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Statistical Model

Parametric model – Definition:

Set of distributions parametrized by a vector θ ∈ Θ ⊂ Rp

PΘ =
{

p(x |θ) | θ ∈ Θ
}

Bernoulli model: X ∼ Ber(θ) Θ = [0, 1]

p(x |θ) = θx(1− θ)(1−x)

Binomial model: X ∼ Bin(n, θ) Θ = [0, 1]

p(x |θ) =

(
n

x

)
θx(1− θ)(1−x)

Multinomial model: X ∼M(n, π1, π2, . . . , πK ) Θ = [0, 1]K

p(x |θ) =

(
n

x1, . . . , xk

)
π1

x1 . . . πk
xk
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Indicator variable coding for multinomial variables

Let C a r.v. taking values in {1, . . . ,K}, with

P(C = k) = πk .

We will code C with a r.v. Y = (Y1, . . . ,YK )> with

Yk = 1{C=k}

For example if K = 5 and c = 4 then y = (0, 0, 0, 1, 0)>.
So y ∈ {0, 1}K with

∑K
k=1 yk = 1.

P(C = k) = P(Yk = 1) and P(Y = y) =
K∏

k=1

πykk .
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Bernoulli, Binomial, Multinomial

Y ∼ Ber(π) (Y1, . . . ,YK ) ∼M(1, π1, . . . , πK )

p(y) = πy (1− π)1−y p(y) = πy1
1 . . . πyKK

N1 ∼ Bin(n, π) (N1, . . . ,NK ) ∼M(n, π1, . . . , πK )

p(n1) =
( n
n1

)
πn1 (1− π)n−n1 p(n) =

(
n

n1 . . . nK

)
πn1

1 . . . πnKK

with (
n

i

)
=

n!

(n − i)!i !
and

(
n

n1 . . . nK

)
=

n!

n1! . . . nK !
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Gaussian model

Scalar Gaussian model : X ∼ N (µ, σ2)

X real valued r.v., and θ =
(
µ, σ2

)
∈ Θ = R× R∗+.

pµ,σ2 (x) =
1√

2πσ2
exp

(
−1

2

(x − µ)2

σ2

)

Multivariate Gaussian model: X ∼ N (µ,Σ)

X r.v. taking values in Rd . If Kn is the set of positive definite matrices
of size n × n , and θ = (µ,Σ) ∈ Θ = Rd ×Kn.

pµ,Σ (x) =
1√

(2π)d detΣ
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
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Gaussian densities
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Gaussian densities
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Sample/Training set

The data used to learn or estimate a model typically consists of a
collection of observation which can be thought of as instantiations of
random variables.

X (1), . . . ,X (n)

A common assumption is that the variables are i.i.d.

independent

identically distributed, i.e. have the same distribution P.

This collection of observations is called

the sample or the observations in statistics

the samples in engineering

the training set in machine learning
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A short review of convex analysis and
optimization
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Review: convex analysis

Convex function

∀λ ∈ [0, 1], f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

Strictly convex function

∀λ ∈ ]0, 1[, f (λx + (1− λ)y) < λf (x) + (1− λ)f (y)

Strongly convex function

∃µ > 0, s.t. x 7→ f (x)− µ‖x‖2 is convex

Equivalently:

∀λ ∈ [0, 1], f (λx+(1−λ)y) ≤ λ f (x)+(1−λ) f (y)−µλ(1−λ)‖x−y‖2

The largest possible µ is called the strong convexity constant.

Probabilistic models 14/70



Review: convex analysis

Convex function

∀λ ∈ [0, 1], f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

Strictly convex function

∀λ ∈ ]0, 1[, f (λx + (1− λ)y) < λf (x) + (1− λ)f (y)

Strongly convex function

∃µ > 0, s.t. x 7→ f (x)− µ‖x‖2 is convex

Equivalently:

∀λ ∈ [0, 1], f (λx+(1−λ)y) ≤ λ f (x)+(1−λ) f (y)−µλ(1−λ)‖x−y‖2

The largest possible µ is called the strong convexity constant.

