Spring School - April 2016 - Spartan/Macsenet
Francis Bach

Slides generously provided by Guillaume Obozinski

Probabilistic models

Guillaume Obozinski

Ecole des Ponts - ParisTech

ParisTech

SOCN course 2014

Probabilistic models 1/70
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@ Statistical concepts

© A short review of convex analysis and optimization
e The maximum likelihood principle

@ Linear regression

e Logistic regression

@ Fisher discriminant analysis

@ Clustering

© The EM algorithm for the Gaussian mixture model

© Hidden Markov models
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References for further reading

Christopher Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

Kevin Murphy. Machine Learning: a Probabilistic Perspective. MIT
Press, 2012.
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Statistical Model

Parametric model — Definition:
Set of distributions parametrized by a vector § € © C RP

Po = {p(x[0) | 0 € ©}
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Statistical Model

Parametric model — Definition:
Set of distributions parametrized by a vector § € © C RP

Po = {p(x|0) | 0 € ©}
Bernoulli model: X ~ Ber(6) © =10,1]

p(x[6) = (1 — )~
Binomial model: X ~ Bin(n,0) © =10,1]

p(x|0) = C) 0% (1 — 6)1=)
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Statistical Model

Parametric model — Definition:
Set of distributions parametrized by a vector § € © C RP

Po = {plxlf) |0 ¢ ©)
Bernoulli model: X ~ Ber(6) © =10,1]
p(x]8) = (1 — )~
Binomial model: X ~ Bin(n,0) © =10,1]
plle) = (1) 7@ - )0

Multinomial model: X ~ M(n, 7y, 72, ..., k) © =10,1]¥

p(x|0) = <X1 n Xk) ™ T
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Indicator variable coding for multinomial variables

Let C a r.v. taking values in {1,..., K}, with

P(C = k) = mg.
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Indicator variable coding for multinomial variables

Let C a r.v. taking values in {1,..., K}, with
P(C = k) = mx.

We will code C with arv. Y =(Y1,..., Yk)" with

Yk = lic=x)

For example if K =5 and ¢ = 4 then y = (0,0,0,1,0)".
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Indicator variable coding for multinomial variables

Let C a r.v. taking values in {1,..., K}, with
P(C = k) = mx.

We will code C with arv. Y =(Y1,..., Yk)" with

Yk = lic=x)

For example if K =5 and ¢ = 4 then y = (0,0,0,1,0)".
Soye {0,1}K with YKy = 1.

P(C=k)=P(Yi=1) and P(Y =y) Hw
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Bernoulli, Binomial, Multinomial

YNBer(W) (Yl,...,YK)NM(1,7T1,...,7TK)
ply) = (1 —m)t~Y ply) =" ... i
N1~Bin(n,7r) (Nl,...,NK)NM(H,W;[,...,’/‘['K)

o) = () @=myrn o= () el

with
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Gaussian model

Scalar Gaussian model : X ~ N (u, 0?)
X real valued r.v., and 6 = (p,0%) € © = R x R

2
Pyu,02 (x) = L exp <—;(X_“)>
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Gaussian model

Scalar Gaussian model : X ~ N (u, 0?)
X real valued r.v., and 6 = (p,0%) € © = R x R

2
Py, (x) = L exp <—;(X_“)>

Multivariate Gaussian model: X ~ N (i, X)

X r.v. taking values in RY. If IC, is the set of positive definite matrices
of size nx n,and 6 = (u,X) € © =R x ..

x:;ex —Ex— Ty 1 (x—
R T (3= )
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Gaussian densities
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Gaussian densities
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Sample/Training set

The data used to learn or estimate a model typically consists of a
collection of observation which can be thought of as instantiations of

random variables.
x® o x
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x® o x

A common assumption is that the variables are i.i.d.
o independent
o identically distributed, i.e. have the same distribution P.
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Sample/Training set

The data used to learn or estimate a model typically consists of a
collection of observation which can be thought of as instantiations of
random variables.

x® o x
A common assumption is that the variables are i.i.d.
o independent
o identically distributed, i.e. have the same distribution P.

This collection of observations is called
o the sample or the observations in statistics
@ the samples in engineering

o the training set in machine learning
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© A short review of convex analysis and optimization
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A short review of convex analysis and
optimization
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Review: convex analysis
Convex function

YAe[0,1],  F(Ax—+ (1 —=N)y) < A (x)+ (1= N)f(y)
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Review: convex analysis

Convex function

YAe[0,1],  FOx+(1—A)y) < M(x)+ (1= Nf(y)
Strictly convex function

VA €]0,1], f(Ax+ (1= A)y) < Af(x)+ (1= N)f(y)
Strongly convex function

>0, st x> f(x) — pl[x||? is convex

Equivalently:
YAE[0,1],  FOx+(1-N)y) < AF(x)+(1=X) F(y) = A(L=A)lIx—y]>

The largest possible p is called the strong convexity constant.
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Minima of convex functions
Proposition (Supporting hyperplane)

If f is convex and differentiable at x then

fly) = f(x) + VF(x) " (y —x)
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fly) = f(x) + VF(x) " (y —x)
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All local minima are global minima.
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Minima of convex functions

Proposition (Supporting hyperplane)

If f is convex and differentiable at x then

fly) = f(x) + VF(x) " (y —x)

Convex function
All local minima are global minima.

Strictly convex function
If there is a local minimum, then it is unique and global.

Strongly convex function
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Minima of convex functions

Proposition (Supporting hyperplane)

If f is convex and differentiable at x then

fly) = f(x) + VF(x) " (y —x)

Convex function
All local minima are global minima.

Strictly convex function
If there is a local minimum, then it is unique and global.

Strongly convex function
There exists a unique local minimum which is also global.
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Minima and stationary points of differentiable functions

Definition (Stationary point)
For f differentiable, we say that x is a stationary point if Vf(x) = 0.
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Minima and stationary points of differentiable functions

Definition (Stationary point)
For f differentiable, we say that x is a stationary point if Vf(x) = 0.

Theorem (Fermat)
If f is differentiable at x and x is a local minimum, then x is stationary.
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Minima and stationary points of differentiable functions
Definition (Stationary point)

For f differentiable, we say that x is a stationary point if Vf(x) = 0.

Theorem (Fermat)

If f is differentiable at x and x is a local minimum, then x is stationary.

Theorem (Stationary point of a convex differentiable function)

If f is convex and differentiable at x and x is stationary then x is a
minimum.
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Minima and stationary points of differentiable functions

Definition (Stationary point)
For f differentiable, we say that x is a stationary point if Vf(x) = 0.

Theorem (Fermat)

If f is differentiable at x and x is a local minimum, then x is stationary.

Theorem (Stationary point of a convex differentiable function)

If f is convex and differentiable at x and x is stationary then x is a
minimum.

