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o Future Work

Contents



3

Sparse Synthesis Model

---- signal

---- dictionary

---- representation
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Synthesis Sparse Coding

• Existing algorithms:

(1) Greedy algorithms: OMP, SP 

(2) Relaxation algorithms: BP

• Task:

Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit: Recursive function approximation with applications

to wavelet decomposition,” in Proc. 27th Asilomar Conf. Signals, Syst. and Comput., pp. 40-44, 1993.

W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Trans. Inf. Theory, vol. 55, 

pp. 2230-2249, 2009.

S. Chen and D. Donoho, “Basis pursuit,” in Proc. 28th Asilomar  Conf. Signals, Syst. and Comput., vol. 1, pp. 41-44, 1994.
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Synthesis Dictionary Learning  
(SDL)

• Existing algorithms:

MOD, K-SVD, SimCO

• Task:

K. Engan, S. Aase, and J. Hakon Husoy, “Method of optimal directions for frame design,” in IEEE Int. 

Conf. on Acoust., Speech, and Signal Processing (ICASSP), vol. 5, pp. 2443-2446, 1999.

M. Aharon, m. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete dictionaries 

for sparse representations,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, 2006.
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SimCO – for synthesis dictionary 
learning

- sparsity pattern (indices of all the non-zeros in X)

fixed sparsity pattern

W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimization (SimCO) for dictionary update 

and learning,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6340-6353, 2012.
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Sparse Analysis Model

---- signal

---- analysis dictionary

---- representation

---- cosparsity 
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Analysis Pursuit

• Existing algorithms:  BG, OBG;  GAP

Recover a signal 𝐲 belonging to the analysis model from 

its measurements

• Task:

R. Rubinstein, T. Peleg, and M. Elad, “Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model,” 

IEEE Trans. Signal Process., vol. 61, no. 3, pp. 661-677, 2013.

S. Nam, M. E. Davies, M. Elad, and R. Gribonval, “The cosparse analysis model and algorithms,” Appl. Comput. Harm. 

Anal., vol. 34, no. 1, pp. 30-56, 2013.
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Analysis Dictionary Learning 
(ADL)

• Task:
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Analysis Dictionary Learning 
(ADL)

• Existing algorithms:

(1) Analysis K-SVD: 

high computational complexity

(2)  AOL: 

exclude the feasible dictionaries outside UNTF

(3)  LOST: 

less effective in reaching the pre-defined cosparsity

R. Rubinstein, T. Peleg, and M. Elad, “Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model,” 

IEEE Trans. Signal Process., vol. 61, no. 3, pp. 661-677, 2013.

M. Yaghoobi, S. Nam, R. Gribonval, and M. Davies, “Constrained overcomplete analysis operator learning for cosparse

signal modelling,” IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2341-2355, 2013.

S. Ravishankar and Y. Bresler, “Learning overcomplete sparsifying transforms for siangl processing,” in IEEE Int. Conf. 

on Acoust., Speech, and Signal Processing (ICASSP), pp. 3088-3092, 2013. 
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Analysis SimCO Algorithm

• cost function:

W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimisation (SimCO) for dictionary update and 

learning", IEEE Transactions on Signal Processing, vol. 60, no. 12, pp. 6340-6353, 2012.
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Analysis SimCO framework
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Analysis SimCO – Dictionary 
Update   

J. Dong, W. Wang, W. Dai, M. Plumbley, Z. Han, and J. A. Chambers, "Analysis SimCO algorithms for sparse 

analysis model based dictionary learning", IEEE Transactions on Signal Processing, vol. 64, no. 2, pp. 417 - 431, 

2016. 
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o Matlab toolbox of dictionary learning algorithms: 

SimCO

• The toolbox contains implementation of multiple dictionary 

learning algorithms including our own algorithms primitive 

SimCO and regularised SimCO algorithms, as well as 

baseline algorithms including K-SVD, and MOD. 

• The toolbox has been made publicly available in 

compliance with EPSRC open access policy. Web address: 

http://personal.ee.surrey.ac.uk/Personal/W.Wang/codes/Si

mCO.html

Implementation

http://personal.ee.surrey.ac.uk/Personal/W.Wang/codes/SimCO.html
http://personal.ee.surrey.ac.uk/Personal/W.Wang/codes/SimCO.html
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o Matlab toolbox of analysis dictionary learning 

algorithms: Analysis SimCO

• The toolbox contains implementation of multiple dictionary 

learning algorithms including our own algorithms Analysis 

SimCO, Incoherent Analysis SimCO algorithms, as well as 

several baseline algorithms including Analysis K-SVD, 

LOST, GOAL, AOL, TK-SVD. 