Probabilistic models 14/70



Review: convex analysis

Convex function

∀λ ∈ [0, 1], f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

Strictly convex function

∀λ ∈ ]0, 1[, f (λx + (1− λ)y) < λf (x) + (1− λ)f (y)

Strongly convex function

∃µ > 0, s.t. x 7→ f (x)− µ‖x‖2 is convex

Equivalently:

∀λ ∈ [0, 1], f (λx+(1−λ)y) ≤ λ f (x)+(1−λ) f (y)−µλ(1−λ)‖x−y‖2

The largest possible µ is called the strong convexity constant.

Probabilistic models 14/70



Review: convex analysis

Convex function

∀λ ∈ [0, 1], f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

Strictly convex function

∀λ ∈ ]0, 1[, f (λx + (1− λ)y) < λf (x) + (1− λ)f (y)

Strongly convex function

∃µ > 0, s.t. x 7→ f (x)− µ‖x‖2 is convex

Equivalently:

∀λ ∈ [0, 1], f (λx+(1−λ)y) ≤ λ f (x)+(1−λ) f (y)−µλ(1−λ)‖x−y‖2

The largest possible µ is called the strong convexity constant.

Probabilistic models 14/70



Minima of convex functions

Proposition (Supporting hyperplane)

If f is convex and differentiable at x then

f (y) ≥ f (x) +∇f (x)>(y − x)

Convex function
All local minima are global minima.

Strictly convex function
If there is a local minimum, then it is unique and global.

Strongly convex function
There exists a unique local minimum which is also global.
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Minima and stationary points of differentiable functions

Definition (Stationary point)

For f differentiable, we say that x is a stationary point if ∇f (x) = 0.

Theorem (Fermat)

If f is differentiable at x and x is a local minimum, then x is stationary.

Theorem (Stationary point of a convex differentiable function)

If f is convex and differentiable at x and x is stationary then x is a
minimum.

Theorem (Stationary points of a twice differentiable functions)

For f twice differentiable at x

if x is a local minimum then ∇f (x) = 0 and ∇2f (x) � 0.

conversely if ∇f (x) = 0 and ∇2f (x)� 0 then x is a strict local
minimum.
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Minima of differentiable functions under linear constraints

Theorem

If the function f is differentiable at x, and x is a local minimum of

min f (x) s.t. Ax = b

with A ∈ Rn×p then x must satisfy

∇f (x) + A>λ = 0,

for some λ ∈ Rn.

More optimization later...
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The maximum likelihood principle
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Maximum likelihood principle

Let PΘ =
{

p(x |θ) | θ ∈ Θ
}

be a given
model

Let x be an observation

Likelihood:

L : Θ → R+

θ 7→ p(x |θ)

Maximum likelihood estimator:

θ̂ML = argmax
θ∈Θ

p(x |θ)
Sir Ronald Fisher

(1890-1962)

Case of i.i.d data

If (xi )1≤i≤n is an i.i.d. sample of size n:

θ̂ML = argmax
θ∈Θ

n∏
i=1

p(xi |θ) = argmax
θ∈Θ

n∑
i=1

log p(xi |θ)
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Examples of computation of the MLE

Bernoulli model

Multinomial model

Gaussian model
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Linear regression
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Generative models vs conditional models

X is the input variable

Y is the output variable

A generative model is a model of the joint distribution p(x , y).

A conditional model is a model of the conditional distribution p(y |x).

Conditional models vs Generative models

CM make less assumptions about the data distribution

CM Require fewer parameters

CM are typically harder to learn

CM can typically not handle missing data or latent variables
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Probabilistic version of linear regression
Modeling the conditional distribution of Y given X by

Y | X ∼ N (w>X + b, σ2)

or equivalently Y = w>X + b + ε with ε ∼ N (0, σ2).

The offset can be ignored up to a reparameterization.