Theorem (Stationary points of a twice differentiable functions)
For f twice differentiable at x
o if x is a local minimum then Vf(x) = 0 and V?f(x) = 0.

o conversely if Vf(x) =0 and V2f(x) = 0 then x is a strict local
minimum.
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Minima of differentiable functions under linear constraints

Theorem

If the function f is differentiable at x, and x is a local minimum of
minf(x) st Ax=0b
with A € R" P then x must satisfy
VF(x)+ATA =0,

for some A € R".
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Minima of differentiable functions under linear constraints

Theorem

If the function f is differentiable at x, and x is a local minimum of
minf(x) st Ax=0b
with A € R" P then x must satisfy
VF(x)+ATA =0,

for some A € R".

More optimization later...
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9 The maximum likelihood principle
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The maximum likelihood principle
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Maximum likelihood principle

o Let Pg = {p(x|0) | 0 € ©} be a given
model

@ Let x be an observation
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Maximum likelihood principle

o Let Pg = {p(x|0) | 0 € ©} be a given
model

@ Let x be an observation
Likelihood:
E . @ — R+
0 — p(x|9)
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Maximum likelihood principle

o Let Pg = {p(x|0) | 0 € ©} be a given
model

@ Let x be an observation
Likelihood:

L:© — R+
0 — p(x|)

Maximum likelihood estimator:

Sir Ronald Fisher
OmL = argmax p(x|6) (1890-1962)
0cO
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Maximum likelihood principle

o Let Pg = {p(x|0) | 0 € ©} be a given
model

@ Let x be an observation
Likelihood:

L: 06 — R+
0 — p(x|)

Maximum likelihood estimator:

Sir Ronald Fisher
OmL = argmax p(x|6) (1890-1962)
0cO

Case of i.i.d data

If (xi)i<i<n is an i.i.d. sample of size n:

n n
O = argmapr(x,-|9) = argmaxz log p(xi|0)
9€0 iy € o
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Examples of computation of the MLE

@ Bernoulli model
@ Multinomial model

@ Gaussian model
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@ Linear regression
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Linear regression
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Generative models vs conditional models

o X is the input variable

@ Y is the output variable

A generative model is a model of the joint distribution p(x, y).
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Generative models vs conditional models

o X is the input variable

@ Y is the output variable
A generative model is a model of the joint distribution p(x, y).

A conditional model is a model of the conditional distribution p(y|x).

Conditional models vs Generative models
@ CM make less assumptions about the data distribution
@ CM Require fewer parameters
o CM are typically harder to learn

@ CM can typically not handle missing data or latent variables
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Probabilistic version of linear regression
Modeling the conditional distribution of Y given X by

Y | X ~N(w'X+ b,0?)
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Probabilistic version of linear regression
Modeling the conditional distribution of Y given X by

Y | X ~N(w'X+ b,0?)
or equivalently Y =w'X + b+e with €~ N(0,02).

The offset can be ignored up to a reparameterization.

Y =w' <)1<>+e.
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Probabilistic version of linear regression
Modeling the conditional distribution of Y given X by

Y | X ~N(w'X+ b,0?)
or equivalently Y =w'X + b+e with €~ N(0,02).

The offset can be ignored up to a reparameterization.

Y =w' <)1<>+6.

Likelihood for one pair

plyi | xi) =
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Probabilistic version of linear regression
Modeling the conditional distribution of Y given X by

Y | X ~N(w'X+ b,0?)
or equivalently Y =w'X + b+e with €~ N(0,02).

The offset can be ignored up to a reparameterization.

Y =w' <)1<>+6.

Likelihood for one pair

_ 1 (}/i - WTXI)2)
p(yi | xi) = 3 P (2 2
Negative log-likelihood
n n Ty.)2
n 1 i — W' X
—l(w,0?) = — Z; log p(yi|xi) = - log(2m0%) + 5 Z; M
1= 1=
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Probabilistic version of linear regression

)2
i —w'x;)
mln—Iog 27T0' 22

0'W2
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Probabilistic version of linear regression

)2
—w'x;
mln—log 27TO' 227

O'W2

The minimization problem in w

min 7Hy Xw(j3

that we recognize as the usual linear regression, with

°oy= (ylv""yn)—r and
@ X the design matrix with rows equal to x,T.
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Probabilistic version of linear regression

)2
—w'x;
mln—log 27TO' 227

O'W2

The minimization problem in w
min 7Hy Xwl|3

that we recognize as the usual linear regression, with

°oy= (ylv""yn)—r and
@ X the design matrix with rows equal to x,T.

2

Optimizing over o<, we find:

n

1
U%/ILE =5 Z(y WMLEXI)

i=1
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© Logistic regression
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Logistic regression
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Logistic regression
Classification setting:

X =RP,Ye{0,1}.
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Logistic regression
Classification setting:

X =RP Y e{0,1}.
Key assumption:

P(Y=1|X=x) -
| _
Bpy=0|X=x) "~
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Logistic regression
Classification setting:

X =RP Y e{0,1}.
Key assumption:

P(Y=1|X=x) -
| _
Bpy=0|X=x) "~

Implies that
P(Y=1|X=x)=oc(w'x)

for

oz
1+e2’

the logistic function.
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Logistic regression

Classification setting:
X =R’ e {01}

Key assumption:

P(Y=1|X=x) -
| _
Bpy=0|X=x) "~

Implies that
P(Y=1|X=x)=oc(w'x)

for

oz
1+e2’

the logistic function.
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Logistic regression

Classification setting:
X =R’ e {01}

Key assumption:

P(Y=1|X=x) -
| _
Bpy=0|X=x) "~

@ The logistic function is part of
Implies that the family of sigmoid functions.

@ Often called “the” sigmoid

P(Y=1|X=x)= U(WTX) function.

for

oz
1+e2’

the logistic function.
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Logistic regression

Classification setting:
X =R’ e {01}

Key assumption:

]P)(Y:].|X:x) T e e« 2 o 2
| =
OgP(Y:0|X:x) w X

@ The logistic function is part of
Implies that the family of sigmoid functions.

(Y =1 X = x) = a(wa) @ Often called “the” sigmoid

function.
for ) Properties:
oz ,
1+e~ VzeR, o(-z) =1-o0(z),
the logistic function. VzeR, o'(z) =o(z)(1-0(2)

=o(z)o(—2).



Likelihood for logistic regression

Let 7 := o(w'x + b). W.l.o.g. we assume b = 0.
By assumption: Y|X =x ~ Ber(n).
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Let 7 := o(w'x + b). W.l.o.g. we assume b = 0.
By assumption: Y|X =x ~ Ber(n).