• The toolbox has been made publicly available in 

compliance with EPSRC open access policy. Web address: 

http://dx.doi.org/10.15126/surreydata.00808101

Implementation (cont.)

http://dx.doi.org/10.15126/surreydata.00808101
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Potential Applications

• Image denoising

• Blind Source Separation

• Compressed Sensing

• Image compression

• Inpainting

• Recognition

• Beamforming

…….
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o Signal denoising

o Source separation 

o Beamforming

o Multi-speaker tracking

Selected Examples
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Denoising Examples

Test images

W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimization (SimCO) for dictionary update 

and learning,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6340-6353, 2012.
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Natural Image Denoising

Test images

Training images
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PSNR Results
(Input PSNR ~ 15 dB)

J. Dong, W. Wang, W. Dai, M. Plumbley, Z. Han, and J. A. Chambers, "Analysis SimCO algorithms for sparse 

analysis model based dictionary learning", IEEE Transactions on Signal Processing, vol. 64, no. 2, pp. 417 - 431, 

2016. 
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Despeckling – Signal Model

Signal model:

Optimisation problem:

Transformed model:
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Despeckling – Signal Recovery

Alternating direction method of multipliers (ADMM):

Augumented Lagrangian function of the above function:
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Despeckling – Real SAR Images

J. Dong, W. Wang, J. A. Chambers, "Removing speckle noise by analysis dictionary learning", in Proc. IEEE Sensor 

Signal Processing for Defence (SSPD 2015), Edinburgh, UK, September 9-10, 2015. 
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Source Separation: 
Cocktail party problem

)(1 ts

)(2 ts

)(2 tx

)(1 tx
Microphone1

Microphone2

Speaker1

Speaker2
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Blind Source Separation &
Independent Component Analysis

H
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s
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xM
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YN

Unknown Known

Independent?

Optimize

Mixing Process Unmixing Process

  Hsx 
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Diagonal Scaling Matrix

Permutation Matrix

Mixing Model:

De-mixing Model:



26

Frequency Domain BSS & 
Permutation Problem

S1

S2

x1

x2

FDICA

1

2
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S2×0.6
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Solutions:

• Beamforming

• Spectral envelope correlation
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Computational Auditory Scene 
Analysis

• Computational models for two conceptual 

processes of auditory scene analysis (ASA):

– Segmentation. Decompose the acoustic 

mixture into sensory elements (segments)

– Grouping. Combine segments into groups, so 

that segments in the same group likely originate 

from the same sound source
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CASA – Time-Frequency Masking

Demos due to Deliang Wang. Recent psychophysical tests show that the ideal 

binary mask results in dramatic speech intelligibility improvements (Brungart et 

al.’06; Li & Loizou’08)
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Underdetermined Source 
Separation
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Reformulation:
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 The above problem can be interpreted as a signal recovery 
problem in compressed sensing, where M is a measurement 
matrix, and b is a compressed vector of samples in f.        is a 
diagonal matrix whose elements are all equal to       . 

 A sparse representation may be employed for f, such as: 
Φcf 

 is a transform dictionary, and c is the weighting coefficients 
corresponding to the dictionary atoms. 
Φ

ij

ija

Source Separation as a Sparse 
Recovery Problem
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Reformulation:

 According to compressed sensing, if         satisfies the restricted 
isometry property (RIP), and also c is sparse, the signal f can be 
recovered from b using an optimisation process.