Y = w̃>
(

x
1

)
+ ε.

Likelihood for one pair

p(yi | xi ) =
1√

2πσ2
exp

(1

2

(yi −w>xi )
2

σ2

)
Negative log-likelihood

−`(w, σ2) = −
n∑

i=1

log p(yi |xi ) =
n

2
log(2πσ2) +

1

2

n∑
i=1

(yi −w>xi )
2

σ2
.
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or equivalently Y = w>X + b + ε with ε ∼ N (0, σ2).

The offset can be ignored up to a reparameterization.

Y = w̃>
(

x
1

)
+ ε.

Likelihood for one pair
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Probabilistic version of linear regression

min
σ2,w

n

2
log(2πσ2) +

1

2

n∑
i=1

(yi −w>xi )
2

σ2

The minimization problem in w

min
w

1

2σ2
‖y − Xw‖2

2

that we recognize as the usual linear regression, with

y = (y1, . . . , yn)> and

X the design matrix with rows equal to x>i .

Optimizing over σ2, we find:

σ̂2
MLE =

1

n

n∑
i=1

(yi − ŵ>MLExi )
2
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Logistic regression

Classification setting:

X = Rp,Y ∈ {0, 1}.

Key assumption:

log
P(Y = 1 | X = x)

P(Y = 0 | X = x)
= w>x

Implies that

P(Y = 1 | X = x) = σ(w>x)

for

σ : z 7→ 1

1 + e−z
,

the logistic function.
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The logistic function is part of
the family of sigmoid functions.

Often called “the” sigmoid
function.

Properties:

∀z ∈ R, σ(−z) = 1− σ(z),
∀z ∈ R, σ′(z) = σ(z)(1− σ(z))

= σ(z)σ(−z).

Probabilistic models 29/70



Logistic regression

Classification setting:

X = Rp,Y ∈ {0, 1}.

Key assumption:

log
P(Y = 1 | X = x)

P(Y = 0 | X = x)
= w>x

Implies that

P(Y = 1 | X = x) = σ(w>x)

for

σ : z 7→ 1

1 + e−z
,

the logistic function.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

σ
(x

)

The logistic function is part of
the family of sigmoid functions.

Often called “the” sigmoid
function.

Properties:

∀z ∈ R, σ(−z) = 1− σ(z),
∀z ∈ R, σ′(z) = σ(z)(1− σ(z))

= σ(z)σ(−z).

Probabilistic models 29/70



Logistic regression

Classification setting:

X = Rp,Y ∈ {0, 1}.

Key assumption:

log
P(Y = 1 | X = x)

P(Y = 0 | X = x)
= w>x

Implies that

P(Y = 1 | X = x) = σ(w>x)

for

σ : z 7→ 1

1 + e−z
,

the logistic function.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

σ
(x

)

The logistic function is part of
the family of sigmoid functions.

Often called “the” sigmoid
function.

Properties:

∀z ∈ R, σ(−z) = 1− σ(z),
∀z ∈ R, σ′(z) = σ(z)(1− σ(z))

= σ(z)σ(−z).

Probabilistic models 29/70



Logistic regression

Classification setting:

X = Rp,Y ∈ {0, 1}.

Key assumption:

log
P(Y = 1 | X = x)

P(Y = 0 | X = x)
= w>x

Implies that

P(Y = 1 | X = x) = σ(w>x)

for

σ : z 7→ 1

1 + e−z
,

the logistic function.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

σ
(x

)

The logistic function is part of
the family of sigmoid functions.

Often called “the” sigmoid
function.

Properties:

∀z ∈ R, σ(−z) = 1− σ(z),
∀z ∈ R, σ′(z) = σ(z)(1− σ(z))

= σ(z)σ(−z).

Probabilistic models 29/70



Logistic regression

Classification setting:

X = Rp,Y ∈ {0, 1}.

