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Sparse Synthesis Model SURREY
y D X
I i D € R™*4 __dictionary
mil| = E atoms --- columns of D
- (m < d overcomplete)
) J -
- y € R™ — signal
s x € R? — representation
y=Dx s.t |[x]lo=Ss s - sparsity (s <d)

I-llo — £, norm,
the number of non-zero entries
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Synthesis Sparse Coding SURREY

» Task:

Giveny and D, find the sparse representation x

min Ix|lo s.t. y=Dx

« Existing algorithms:
(1) Greedy algorithms: OMP, SP
(2) Relaxation algorithms: BP

Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit: Recursive function approximation with applications
to wavelet decomposition,” in Proc. 27th Asilomar Conf. Signals, Syst. and Comput., pp. 40-44, 1993.

W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Trans. Inf. Theory, vol. 55,
pp. 2230-2249, 2009.

S. Chen and D. Donoho, “Basis pursuit,” in Proc. 28th Asilomar Conf. Signals, Syst. and Comput., vol. 1, pp. 41-44, 1994.
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Synthesis Dictionary Learning® SURREY
(SDL)

* Task:
Given a set of training signals {y;}~,, seek the dictionary D
that leads to the best representation for each member in this set

-]-)"x-- Ll n==gny === - m—mmp — e — Y —
i

) § iV X
,ﬂ E
« Existing algorithms: . Hie = e

MOD, K-SVD, SimCO ﬁ& % .

g : e
o L et i
K. Engan, S. Aase, and J. Hakon Husoy, “Method of optimal directions for frame design,” in IEEE Int. EEEastd H

=5«

Conf. on Acoust., Speech, and Signal Processing (ICASSP), vol. 5, pp. 2443-2446, 1999.

M. Aharon, m. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete dictionaries
for sparse representations,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, 2006.



S1mCQ — for synthesis dlct1onary§ﬁﬁsﬁﬁ
learning

325/ () = 20 x By IV — DX

f(D)
D={DeR™*: D ,=1i=12..,d

xX(Q) = {X e RY" X;;=0,Vvi¢ .Q} fixed sparsity pattern

Q - sparsity pattern (indices of all the non-zeros in X)

« sparse coding: OMP - foragivenD, find X
« dictionary learmning:
each column in D is one element in Stiefel manifold
(Stiefel manifold: U,y = {u € R™:u"u=1})
optimization on manifolds = D only contains unit £2-norm columns

W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimization (SimCO) for dictionary update
and learning,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6340-6353, 2012. 6
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Sparse Analysis Model SURREY

X

Q

S <

y

x= Qy s.t. [X|lo=p—-1

Q € RP*™ .—— gnalysis dictionary

atoms --- rows of
| p > m overcomplete)

y € R" ---- signal

X € RP ---- representation

[ ---- cosparsity
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Analysis Pursuit SURREY

* Task:
Recover a signal y belonging to the analysis model from

its measurements
(1) recovery from noisy measurements:
§ = argmin, ||Qyll; s.t.z=y+vV
(2) recovery from incomplete measurements with noise:

§ = argminy [|Qy|l, s.t.z=My+v

« Existing algorithms: BG, OBG; GAP

R. Rubinstein, T. Peleg, and M. Elad, “Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model,”
IEEE Trans. Signal Process., vol. 61, no. 3, pp. 661-677, 2013.

S. Nam, M. E. Davies, M. Elad, and R. Gribonval, “The cosparse analysis model and algorithms,” Appl. Comput. Harm.
Anal., vol. 34, no. 1, pp. 30-56, 2013. 8
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Analysis Dictionary Learning <% SURREY
(ADL)
* Task:
Given a set of training signals {y;}i.,., seek the analysis dictionary
0 so that the analysis representations of the signals can be as
sparse as possible.
@)

Y
min» 2y lo1<i<n I I
;
.
n

X




Analysis Dictionary Learning SUIRREY
(ADL)

« Existing algorithms:
(1) Analysis K-SVD:
high computational complexity
(2) AOL:
exclude the feasible dictionaries outside UNTF
(3) LOST:

less effective in reaching the pre-defined cosparsity

R. Rubinstein, T. Peleg, and M. Elad, “Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model,”
IEEE Trans. Signal Process., vol. 61, no. 3, pp. 661-677, 2013.