Likelihood

pY = yIX =x) = (1= )" = o(w %) o(—w x)" .
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Likelihood for logistic regression

Let 7 := o(w'x + b). W.l.o.g. we assume b = 0.
By assumption: Y|X =x ~ Ber(n).

Likelihood
p(Y =y[X =x) =1/ (L =)' = o(w'x)o(-w %)
Log-likelihood

(w) = ylogo(w'x)+(1—y)logo(—w'x)
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Likelihood for logistic regression

Let 7 := o(w'x + b). W.l.o.g. we assume b = 0.
By assumption: Y|X =x ~ Ber(n).

Likelihood
p(Y =y[X =x) =1/ (L =)' = o(w'x)o(-w %)
Log-likelihood

(w) = ylogo(w'x)+(1—y)logo(—w'x)
= ylogn+(1—y)log(1l—n)
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Likelihood for logistic regression

Let 7 := o(w'x + b). W.l.o.g. we assume b = 0.
By assumption: Y|X =x ~ Ber(n).

Likelihood

pY = yIX =x) = (1= )" = o(w %) o(—w x)" .

Log-likelihood
(w) = ylogo(w'x)+(1—y)logo(—w'x)
= ylogn+(1—y)log(1l—n)
n
= yl log(1 —
ylog — + og(1 —n)
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Likelihood for logistic regression

Let 7 := o(w'x + b). W.l.o.g. we assume b = 0.
By assumption: Y|X =x ~ Ber(n).

Likelihood

pY = yIX =x) = (1= )" = o(w %) o(—w x)" .

Log-likelihood
(w) = ylogo(w'x)+(1—y)logo(—w'x)
= ylogn+(1—y)log(1l—n)
n
= yl log(1 —
ylog — + og(1 —n)

= yw'x+logo(—w'x)
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Maximizing the log-likelihood
Log-likelihood of a sample
Given an i.i.d. training set D = {(x1,y1), -, (Xn, ¥n)}

n
Uw) = Zy,-wa,- + log o(—w ' x;).
i=1
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Maximizing the log-likelihood
Log-likelihood of a sample
Given an i.i.d. training set D = {(x1,y1), -, (Xn, ¥n)}

n
Uw) = Zy,-wa,- + log o(—w ' x;).
i=1

The log-likelihood is differentiable and concave.
= Its global maxima are its stationary points.

Probabilistic models 31/70



Maximizing the log-likelihood
Log-likelihood of a sample
Given an i.i.d. training set D = {(x1,y1), -, (Xn, ¥n)}

n
Uw) = Zy,-wa,- + log o(—w ' x;).
i=1

The log-likelihood is differentiable and concave.
= Its global maxima are its stationary points.

Gradient of /

n
Vﬁ(w) = Zy,-x,——x,—
i=1

= > (i—m)xi  with  pi=o(w'x).
i=1

o(—w'x;)o(wx;)

o(—wTx;)
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Maximizing the log-likelihood
Log-likelihood of a sample
Given an i.i.d. training set D = {(x1,y1), -, (Xn, ¥n)}

n
Uw) = Zy,-wa,- + log o(—w ' x;).
i=1
The log-likelihood is differentiable and concave.
= Its global maxima are its stationary points.

Gradient of /

n _ T . - '
Viw) = Y y,-x,-—x,-"( wx;)o(w'x;)
i=1

o(—wTx;)

n

= > (i—m)xi  with  pi=o(w'x).
i=1

Thus, Ve(w)=0e 7 x(yi —o(07x;)) =0.
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Maximizing the log-likelihood
Log-likelihood of a sample
Given an i.i.d. training set D = {(x1,y1), -, (Xn, ¥n)}

n
Uw) = Zy,-wa,- + log o(—w ' x;).
i=1
The log-likelihood is differentiable and concave.
= Its global maxima are its stationary points.

Gradient of /

n _ T . - '
Viw) = Y y,-x,-—x,-"( wx;)o(w'x;)
i=1

o(—wTx;)

n

= Z(y,- — 77,')X,' with ni = O'(WTX,').
i=1
Thus, Vl(w)=0<x>" x(yi—a(0x;)) =0.
No closed form solution !
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Second order Taylor expansion

n

Need an iterative method to solve Zx,—(y,- —0(0Tx;)) =0.
i=1
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Second order Taylor expansion

n

Need an iterative method to solve Zx,—(y,- —0(0Tx;)) =0.
i=1

— Gradient descent (aka steepest descent)

— Newton's method
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Second order Taylor expansion

n

Need an iterative method to solve Zx,—(y,- —0(0Tx;)) =0.
i=1

— Gradient descent (aka steepest descent)

— Newton's method

Hessian of /
He(w) = ) xi(0—o'(w'xi)o’(—w 'x;)x/ )
i=1

= > —mi(l = mi)xix; = —XT Diag(ni(1 — ;)X
i=1

where X is the design matrix.
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Second order Taylor expansion

n

Need an iterative method to solve Zx,—(y,- —0(0Tx;)) =0.
i=1

— Gradient descent (aka steepest descent)

— Newton's method

Hessian of /
He(w) = ) xi(0—o'(w'xi)o’(—w 'x;)x/ )
i=1

= > —mi(l = mi)xix; = —XT Diag(ni(1 — ;)X
i=1

where X is the design matrix.
— Note that —H/{ is p.s.d. = £ is concave.
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Newton's method

Use the Taylor expansion
() + (w — w) V) + 5 (w — w) T HE(w)(w — w).

and minimize w.r.t. w.
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Newton's method

Use the Taylor expansion
1
owh) + (w — wh) T Vo(wh) + E(W —wh)THI(wh)(w — wh).
and minimize w.r.t. w. Setting h = w — w’, we get

1
max h' V. l(w) + 5hTHe(w)h.
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Newton's method

Use the Taylor expansion
owh) + (w — wh) T Vo(wh) + %(w —wh)THI(wh)(w — wh).
and minimize w.r.t. w. Setting h = w — w’, we get
max h' V. l(w) + %hTHE(w)h.
l.e., for logistic regression, writing D,, = Diag((n,-(l — n,-)),-)

1
min h"X"(y—n) - 5thTD,,Xh
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Newton's method

Use the Taylor expansion
owh) + (w — wh) T Vo(wh) + %(w —wh)THI(wh)(w — wh).
and minimize w.r.t. w. Setting h = w — w’, we get
max h' V. l(w) + %hTHE(w)h.
l.e., for logistic regression, writing D,, = Diag((n,-(l — n,-)),-)
min h"X"(y—n) - %hTXTDnXh
Modified normal equations
X'D,Xh-X"y  with §=y—n.

Probabilistic models 33/70



lterative Reweighted Least Squares (IRLS)

Assuming XTD,,X is invertible, the algorithm takes the form

wittD) w0 4 (XTDn(t)X)_IXT(y — ).
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lterative Reweighted Least Squares (IRLS)

Assuming XTD,,X is invertible, the algorithm takes the form
wittD) w0 4 (XTDn(t)X)_IXT(y — ).