Key assumption:

log
P(Y = 1 | X = x)

P(Y = 0 | X = x)
= w>x

Implies that

P(Y = 1 | X = x) = σ(w>x)

for

σ : z 7→ 1

1 + e−z
,

the logistic function.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

σ
(x

)

The logistic function is part of
the family of sigmoid functions.

Often called “the” sigmoid
function.

Properties:

∀z ∈ R, σ(−z) = 1− σ(z),
∀z ∈ R, σ′(z) = σ(z)(1− σ(z))

= σ(z)σ(−z).

Probabilistic models 29/70



Logistic regression

Classification setting:

X = Rp,Y ∈ {0, 1}.

Key assumption:

log
P(Y = 1 | X = x)

P(Y = 0 | X = x)
= w>x

Implies that

P(Y = 1 | X = x) = σ(w>x)

for

σ : z 7→ 1

1 + e−z
,

the logistic function.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

σ
(x

)

The logistic function is part of
the family of sigmoid functions.

Often called “the” sigmoid
function.

Properties:

∀z ∈ R, σ(−z) = 1− σ(z),
∀z ∈ R, σ′(z) = σ(z)(1− σ(z))

= σ(z)σ(−z).

Probabilistic models 29/70



Likelihood for logistic regression

Let η := σ(w>x + b). W.l.o.g. we assume b = 0.
By assumption: Y |X = x ∼ Ber(η).

Likelihood

p(Y = y |X = x) = ηy (1− η)1−y = σ(w>x)yσ(−w>x)1−y .

Log-likelihood

`(w) = y log σ(w>x) + (1− y) log σ(−w>x)

= y log η + (1− y) log(1− η)

= y log
η

1− η + log(1− η)

= yw>x + log σ(−w>x)
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Maximizing the log-likelihood
Log-likelihood of a sample
Given an i.i.d. training set D = {(x1, y1), · · · , (xn, yn)}

`(w) =
n∑

i=1

yiw
>xi + log σ(−w>xi ).

The log-likelihood is differentiable and concave.
⇒ Its global maxima are its stationary points.

Gradient of `

∇`(w) =
n∑

i=1

yixi − xi
σ(−w>xi )σ(w>xi )

σ(−w>xi )

=
n∑

i=1

(yi − ηi )xi with ηi = σ(w>xi ).

Thus, ∇`(w) = 0⇔∑n
i=1 xi (yi − σ(θ>xi )) = 0.

No closed form solution !
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Second order Taylor expansion

Need an iterative method to solve
n∑

i=1

xi (yi − σ(θ>xi )) = 0.

→ Gradient descent (aka steepest descent)

→ Newton’s method

Hessian of `

H`(w) =
n∑

i=1

xi (0− σ′(w>xi )σ
′(−w>xi )x>i )

=
n∑

i=1

−ηi (1− ηi )xix
>
i = −X>Diag(ηi (1− ηi ))X

where X is the design matrix.
→ Note that −H` is p.s.d. ⇒ ` is concave.
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Newton’s method

Use the Taylor expansion

`(wt) + (w −wt)>∇`(wt) +
1

2
(w −wt)>H`(wt)(w −wt).

and minimize w.r.t. w.

Setting h = w −wt , we get

max
h

h>∇w`(w) +
1

2
h>H`(w)h.

I.e., for logistic regression, writing Dη = Diag
(
(ηi (1− ηi ))i

)
min

h
h>X>(y − η)− 1

2
h>X>DηXh

Modified normal equations

X>DηX h− X>ỹ with ỹ = y − η.
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Iterative Reweighted Least Squares (IRLS)

Assuming X>DηX is invertible, the algorithm takes the form

w(t+1) ← w(t) + (X>Dη(t)X)−1X>(y − η(t)).

