 116.8 1289 111.2  105.2 124.2 124.0
Tri-CPM-TSP 92.7 110.2 80.3 100.6 71.7 57.2 77.6 88.1
PVH-TSP 83.5 94.8 85.8 82.0 114.6 94.9 79.7 87.3

Average per joint error in millimetres

Tuesday, 03 October 2017
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Fusion layer

MVV pose estimation (3-D convnet) TSP (LSTM) Fusion
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Total Capture Dataset — Full Pipeline

LS
[ |

PVH + TSP IMU + TSP Fusion Source
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Total Capture Dataset

Approach SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean
W2 FS3 A3 W2 FS3 A3
Tri-CPM 79.0 1121 1065 79.0 1493 73.7 99.8
Tri-CPM-TSP 4577 1028 719 578 1429 59.6 80.1
3D PVH 483 1223 943 843 168.5 1545 107.3
3D PVH-TSP 38.8 86.3 726 69.1 1129 1195 8l1.1
Solved IMU 624 1295 787 68.0 1625 1460 107.9
Solved IMU-TSP 394 1187 528 588 141.1 1351 91.0
Fused-Mean IMU+3D PVH 373 1138 613 452 156.7 136.5 91.8
Fused-DL IMU+3D PVH 300 906 49.0 360 1121 1092 70.0

Average per joint error in millimetres

Tuesday, 03 October 2017
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Total Capture Dataset — Full Pipeline
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Training data volume

PVH resolution

Training Data Volume Relative Accuracy

PVH Dimensions  Per joint error (mm)

20% 87.1%
40% 90.4%
60% 96.7%
80% 99.4%

Training data randomly sampled
from ~100k MVV frames
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Camera ablation study

Num Cams SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean
w2 FS3 A3 W2 FS3 A3

4 93.8% 90.8% 953% 91.6% 89.5% 93.5% 90.4%

6 943% 993% 974% 96.0% 982% 98.1% 96.2%

8 100% 100% 100% 100% 100% 100%  100%

Relative accuracy change (mm/joint)
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4 cameras 6 cameras 8 cameras
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http://cvssp.org/data/totalcapture
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TotalCapture Dataset
Matthew Trumble, Andrew Gilbert, Charles Malleson, Adrian Hilton, and John Collomosse,
Centre for Vision, Speech & Signal Processing
University of Surrey, United Kingdom

appeared at
British Machine Vision Conference, BMVC 2017

* Novel 3D human pose estimation fusing MVV
and IMU signals

» Demonstrates high accuracy and
complementary nature of the two modalities

Example frames from the TotalCapture dataset

U Introduction

The TotalCapture cataset is designed for 3D pose estimation from markerless multi-camera capture, It is the first dataset to

* New hybrid MVV dataset including video,
and 3D ground truth o T T ot b i) ki St ! Sapes o et ks b s 5

publications in which it is used as by referencing the following paper : and this web-site

Dataset Link

TotalCapture Dataset Link
Note that the dataset requires registeration, please check the licence information at the bottom of the page

Citation
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}

Dataset Overview

Tuesday, 03 October 2017 The dataset contains a number of subjects performing varied actions and viewpoints. It was captured indoors in a volume
measuring roughly 8x4m with 8 calibrated HD video cameras at 60Hz. There are 4 male and 1 female subjects each