This is called iterative reweighted least squares because each step is
equivalent to solving the reweighted least squares problem:

I-1 . .o
EZ;(Xih—Yi)

i=1 i

with i

P and g =73y —nY).
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Alternate formulation of logistic regression

If y € {—1,1}, then
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Alternate formulation of logistic regression
If y € {—1,1}, then

P(Y =yl X =x) =o(yw'X)
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Alternate formulation of logistic regression
If y € {—1,1}, then
P(Y = y|X =x) = o(yw'x)
Log-likelihood

{(w) = logo(yw'x) = — log (1+ exp(—wax))
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Alternate formulation of logistic regression
If y € {—1,1}, then
P(Y =y[X =x) =o(yw'x)
Log-likelihood
{(w) = logo(yw'x) = — log (1+ exp(—wax))

Log-likelihood for a training set

(w) = — Z log (1 + exp(—yiw ' x;))
i=1
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Alternate formulation of logistic regression
If y € {—1,1}, then
P(Y = y|X =x) = o(yw'x)
Log-likelihood
{(w) = logo(yw'x) = — log (1+ exp(—wax))
Log-likelihood for a training set
l(w) = — Z log (1 + exp(—yiw ' x;))
i=1
The negative log-likelihood takes the form of an empirical risk with loss

(a,y) = h(ya) with h:zwlog (1 + e—ya)
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Comparing losses

logistic
— -1
451 square 1

25F 1

0 L L L
-3 -2 -1 0 1 2 3

¢(a, 1) for several classification losses

(the logistic loss is scaled by log(2)™")
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Maximum likelihood for conditional models as ERM

Given a probabilistic model py(y), define the loss function ¢ by

£:(0,y) = —logpy(y)
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Maximum likelihood for conditional models as ERM

Given a probabilistic model py(y), define the loss function ¢ by

£:(0,y) = —logpy(y)

Then the risk of a decision function f takes the form
R(f) = E[{(f(X), Y)] = —Ellog pr(x)(Y)],

where pr(,)(y) is a parameterization of p(y|x).
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Maximum likelihood for conditional models as ERM

Given a probabilistic model py(y), define the loss function ¢ by

£:(0,y) = —logpy(y)
Then the risk of a decision function f takes the form
R(f) = E[{(f(X), Y)] = —Ellog pr(x)(Y)],

where pr(,)(y) is a parameterization of p(y|x).

The ERM principle proposes to minimize
1< 1<
- > UF(xi), i) = - > log p(yilxi),
i=1 i=1

which is equivalent to the maximum likelihood principle.
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@ Fisher discriminant analysis
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Fisher discriminant analysis
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Generative classification

X €RPand Y € {0,1}.

Probabilistic models 40/70



Generative classification

X €RP and Y € {0,1}. Instead of modeling directly p(y | x) model
p(y) and p(x | y) and deduce p(y | x) using Bayes rule.
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Generative classification

X €RP and Y € {0,1}. Instead of modeling directly p(y | x) model
p(y) and p(x | y) and deduce p(y | x) using Bayes rule.
In classification P(Y =1 | X =x) =

P(X =x|Y =1)P(Y =1)
PX=x|Y=1)P(Y=1)+P(X =x| Y =0)P(Y =0)
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Generative classification

X €RP and Y € {0,1}. Instead of modeling directly p(y | x) model

p(y) and p(x | y) and deduce p(y | x) using Bayes rule.
In classification P(Y =1 | X =x) =

P(X =x|Y =1)P(Y =1)
PX=x|Y=1)P(Y=1)+P(X =x| Y =0)P(Y =0)

For example one can assume
e P(Y=1)=n
o P(X=x|Y=1)~N(x; p1,%1)
o P(X=x | Y =0)~N(x; o, X0).
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Fisher's discriminant aka Linear Discriminant Analysis (LDA)

Previous model with the constraint 31 = X = 3.
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Fisher's discriminant aka Linear Discriminant Analysis (LDA)

Previous model with the constraint 3; = 3y = 3. Given a training set,
the different model parameters can be estimated using the maximum
likelihood principle, which leads to

(7?7 ﬁl? ﬁ07 21, i\]0)
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Fisher's discriminant aka Linear Discriminant Analysis (LDA)

Previous model with the constraint 3; = 3y = 3. Given a training set,
the different model parameters can be estimated using the maximum
likelihood principle, which leads to

(7?7 ﬁl? ﬁ07 21, i\]O)
Then we have

P(Y=1|X=x) = <1+

P(X =x|Y =0P(Y =0)\ "
P(X =x | Y:1)IP’(Y:1))

Probabilistic models 41/70



Fisher's discriminant aka Linear Discriminant Analysis (LDA)

Previous model with the constraint 3; = 3y = 3. Given a training set,
the different model parameters can be estimated using the maximum

likelihood principle, which leads to
(%7 ﬁl? ﬁ07 21, i\]O)
Then we have

P(Y=1|X=x) =

) P(X =x|Y =0)P(Y
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Fisher's discriminant aka Linear Discriminant Analysis (LDA)

Previous model with the constraint 3; = 3y = 3. Given a training set,
the different model parameters can be estimated using the maximum
likelihood principle, which leads to

(%7 ﬁl? ﬁ07 21, i\]O)
Then we have

P(Y=1|X=x) = G+M =x|Y=0)P(Y =

)) -
P(X =x| Y = )P(Y = 1)

B 1—mexp (5(x — po)
a (1+ ™ eXP((X—ul)

THx -
Hx -
= (1+exp((u1 po) T~ x+b> -
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Fisher's discriminant aka Linear Discriminant Analysis (LDA)

Previous model with the constraint 3; = 3y = 3. Given a training set,
the different model parameters can be estimated using the maximum
likelihood principle, which leads to

(%7 ﬁl? ﬁ07 21, i\]O)

Then we have

- B B P(X =x|Y =0)P(Y =0) -
By =11x=x = (L gy mev=1)

B (1+1—7rexp(

T exp (

(x — po) 271
(x — p1) T

N[N

(x -
(x—
X -1
= (1+exp((u1 o) X7 x—i—b)
= o(w'x+ b)
with w = 371 (1 — po) and bzlogl’?’r%—ZuOZ uo—zulz 1.
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LDA vs logistic regression

@ Bothlead to P(Y =1 | X =x) = o(w'x+ b)
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LDA vs logistic regression