This is called iterative reweighted least squares because each step is
equivalent to solving the reweighted least squares problem:

1

2

n∑
i=1

1

τ2
i

(x>i h− y̌i )
2

with

τ2
i =

1

η
(t)
i (1− η(t)

i )
and y̌i = τ2

i (yi − η(t)
i ).
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Alternate formulation of logistic regression

If y ∈ {−1, 1}, then

P(Y = y |X = x) = σ(y w>x)

Log-likelihood

`(w) = log σ(yw>x) = − log
(
1 + exp(−yw>x)

)
Log-likelihood for a training set

`(w) = −
n∑

i=1

log
(
1 + exp(−yiw

>xi )
)

The negative log-likelihood takes the form of an empirical risk with loss

(a, y) = h(ya) with h : z 7→ log
(
1 + e−ya

)
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Comparing losses
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`(a, 1) for several classification losses
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Maximum likelihood for conditional models as ERM

Given a probabilistic model pθ(y), define the loss function ` by

` : (θ, y) 7→ − log pθ(y)

Then the risk of a decision function f takes the form

R(f ) = E[`(f (X ),Y )] = −E[log pf (X )(Y )],

where pf (x)(y) is a parameterization of p(y |x).

The ERM principle proposes to minimize

1

n

n∑
i=1

`(f (xi ), yi ) = −1

n

n∑
i=1

log p(yi |xi ),

which is equivalent to the maximum likelihood principle.
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Fisher discriminant analysis
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Generative classification

X ∈ Rp and Y ∈ {0, 1}.

Instead of modeling directly p(y | x) model
p(y) and p(x | y) and deduce p(y | x) using Bayes rule.
In classification P(Y = 1 | X = x) =

P(X = x | Y = 1)P(Y = 1)

P(X = x | Y = 1)P(Y = 1) + P(X = x | Y = 0)P(Y = 0)

For example one can assume

P(Y = 1) = π

P(X = x | Y = 1) ∼ N (x;µ1,Σ1)

P(X = x | Y = 0) ∼ N (x;µ0,Σ0).
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Fisher’s discriminant aka Linear Discriminant Analysis (LDA)

Previous model with the constraint Σ1 = Σ0 = Σ.

Given a training set,
the different model parameters can be estimated using the maximum
likelihood principle, which leads to

(π̂, µ̂1, µ̂0, Σ̂1, Σ̂0).

Then we have

P(Y = 1 | X = x) =

(
1 +

P(X = x | Y = 0)P(Y = 0)

P(X = x | Y = 1)P(Y = 1)

)−1

=

(
1 +

1− π
π

exp
(

1
2 (x− µ0)>Σ−1(x− µ0)

)
exp

(
1
2 (x− µ1)>Σ−1(x− µ1)

))−1

=
(

1 + exp
(
(µ1 − µ0)>Σ−1x + b

))−1

= σ(w>x + b)

with w = Σ−1(µ1 − µ0) and b = log 1−π
π + 1

2µ
>
0 Σ
−1µ0 − 1

2µ
>
1 Σ
−1µ1.
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LDA vs logistic regression

Both lead to P(Y = 1 | X = x) = σ(w>x + b)

Weaknesses of LDA

Assumes a Gaussian model, which is likely to be quite wrong

Requires to estimate p(p + 1)/2 + 2p + 1 parameters vs p + 1

Strengths of LDA

Closed form

Relevant if the model is a good match to the data.
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Clustering

Probabilistic models 44/70



Supervised, unsupervised and semi-supervised classification

Supervised learning

Training set composed of pairs {(x1, y1), . . . , (xn, yn)}.
→ Learn to classify new points in the classes

Unsupervised learning

Training set composed of pairs {x1, . . . , xn}.
→ Partition the data in a number of classes.
→ Possibly produce a decision rule for new points.

Transductive learning

Data available at train time composed of
train data {(x1, y1), . . . , (xn, yn)} + test data {xn+1, . . . , xn}
→ Classify all the test data

Semi-supervised learning

Data available at train time composed of
labelled data {(x1, y1), . . . , (xn, yn)} + unlabelled data {xn+1, . . . , xn}
→ Produce a classification rule for future points
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Clustering

Clustering is word usually used for unsupervised classification

Clustering techniques can be useful to solve semi-supervised
classification problem.