 This indicates that source estimation in the underdetermined 
problem can be achieved by computing c using signal recovery 
algorithms in compressed sensing, such as: 

M

cMb  MΦM and

 Basis pursuit (BP)  (Chen et al., 1999)
 Matching pursuit (MP) (Mallat and Zhang, 1993)
 Orthogonal matching pursuit (OMP) (Pati et al., 1993)
 L1 norm least squares algorithm (L1LS) (Kim et al., 2007)
 Subspace pursuit (SP) (Dai et al., 2009)
 …

Source Separation as a Sparse 
Recovery Problem (cont.)
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Separation system for the case of M = 2 and N =4:

Dictionary Learning for 
Underdetermined Source Separation
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T. Xu, W. Wang, and W. Dai, Compressed sensing with adaptive dictionary learning for 
underdetermined blind speech separation, Speech Communication, vol. 55, pp. 432-450, 2013.

s1 s2 s3 s4

es1 es2 es3 es4

x1 x2

Source Separation – Sound Demo
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C. Mecklenbruker, P. Gerstoft, A. Panahi, M. Viberg, “Sequential Bayesian sparse signal reconstruction using 

array data,” IEEE Transactions on Signal Processing, vol. 61, no. 24, pp. 6344 - 6354, 2013.

• Extends the classic Bayesian approach to a sequential 

maximum a posterior (MAP) estimation of the signal over 

time.

• Sparsity constraint is enforced with a Laplacian like prior 

at each time step.

• An adaptive LASSO cost function  is minimised at each 

time step k for M array sensors

Beamforming – Sparse 
Representation Formulation
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Beamforming – Portland03 
Underwater Acoustic Dataset

• Data collected  in 2003 in Portland harbour

• 31 element linear hydrophone array on the sea floor

• Single moving target: Sequence one “Beam-on” to the array, 

Sequence two “end-fire” to the array
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Beamforming – Portland03 
Underwater Acoustic Dataset

Sequence one – One target moving beam-on to the array
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Beamforming – Portland03 
Underwater Acoustic Dataset

Sequence two – One target moving end-fire to the array

M. Barnard and W. Wang, “Sequential Bayesian sparse reconstruction algorithms for underwater acoustic 

signal denoising” Proc. IET Conference on Intelligent Signal Processing, December, 2015.
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 Modelling the appearance of the moving speakers (or more 
broadly, moving objects) under different (office) environments 
with a variety of lighting conditions and camera resolutions.

 Dealling with occlusions when tracking multiple speakers.
 Dealing with the loss of visual trackers due to e.g. the lost view 

of the cameras.

Challenges:

 Appearance modelling based on dictionary learning
 Incorporating identity models of speakers e.g. based on 

Gaussian mixture models (GMM) (not to discuss in this talk)
 Audio assisted re-initialisation of visual tracker (or re-booting 

of lost visual tracker)

Proposed solutions:

Multi-Speaker Tracking
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Overall system to generate the 3-D head position, showing training and testing 
(i.e. tracking) phases.

Dictionary Learning based 
Method
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Extraction of features from image patches.

Feature Extraction
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The dictionary learning pipeline for object recognition is shown above. 
Descriptors (i.e. features, such as SIFT) are clustered into a number of atoms 
using e.g. K-means. Each image patch is represented by a single histogram 
(coefficient vector) of cluster membership (i.e. atoms).

DL for Object Recognition
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 Hard assignment: each descriptor contributes to only one 
histogram bin. 

 Soft assignment: more than one descriptors can contribute to 
a histogram bin.

Soft Assignment for 
Dictionary Learning
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:J is the number of atoms in the dictionary

:I is the number of descriptors in the image

:),( irwD is the distance between atom  w and the 
descriptors       .ir

:K is a Gaussian kernel with smoothing factor      .

:w is an atom in the dictionary.

This method has shown very good performance for object recognition in 
still images (Pascal VOC, ImageCLEF challenge) (van Gemert et al. 2010). 
The soft assignment technique can be further enhanced using a locality 
constraint approach.

Soft Assignment for 
Dictionary Learning
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Fast Hierarchical Nearest 
Neighbour Search
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Particle Filter based 
Tracking Framework

M. Barnard, P.K. Koniusz, W. Wang, J. Kittler, S. M. Naqvi, and J.A. Chambers, "Robust Multi-Speaker Tracking via 

Dictionary Learning and Identity Modelling", IEEE Transactions on Multimedia, vol. 16, no. 3, pp. 864-880, 2014.
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Demo
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o Exploit joint sparsity in both the array and source 

domains for source separation and beamforming

o Develop sparse polynomial dictionary learning and blind 

sparse deconvolution algorithms for reverberant source 

separation and beamforming

o Extend the sparse dictionary learning algorithm to 

multiplicative noise removal for sonar imaging

o Develop new sparse methods for large scale array 

beamforming and source separation

o Develop multivariate source models for source 

separation

Future Work
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