@ Bothlead to P(Y =1 | X =x) = o(w'x+ b)
Weaknesses of LDA

@ Assumes a Gaussian model, which is likely to be quite wrong

@ Requires to estimate p(p+ 1)/2+ 2p + 1 parameters vs p + 1
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LDA vs logistic regression

o Bothlead to P(Y =1 | X =x) = o(w'x + b)
Weaknesses of LDA
@ Assumes a Gaussian model, which is likely to be quite wrong
@ Requires to estimate p(p+ 1)/2+ 2p + 1 parameters vs p + 1
Strengths of LDA
o Closed form

@ Relevant if the model is a good match to the data.
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@ Clustering
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Clustering
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Supervised, unsupervised and semi-supervised classification

Supervised learning

Training set composed of pairs {(x1,¥1),- .-, (Xn, ¥n)}
— Learn to classify new points in the classes
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— Learn to classify new points in the classes

Unsupervised learning

Training set composed of pairs {X1,...,Xn}.
— Partition the data in a number of classes.
— Possibly produce a decision rule for new points.
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Supervised learning

Training set composed of pairs {(x1,¥1),- .-, (Xn, ¥n)}
— Learn to classify new points in the classes
Unsupervised learning

Training set composed of pairs {X1,...,Xn}.
— Partition the data in a number of classes.
— Possibly produce a decision rule for new points.

Transductive learning

Data available at train time composed of

train data {(x1,y1),...,(Xn,¥n)} + test data {xp41,...,Xn}
— Classify all the test data
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Supervised, unsupervised and semi-supervised classification

Supervised learning

Training set composed of pairs {(x1,¥1),- .-, (Xn, ¥n)}
— Learn to classify new points in the classes

Unsupervised learning

Training set composed of pairs {X1,...,Xn}.

— Partition the data in a number of classes.

— Possibly produce a decision rule for new points.

Transductive learning

Data available at train time composed of

train data {(x1,y1),...,(Xn,¥n)} + test data {xp41,...,Xn}
— Classify all the test data

Semi-supervised learning

Data available at train time composed of

labelled data {(x1,y1),...,(Xn,¥n)} + unlabelled data {x,41,...,%p}
— Produce a classification rule for future points
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Clustering

@ Clustering is word usually used for unsupervised classification

@ Clustering techniques can be useful to solve semi-supervised
classification problem.
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Clustering

@ Clustering is word usually used for unsupervised classification

@ Clustering techniques can be useful to solve semi-supervised
classification problem.

Clustering is not a well-specified problem

@ Classes might be impossible to infer from the distribution of X alone
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Clustering

@ Clustering is word usually used for unsupervised classification

@ Clustering techniques can be useful to solve semi-supervised
classification problem.

Clustering is not a well-specified problem
@ Classes might be impossible to infer from the distribution of X alone

@ Several goals possible:

o Find the modes of the distribution

e Find a set of denser connected regions supporting most of the
density

o Find a set of denser convex regions supporting most of the density

e Find a set of denser ellipsoidal regions supporting most of the
density

o Find a set of denser round regions supporting most of the density
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K-means

Key assumption: Data composed of K “roundish” clusters of similar
sizes with centroids (g1, , k).
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K-means

Key assumption: Data composed of K “roundish” clusters of similar
sizes with centroids (g1, , k).

ol

Problem can be formulated as: min = E min||x; — peg||%.
AR 7 G L 1 k

=
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K-means

Key assumption: Data composed of K “roundish” clusters of similar
sizes with centroids (g1, , k).

ol

Problem can be formulated as: min = E min||x; — peg||%.
AR 7 G L 1 k

=

Difficult (NP-hard) nonconvex problem.
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K-means

Key assumption: Data composed of K “roundish” clusters of similar
sizes with centroids (g1, , k).

Problem can be formulated as: min E mlon, il
M1 5K n

Difficult (NP-hard) nonconvex problem.
K-means algorithm
@ Draw centroids at random

@ Assign each point to the closest centroid
= {i | Ixi — pal? = min [|x; - will*}

© Recompute centroid as center of mass of the cluster

TG |ZC:
Q Goto?2
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K-means properties

Three remarks:

@ K-means is greedy algorithm
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K-means properties

Three remarks:
@ K-means is greedy algorithm
@ It can be shown that K-means converges in a finite number of steps.

@ The algorithm however typically get stuck in local minima and it
practice it is necessary to try several restarts of the algorithm with a
random initialization to have chances to obtain a better solution.
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K-means properties

Three remarks:
@ K-means is greedy algorithm
@ It can be shown that K-means converges in a finite number of steps.

@ The algorithm however typically get stuck in local minima and it
practice it is necessary to try several restarts of the algorithm with a
random initialization to have chances to obtain a better solution.

o Will fail if the clusters are not round
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© The EM algorithm for the Gaussian mixture model
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The EM algorithm for the Gaussian
mixture model
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Gaussian mixture model

@ K components

@ z component indicator

0 z=(z1,...,2zx)" €{0,1}K
oz~ M(1,(m,...,7K))

K
p(z) = [ =&
k=1
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Gaussian mixture model
K components

zZ= (Zlv"'azK)T € {O’l}K
ZNM(l,(ﬂ—l,--'ﬂrK))

o
@ z component indicator
o
o

K
p(z) = [ =&
k=1
K

p(x|z; (1K, B )k) = Z 2k N(X; poi, Ek)
k=1

(]
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Gaussian mixture model

K components

z component indicator
z=(z1,...,zx)" €{0,1}K
z~ M(1,(m1,...,7K))

K
p(z) = [ =&
k=1

K
o p(x|z: (i i) = Y 2k N(x; pe, )
) k=1
o p(x) =) mN(x; p, k)

k=1
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Gaussian mixture model

K components

z component indicator
z=(z1,...,zx)" €{0,1}K
z~ M(1,(m1,...,7K))

K
p(z) = [ =&
k=1

°
K
o p(x|z; (pk, Xk)k) = Z zk N(x; pg, k)
k=1
K
o p(x) =) M N(X; e, i)
k=1

K
Estimation:  argmax log Z T N(x; p, i)
179937 k=1

Probabilistic models 51/70



Applying maximum likelihood to the Gaussian mixture
Let Z={ze {0, 1}X | K z =1}
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Applying maximum likelihood to the Gaussian mixture
Let Z={ze {0, 1}X | K z =1}

p(x) =
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Applying maximum likelihood to the Gaussian mixture
Let Z={ze {0, 1}X | K z =1}

p(x) = Z p(x,2)

z2eZ
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Applying maximum likelihood to the Gaussian mixture
Let Z={ze {0, 1}X | K z =1}

K 2
) = X plx2) = X T [meA e 20| =

zeZ zeZ k=1
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Applying maximum likelihood to the Gaussian mixture
Let Z={z e {0,1}K | Kz =1}

p(x) = Zp X z)—ZH |:7Tk./\/’(X i, Xk ] Zﬂk/\/'(x Bk, Xk)

zeZ zeZ k=1 k=1
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Applying maximum likelihood to the Gaussian mixture
Let Z={z e {0,1}K | Kz =1}

p(x) = Zp X z)—ZH |:7Tk./\/’(X i, Xk ] Zﬂk/\/(x Bk, Xk)