Clustering is not a well-specified problem

Classes might be impossible to infer from the distribution of X alone

Several goals possible:

Find the modes of the distribution
Find a set of denser connected regions supporting most of the
density
Find a set of denser convex regions supporting most of the density
Find a set of denser ellipsoidal regions supporting most of the
density
Find a set of denser round regions supporting most of the density
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K-means
Key assumption: Data composed of K “roundish” clusters of similar
sizes with centroids (µ1, · · · ,µK ).

Problem can be formulated as: min
µ1,··· ,µK

1

n

n∑
i=1

min
k
‖xi − µk‖2.

Difficult (NP-hard) nonconvex problem.

K -means algorithm

1 Draw centroids at random

2 Assign each point to the closest centroid

Ck ←
{

i | ‖xi − µk‖2 = min
j
‖xi − µj‖2

}
3 Recompute centroid as center of mass of the cluster

µk ←
1

| Ck |
∑
i∈Ck

xi

4 Go to 2
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K-means properties

Three remarks:

K-means is greedy algorithm

It can be shown that K-means converges in a finite number of steps.

The algorithm however typically get stuck in local minima and it
practice it is necessary to try several restarts of the algorithm with a
random initialization to have chances to obtain a better solution.

Will fail if the clusters are not round
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The EM algorithm for the Gaussian
mixture model
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Gaussian mixture model

K components

z component indicator

z = (z1, . . . , zK )> ∈ {0, 1}K
z ∼M(1, (π1, . . . , πK ))

p(z) =
K∏

k=1

πzkk

p(x|z; (µk ,Σk)k) =
K∑

k=1

zk N (x;µk ,Σk)

p(x) =
K∑

k=1

πk N (x;µk ,Σk)

Estimation: argmax
µk ,Σk

log

[
K∑

k=1

πk N (x;µk ,Σk)

]

xn

zn

N

µ Σ

π

(a)

0 0.5 1

0

0.5

1
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Applying maximum likelihood to the Gaussian mixture
Let Z = {z ∈ {0, 1}K |∑K

k=1 zk = 1}

p(x) =
∑
z∈Z

p(x, z) =
∑
z∈Z

K∏
k=1

[
πk N (x;µk ,Σk)

]zk
=

K∑
k=1

πk N (x;µk ,Σk)

Issue

The marginal log-likelihood ˜̀(θ) =
∑

i log(p(x(i))) with
θ =

(
π, (µk ,Σk)1≤k≤K

)
is now complicated

No hope to find a simple solution to the maximum likelihood
problem

By contrast the complete log-likelihood has a rather simple form:

˜̀
(
θ) =

M∑
i=1

log p(x(i), z(i)) =
∑
i , k

z
(i)
k logN (x (i);µk ,Σk)+

∑
i ,k

z
(i)
k log(πk),
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Applying maximum likelihood to the multinomial mixture

˜̀
(
θ) =

M∑
i=1

log p(x(i), z(i)) =
∑
i ,k

z
(i)
k logN (x(i);µk ,Σk)+

∑
i ,k

z
(i)
k log(πk),

If we knew z(i) we could maximize ˜̀(θ).
If we knew θ =

(
π, (µk ,Σk)1≤k≤K

)
, we could find the best z(i)

since we could compute the true a posteriori on z(i) given x(i):

p(z
(i)
k = 1 | x; θ) =

πk N (x(i);µk ,Σk)∑K
j=1 πj N (x(i);µj ,Σj)

→ Seems a chicken and egg problem...
In addition, we want to solve

max
θ

∑
i

log

(∑
z(i)

p(x(i), z(i))

)
and not max

θ,
z(1),...,z(M)

∑
i

log p(x(i), z(i))

Can we still use the intuitions above to construct an algorithm
maximizing the marginal likelihood?
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Principle of the Expectation-Maximization Algorithm

log p(x;θ) =

log
∑

z

p(x, z;θ) = log
∑

z

q(z)
p(x, z;θ)

q(z)

≥
∑

z

q(z) log
p(x, z;θ)

q(z)

= Eq[log p(x, z;θ)] + H(q) =: L(q,θ)

This shows that L(q,θ) ≤ log p(x;θ)

Moreover: θ 7→ L(q,θ) is a concave function.