€2 262 k=1 k=1
Issue

o The marginal log-likelihood #(6) = 3~ log(p(x())) with
0 = (m, (k, Xk)1<k<k) is now complicated
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Applying maximum likelihood to the Gaussian mixture
Let Z={z e {0,1}K | Kz =1}

p(x) = Zp X z)—ZH |:7Tk./\/’(X i, Xk } Zﬂk/\/(x Bk, Xk)

zeZ zeZ k=1 k=1

Issue
o The marginal log-likelihood #(6) = 3~ log(p(x())) with
0 = (m, (k, Xk)1<k<k) is now complicated

@ No hope to find a simple solution to the maximum likelihood
problem
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Applying maximum likelihood to the Gaussian mixture
Let Z={z e {0,1}K | Kz =1}

p(x) = Zp(x z Z H |:7TkN(X i, Xk } Zﬂk/\/(x Bk, Xk)

zeZ zeZ k=1 k=1

Issue
o The marginal log-likelihood #(6) = 3~ log(p(x())) with
0 = (m, (k, Xk)1<k<k) is now complicated

@ No hope to find a simple solution to the maximum likelihood
problem

@ By contrast the complete log-likelihood has a rather simple form:

0(0) =
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Applying maximum likelihood to the Gaussian mixture
Let Z={z e {0,1}K | Kz =1}

p(x) = Zp(x z Z H |:7TkN(X i, Xk } Zﬂk/\/(x Bk, Xk)

zeZ zeZ k=1 k=1

Issue
o The marginal log-likelihood #(6) = 3~ log(p(x())) with
0 = (m, (k, Xk)1<k<k) is now complicated

@ No hope to find a simple solution to the maximum likelihood
problem

@ By contrast the complete log-likelihood has a rather simple form:

M
0) = > logp(x(, 2"
i=1
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Applying maximum likelihood to the Gaussian mixture
Let Z={z e {0,1}K | Kz =1}

p(x) = Zp(x z Z H |:7TkN(X i, Xk } Zﬂkj\/'(x Bk, Xk)

zeZ zeZ k=1 k=1

Issue
o The marginal log-likelihood #(6) = 3~ log(p(x())) with
0 = (m, (k, Xk)1<k<k) is now complicated

@ No hope to find a simple solution to the maximum likelihood
problem

@ By contrast the complete log-likelihood has a rather simple form:

Zlogp (x(), Z zk Iog./\/ D e, ) +Z zk Iog (7x),

ik
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Applying maximum likelihood to the multinomial mixture

0(0) =
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Applying maximum likelihood to the multinomial mixture

M
0(0) =) log p(x,2(")
i=1
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Applying maximum likelihood to the multinomial mixture

M
7(0) =" togp(x\,20) = >~ 27 log N(x; pus, Bu)+Y _ 24 log (),
i=1 ik i,k
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Applying maximum likelihood to the multinomial mixture

M
7(0) =" togp(x\,20) = >~ 27 log N(x; pus, Bu)+Y _ 24 log (),
i=1 ik i,k

o If we knew z()) we could maximize #(6).
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Applying maximum likelihood to the multinomial mixture

M
= Z log p(x(, 2 Z z; () log N'(x1); pay, Ek)+Zz log(7k),
i=1

ik ik

o If we knew z()) we could maximize #(6).
o If we knew 6 = (m, (pk, Bk)1<k<k), we could find the best z()
since we could compute the true a posteriori on z() given x():
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Applying maximum likelihood to the multinomial mixture

M
= Z log p(x(, 2 Z z; () log N'(x1); pay, Ek)+Zz log(7k),
i=1

ik ik

o If we knew z()) we could maximize #(6).

o If we knew 6 = (m, (pk, Bk)1<k<k), we could find the best z()
since we could compute the true a posteriori on z() given x():
e N (X g, )

S T N (xD; iy, 3))

Pz =1 x:6) =
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Applying maximum likelihood to the multinomial mixture

M
= Z log p(x(, 2 Z z; () log N'(x1); pay, Ek)+Zz log(7k),
i=1

ik ik

o If we knew z()) we could maximize #(6).
o If we knew 6 = (m, (pk, Bk)1<k<k), we could find the best z()
since we could compute the true a posteriori on z() given x():

e N (xD; i, Bie)
S T N (xD; iy, 3))

— Seems a chicken and egg problem...

Pz =1 x:6) =
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Applying maximum likelihood to the multinomial mixture

M
= Z log p(x(, 2 Z z; () log N'(x1); pay, Ek)+Zz log(7k),
i=1

ik ik

o If we knew z()) we could maximize #(6).
o If we knew 6 = (m, (pk, Bk)1<k<k), we could find the best z()
since we could compute the true a posteriori on z() given x():

e N (xD; i, Bie)
S T N (xD; iy, 3))

— Seems a chicken and egg problem...
@ In addition, we want to solve

g o (Zp () z<>)>

z()

Pz =1 x:6) =
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Applying maximum likelihood to the multinomial mixture

M
= Z log p(x(, 2 Z z; () log N'(x1); pay, Ek)+Zz log(7k),
i=1

ik ik

o If we knew z()) we could maximize #(6).
o If we knew 6 = (m, (pk, Bk)1<k<k), we could find the best z()
since we could compute the true a posteriori on z() given x():

e N (xD; i, Bie)
S T N (xD; iy, 3))

— Seems a chicken and egg problem...
@ In addition, we want to solve

maxZIog <Zp x() 2l ))> and not Zlogp
My i

z() O

Pz =1 x:6) =

Z(
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Applying maximum likelihood to the multinomial mixture

M
=Y log p(x,20) = 3" 27 10g N (xD; i, Ti)+ Y 27 log (),
i=1

ik ik

o If we knew z()) we could maximize #(6).
o If we knew 6 = (m, (pk, Bk)1<k<k), we could find the best z()
since we could compute the true a posteriori on z() given x():

e N (xD; i, Bie)
S T N (xD; iy, 3))

— Seems a chicken and egg problem...
@ In addition, we want to solve

maxZIog(Zp x() z()> and not Zlogp

z() 2 Z(M) i

Pz =1 x:6) =

@ Can we still use the intuitions above to construct an algorithm
maximizing the marginal likelihood?
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Principle of the Expectation-Maximization Algorithm

log p(x;6) =
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Principle of the Expectation-Maximization Algorithm

log p(x;0) = IogprzO
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Principle of the Expectation-Maximization Algorithm

log p(x; 0) = IogZpXZQ |0gZQ(Z)p(XZ0
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Principle of the Expectation-Maximization Algorithm

log p(x;0) = |OgZp(x,z; 6) = |ogz q(2) P(X,(i;)O)

q
Mo p(x,z; 0)
> Z:q( )log = 5
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Principle of the Expectation-Maximization Algorithm