Finally it is possible to show that

L(q,θ) = log p(x;θ)− KL(q||p(·|x;θ))

So that if we set q(z) = p(z | x;θ(t)) then

L(q,θ(t)) = p(x; θ(t)).

θold θnew

L (q, θ)

ln p(X|θ)
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A graphical idea of the EM algorithm
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Expectation Maximization algorithm

Initialize θ = θ0

WHILE (Not converged)

Expectation step

1 q(z) = p(z | x;θ(t−1))

2 L(q,θ) = Eq

[
log p(x, z;θ)

]
+ H(q)

Maximization step

1 θ(t) = argmax
θ

Eq

[
log p(x, z;θ)

]
ENDWHILE

θold θnew

L (q, θ)

ln p(X|θ)

θold = θ(t−1)

θnew = θ(t)
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Expected complete log-likelihood

With the notation: q
(t)
ik = P

q
(t)
i

(z
(i)
k = 1) = E

q
(t)
i

[
z

(i)
k

]
, we have

Eq(t)

[
˜̀(θ)

]
= Eq(t)

[
log p(X,Z; θ)

]
= Eq(t)

[ M∑
i=1

log p(x(i), z(i); θ)

]
= Eq(t)

[∑
i ,k

z
(i)
k logN (x(i),µk ,Σk) +

∑
i ,k

z
(i)
k log(πk)

]
=

∑
i , k

E
q

(t)
i

[
z

(i)
k

]
logN (x(i),µk ,Σk) +

∑
i ,k

E
q

(t)
i

[
z

(i)
k

]
log(πk)

=
∑
i , k

q
(t)
ik logN (x(i),µk ,Σk) +

∑
i ,k

q
(t)
ik log(πk)
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Expectation step for the Gaussian mixture

We computed previously q
(t)
i (z(i)), which is a multinomial distribution

defined by

q
(t)
i (z(i)) = p(z(i)|x(i); θ(t−1))

Abusing notation we will denote (q
(t)
i1 , . . . , q

(t)
iK ) the corresponding vector

of probabilities defined by

q
(t)
ik = P

q
(t)
i

(z
(i)
k = 1) = E

q
(t)
i

[
z

(i)
k

]

q
(t)
ik = p(z

(i)
k = 1 | x(i); θ(t−1)) =

π
(t−1)
k logN (x(i),µ

(t−1)
k ,Σ

(t−1)
k )∑K

j=1 π
(t−1)
j logN (x(i),µ

(t−1)
j ,Σ

(t−1)
j )
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Maximization step for the Gaussian mixture

(
πt , (µ

(t)
k ,Σ

(t)
k )1≤k≤K

)
= argmax

θ
Eq(t)

[
˜̀(θ)

]

This yields the updates:

µ
(t)
k =

∑
i x(i) q

(t)
ik∑

i q
(t)
ik

, Σ
(t)
k =

∑
i

(
x(i) − µ

(t)
k

)(
x(i) − µ

(t)
k

)>
q

(t)
ik∑

i q
(t)
ik

and π
(t)
k =

∑
i q

(t)
ik∑

i ,k ′ q
(t)
ik ′
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Final EM algorithm for the Multinomial mixture model
Initialize θ = θ0

WHILE (Not converged)

Expectation step

q
(t)
ik ←

π
(t−1)
k logN (x(i),µ

(t−1)
k ,Σ

(t−1)
k )∑K

j=1 π
(t−1)
j logN (x(i),µ

(t−1)
j ,Σ

(t−1)
j )