)

log ,D(X; 0) = log Z p(x’ z; 0) = log Z q(z) p(X,(i;)O

q
Mo p(x,z; 0)
> Z:q( )log = 5

= Eqllog p(x,z; 8)] + H(q)
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Principle of the Expectation-Maximization Algorithm
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Principle of the Expectation-Maximization Algorithm

)

log ,D(X; 0) = log Z p(x’ z; 0) = log Z q(z) p(X,(i;)O

q
Mo p(x,z; 0)
> Z:q( )log = 5

= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)

@ This shows that £(q,0) < log p(x; 8)

Probabilistic models 54/70



Principle of the Expectation-Maximization Algorithm

log p(x;0) = IogZp(X,Z 0) Iong plx.z, 0)

> Z: q(z )logp((i)o)

= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)

@ This shows that £(q,0) < log p(x; 8)

@ Moreover: 8 — L(q,8) is a concave function.
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Principle of the Expectation-Maximization Algorithm

logp(x;0) = log>» p(x,z;0) = Iogz XZO)

> Z 4(z )|ogu

Z q(z)
= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)

@ This shows that £(q,0) < log p(x; 8)
@ Moreover: 8 — L(q,8) is a concave function.

o Finally it is possible to show that

L(q,0) = log p(x; 6) — KL(q]|p(-|x; 6))
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Principle of the Expectation-Maximization Algorithm

logp(x;0) = log>» p(x,z;0) = Iogz XZO)

> 22: q(z )logp((i)o)

= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)

@ This shows that £(q,0) < log p(x; 8)
@ Moreover: 8 — L(q,8) is a concave function.

o Finally it is possible to show that
L(q,0) = log p(x; 8) — KL(ql[p(:[x; 8))
So that if we set g(z) = p(z | x; 8(!)) then

L(q,0)) = p(x;0").



Principle of the Expectation-Maximization Algorithm

logp(x;0) = log>» p(x,z;0) = Iogz XZO)

> 22: q(z )logp((i)o)

= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)

@ This shows that £(q,0) < log p(x; 8)

@ Moreover: 8 — L(q,8) is a concave function.

o Finally it is possible to show that
L(q,0) = log p(x; 8) — KL(ql[p(:[x; 8))
So that if we set g(z) = p(z | x; 8(!)) then

L(q,0)) = p(x;0").




A graphical idea of the EM algorithm

001d 0 new
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Expectation Maximization algorithm

Inp(X0)

Expectation step

gold g

Maximization step
gold  — g(t-1)
onew — e(t)
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Expectation Maximization algorithm

Inp(X0)

Expectation step
@ q(2) = p(z| x;017Y)

gold g

Maximization step
gold  —  g(t-1)
onew — e(t)
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Expectation Maximization algorithm

Expectation step

@ q(z) = p(z | x;6071)
@ £(q,0) = Eq[log p(x,2;8)] + H(q)

Maximization step

gold  — g(t-1)

onew — e(t)
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Expectation Maximization algorithm

Expectation step

@ q(z) = p(z | x;6071)
@ £(q,0) = Eq[log p(x,2;8)] + H(q)

Maximization step

0 0 = argmax E, [log p(x,z; 6)] e = g(t-1)
0
onew — e(t)

Probabilistic models 56/70



Expectation Maximization algorithm

Initialize @ = 6q

WHILE (Not converged)

Expectation step
@ q(z) = p(z | x; 61"1)
@ L(q,0) = Eq[log p(x,2;0)] + H(q)

Maximization step

o o = argmax Eq [ log p(x, z; 6)] e = gt-1)
0

onew — e(t)
ENDWHILE
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Expected complete log-likelihood

1 1

With the notation: g =P (2 = 1) = E [z, we have
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With the notation: g =P (2 = 1) = E [z, we have

1 1

E,0[€(0)] = E o |logp(X,Z;0)]

Probabilistic models 57/70



Expected complete log-likelihood

With the notation: q(t) =P (zlgi) =1)= qut) [z,((i)], we have

ik q; i

E,0[€(0)] = E o |logp(X,Z;0)]

M
= Eo [Z log p(x(, 2("; 0)]
i—1
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Expected complete log-likelihood

With the notation: qfkt) = Pq(t) (zlgi) =1)= Eq@ [z,((i)], we have

E,0[€(0)] = E o |logp(X,Z;0)]
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Expected complete log-likelihood

With the notation: qfkt) = Pq(t) (zlgi) =1)= Eq@ [z,((i)], we have

E,0[€(0)] = E o |logp(X,Z;0)]

ik ik

[
= Equ)[ 2 og N (xD, i, 20) + 2 |0€(7Tk)]
E

2 o [Z/Ei)] log N (x(), o, ) + Z;qut) [Zlgi)] log(x)
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Expected complete log-likelihood

With the notation: qfkt) =P (zlgi) =1)=E @ [z,((i)], we have

g g
Eqo [1(0)] = Ego[logp(X,Z;6)]
= E,u [i'og p(x(7, 27 9)]
i=1
= E,u [ 2 log N (x D), g, ) + Zz,((i) Iog(wk)]
ik ik
= Y Eo 2] log V(X ) e B + Y B 2] log(m)
ik ik
= Z Q,(kt) log N (x"), i, Bi) + qu) log(mx)
ik ik
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Expectation step for the Gaussian mixture

We computed previously qft)(z(")), which is a multinomial distribution
defined by

ql(t)(z(i)) - p(z(i)|x(i); g(ffl))
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Expectation step for the Gaussian mixture

We computed previously qft)(z(")), which is a multinomial distribution
defined by

ql(t)(z(i)) - p(z(i)|x(i); g(ffl))

Abusing notation we will denote (qflt), ceey qf,?) the corresponding vector

of probabilities defined by

a =P o(z) =1) =E o[z]
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Expectation step for the Gaussian mixture

We computed previously qft)(z(")), which is a multinomial distribution
defined by

ql(t)(z(i)) - p(z(i)|x(i); g(ffl))

(1) (1)

Abusing notation we will denote (g;;,’, ..., g, ) the corresponding vector
of probabilities defined by

q) =P (2! =1) =E 4 [2"]

q q;
—1) —1) y(t-1)
gl = p(z) =1 x;0-1) = Tk Io)gN(x() . i ( )1)
! ! t— t t—
ZJ 17rj log N(x(1), 20
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Maximization step for the Gaussian mixture

(7", (), 24 ) 1<kek) = argmax Eq o [((6)]
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Maximization step for the Gaussian mixture

(7", (), 24 ) 1<kek) = argmax Eq o [((6)]

This yields the updates:

i i i T
o T Oa) || o S 00 =) (O — ) " )
AT 5,4
()
and |2 = Ziqk()
> ik Dk
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Final EM algorithm for the Multinomial mixture model
Initialize @ = 69
WHILE (Not converged)
Expectation step
" 7([((1:—1) |og/\/(x(i), “S(t—l), 2]E(f—l))

i < ) , ) )
S log N (x(), Y, 7Y)

Maximization step

(0 _ LixDqly)

() 2 X i 3 () — ) (D — )" g
: > q:(kt)

P qlglf)

e
and wl((t) = ik q'k(t)
Zi,k’ i

» =

)

ENDWHILE



EM Algorithm for the Gaussian mixture model IlI

p(x|z)

N
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QOutline

© Hidden Markov models
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Hidden Markov models
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Hidden Markov models (HMM)

speech recognition

natural language processing

OCR

biological sequences (proteins, DNA)
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Hidden Markov Model(HMM)

Z1 Z9 Zn—1 Zyp, Zn+1

X1 X2

N
p(xt,...,xn,21,- . zn) = p(z1) [ [ P(znlzn-1) [ P(Xnlzs)
n=2

n=1

Homogeneous Markov chain

o z, € {0,1}¥ indicator variable for the state (1,..., K)
@ Homogeneous Markov chain: Vn, p(z,|z,—1) = p(z2|z1)
o x, emitted symbol ({0,1}K) / observation (R9)

Probabilistic models
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Hidden Markov Model (HMM)

Parametrization

distribution of initial state  p(z1;7) = [[f_; 7™
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Hidden Markov Model (HMM)

Parametrization

distribution of initial state  p(z1;7) = [[f_; 7™
K K
transition matrix p(zn|zn-1; A) = H H A;"_“z"k
j=1k=1
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Hidden Markov Model (HMM)

Parametrization

distribution of initial state p(z1;7) = []k_, 7rkz“

transition matrix p(zn|zn-1; A) H H AZ" L, Znk
j=1k=1
emission probabilities p(xn|zn; @) e.g. Gaussian Mixture
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Hidden Markov Model (HMM)

Parametrization

distribution of initial state

transition matrix
emission probabilities

Interpretation

Transistions of z,

P(Zl; 7T)

p(zn|zn—1; A)

K
= [Tx=1 7Tkzlk

HHAZn 1,j Znk

j=1k=1

p(xn|zn; @) e.g. Gaussian Mixture

05

p(Xn|zn)

Probabilistic models

[

Trajectory of x,
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Maximum likelihood for HMMs
Applying the EM algorithm

Y(zn) = p(znlX,0%)  &(zn-1,2n) = p(zn—1,2a|X, 0")
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Maximum likelihood for HMMs
Applying the EM algorithm

’V(Zn) = p(Zn’X, at) §(Zn—17 Zn) = P(Zn—1, Z,-,|X, 0t)
Espectation of the log-likelihood:

K N K
> &(z0-14, o) log A+ > ¥(zok) log p(xnlhx)

N K
=2 j=1 k=1 n=1 k=1

Q6,6 = Y(zu) logmc+y
k=1

n
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Maximum likelihood for HMMs
Applying the EM algorithm

’Y(Zn) = p(Zn’X, at) 5(217_17 Zn) = P(Zn—1, ZI"|X7 Ot)
Espectation of the log-likelihood:

=

K

Q6,6 = y(zu)logmity > > &(z0-1, z0k) log A+ > Y(zak) log p(xnl i)
k=1

n=2 j=1 k=1 n=1 k=1

When maximizing w.r.t. {m, A} one obtains

N
. ¥(z1k) AtHL anz f(znfl,jaznk)

k K jk T K N
Zj:l v(z1) ! Y i1 2on=28(2n-1,, Zn1)
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Maximum likelihood for HMMs
Applying the EM algorithm

’Y(Zn) = p(Zn’X, at) g(zn—h Zn) = p(Zn_l, ZI"|X7 Ot)
Espectation of the log-likelihood:

2
X

K

K N K
Q8,0 = Z ~(z1x) log 7rk+z Z Z &(zn—1,j, znk) log A,k+z Z V(2nk) log p(Xn| Pk )
k=1

n=2 j=1 k=1 n=1 k=1

When maximizing w.r.t. {m, A} one obtains

N
. ¥(z1k) AtHL anz f(znfl,jaznk)

k K jk T K N
Zj:l v(z1) ! Y i1 2on=28(2n-1,, Zn1)

If the emissions are Gaussians we have as well:

t+1 Z,,N:1 Y(Zak )Xn sl _ Z,,y:1 Y(Zak ) (X — px ) (X0 — .uk)T
Kk T =N ., kK = N
Zn:l rY(Z"k)

YDA L)
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Maximum likelihood for HMMs

Application of the sum-product algorithm
In the context of HMM, the algorithm is known as forward-backward.

The following messages are propagated

o forward a(zn) = p(xn|zn) Y-, | a(zn-1)p(znlzn-1)
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In the context of HMM, the algorithm is known as forward-backward.
The following messages are propagated
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Maximum likelihood for HMMs

Application of the sum-product algorithm
In the context of HMM, the algorithm is known as forward-backward.
The following messages are propagated
o forward a(zn) = p(xn|zn) Y-, | a(zn-1)p(znlzn-1)
o backward 3(z,) = Zz,,+1 B(zn+1)p(Xn+112n+1)P(zn+1(2n)
they satisfy the properties:

a(zn) = p(x1, - XmZn)  B(Zn) = P(Xnt1s- -+ Xn|Zn)
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Maximum likelihood for HMMs

Application of the sum-product algorithm
In the context of HMM, the algorithm is known as forward-backward.
The following messages are propagated

o forward a(zn) = p(xn|zn) Y-, | a(zn-1)p(znlzn-1)

@ backward ﬁ(zn) = ZZ"-H ﬁ(zn+1)p(xn+1’Zn+1)p(zn+1|zn)
they satisfy the properties:

a(zn) = p(x1, - XmZn)  B(Zn) = P(Xnt1s- -+ Xn|Zn)

Finally we obtain the marginal probabilities:
alZ, z,
+(20) = p(zo|X, 8Y) = 2(Z0)B(20)

p(X[6%)

_ Oé(Xn_1)p(Xn|Z,,)p(Z,,|zn_1)6(xn)
€(Zn—1azn) - p(X|0t)

et
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Hidden Markov Field

Original image
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Conclusions

Probabilistic models for interpretation

Probabilistic models for combining simple blocks

Probabilistic models for missing data

Probabilistic models for learning parameters and hyperparameters
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