Maximization step

µ
(t)
k =

∑
i x(i) q

(t)
ik∑

i q
(t)
ik

, Σ
(t)
k =

∑
i

(
x(i) − µ

(t)
k

)(
x(i) − µ

(t)
k

)>
q

(t)
ik∑

i q
(t)
ik

and π
(t)
k =

∑
i q

(t)
ik∑

i ,k ′ q
(t)
ik ′

ENDWHILE
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EM Algorithm for the Gaussian mixture model III

p(x|z) p(z|x)
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Outline

1 Statistical concepts

2 A short review of convex analysis and optimization

3 The maximum likelihood principle

4 Linear regression

5 Logistic regression

6 Fisher discriminant analysis

7 Clustering

8 The EM algorithm for the Gaussian mixture model

9 Hidden Markov models
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Hidden Markov models
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Hidden Markov models (HMM)

speech recognition

natural language processing

OCR

biological sequences (proteins, DNA)

b  r  a  c  e 
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Hidden Markov Model(HMM)

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

p(x1, . . . , xN , z1, . . . , zN) = p(z1)
N∏

n=2

p(zn|zn−1)
∏
n=1

p(xn|zn)

Homogeneous Markov chain

zn ∈ {0, 1}K indicator variable for the state (1, . . . ,K )

Homogeneous Markov chain: ∀n, p(zn|zn−1) = p(z2|z1)

xn emitted symbol ({0, 1}K ) / observation (Rd)
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Hidden Markov Model (HMM)

Parametrization

distribution of initial state p(z1;π) =
∏K

k=1 π
z1k
k

transition matrix p(zn|zn−1; A) =
K∏
j=1

K∏
k=1

A
zn−1, j znk
jk

emission probabilities p(xn|zn;φ) e.g. Gaussian Mixture

Interpretation

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3

Transistions of zn

k = 1

k = 2

k = 3

0 0.5 1
0

0.5

1

p(xn|zn)

0 0.5 1
0

0.5

1

Trajectory of xn
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Maximum likelihood for HMMs

Applying the EM algorithm

γ(zn) = p(zn|X,θt) ξ(zn−1, zn) = p(zn−1, zn|X,θt)

Espectation of the log-likelihood:

Q(θ,θt) =
K∑

k=1

γ(z1k) log πk+
N∑

n=2

K∑
j=1

K∑
k=1

ξ(zn−1,j , znk) logAjk+
N∑

n=1

K∑
k=1

γ(znk) log p(xn|φk)

When maximizing w.r.t. {π,A} one obtains

πt+1
k =

γ(z1k)∑K
j=1 γ(z1j)

At+1
jk =

∑N
n=2 ξ(zn−1,j , znk)∑K

l=1

∑N
n=2 ξ(zn−1,j , znl)

If the emissions are Gaussians we have as well:

µt+1
k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

Σt+1
k =

∑N
n=1 γ(znk)(xn − µk)(xn − µk)

>∑N
n=1 γ(znk)
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Maximum likelihood for HMMs

Application of the sum-product algorithm

In the context of HMM, the algorithm is known as forward-backward.

The following messages are propagated

forward α(zn) = p(xn|zn)
∑

zn−1
α(zn−1)p(zn|zn−1)

backward β(zn) =
∑

zn+1
β(zn+1)p(xn+1|zn+1)p(zn+1|zn)

they satisfy the properties:

α(zn) = p(x1, . . . , xn, zn) β(zn) = p(xn+1, . . . , xN |zn)

Finally we obtain the marginal probabilities:

γ(zn) = p(zn|X,θt) =
α(zn)β(zn)

p(X|θt)

et
ξ(zn−1, zn) =

α(xn−1)p(xn|zn)p(zn|zn−1)β(xn)

p(X|θt)
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Hidden Markov Field

Segmentation
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Conclusions

Probabilistic models for interpretation

Probabilistic models for combining simple blocks

Probabilistic models for missing data

Probabilistic models for learning parameters and hyperparameters
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