M. Yaghoobi, S. Nam, R. Gribonval, and M. Davies, “Constrained overcomplete analysis operator learning for cosparse
signal modelling,” IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2341-2355, 2013.

S. Ravishankar and Y. Bresler, “Learning overcomplete sparsifying transforms for siangl processing,” in IEEE Int. Conf.
on Acoust., Speech, and Signal Processing (ICASSP), pp. 3088-3092, 2013.
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Analysis SimCO Algorithm SURREY

 cost function:
: _ 2
min IX— QYll%

s.t. Vi, ||X:,i||0 =p-—1,

vJ, ”91',:”2 =1 Q contains unit £, - norm rows

» two separate optimisation problems on X and Q respectively by
keeping one fixed and changing the cther.

« the transpose of each row in £ is one element in Stiefel manifold
-> modify the optimization framework of SimCO to update &

W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimisation (SimCO) for dictionary update and
learning", IEEE Transactions on Signal Processing, vol. 60, no. 12, pp. 6340-6353, 2012. 1 1



Analysis SimCO framework

L ""-H

( start )

¥

initialize an analysis
dictionary

L
-

h 4

analysis sparse coding

h 4

dictionary update

.

o ---__-““'“---_
—____ stop? =

e
e

™
T

IYes

( end /J

Input: Y,p,l
Output: @ = QF+1

Initialization: k = 0,Q = Qk

Main lteration;
(1) Xk = Qky
(2) X* = HT,;(X¥)

(3) Q1 & QF

4) k=k+1

(5) If the stopping criterion is satisfied,
quit the iteration. Otherwise, apply

another iteration.

UNIVERSITY OF

SURREY
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Analysis SimCO — Dictionary ¥ SURREY
Update

min f() = min IX- QY[ st vj ||Qj,:||2 =1

- Search Direction: H = —7f(@) = —2E-0M _ 5xyT _70yy7

 Line Search Path:
h; =h;—h;0].Q,.,vj€{12,..,p} 0] =0;hf =0)
Q;.(0 = @, if ]|, =0
{ﬂj.=(t) = 0;, cos ([l ¢) + (y/lIbyll,) sin (Il £). i ]|, # 0

« Step Size: golden section search, find a proper step size t

J. Dong, W. Wang, W. Dai, M. Plumbley, Z. Han, and J. A. Chambers, "Analysis SimCO algorithms for sparse
analysis model based dictionary learning", IEEE Transactions on Signal Processing, vol. 64, no. 2, pp. 417 - 431, 13
2016.
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Implementation SURREY

o Matlab toolbox of dictionary learning algorithms:
SimCO

 The toolbox contains implementation of multiple dictionary
learning algorithms including our own algorithms primitive
SimCO and regularised SimCO algorithms, as well as
baseline algorithms including K-SVD, and MOD.

 The toolbox has been made publicly available in
compliance with EPSRC open access policy. Web address:

http://personal.ee.surrey.ac.uk/Personal/\W.Wanqg/codes/Si
MCO.html

14
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Implementation (cont.) SURREY

o Matlab toolbox of analysis dictionary learning
algorithms: Analysis SImCO

The toolbox contains implementation of multiple dictionary
learning algorithms including our own algorithms Analysis
SimCO, Incoherent Analysis SImCO algorithms, as well as
several baseline algorithms including Analysis K-SVD,
LOST, GOAL, AOL, TK-SVD.

The toolbox has been made publicly available in
compliance with EPSRC open access policy. Web address:
http://dx.doi.org/10.15126/surreydata.00808101

15
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Potential Applications SURREY

* Image denoising

X1 . 5
X Blind |— 5,
Source . =
A e
Separation .
L ¥
Xm
\g_ource.fq _/ .\_Ih.\ted Estimated
signals soUrces

« Compressed Sensing

« Image compression
* Inpainting

* Recognition

« Beamforming

....... 16
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Selected Examples SURREY

o Signal denoising
o Source separation
o Beamforming

o Multi-speaker tracking

17
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Denoising Examples SURREY

Original clean image Maoisy image, 20.1595dB Denoised Image by (MOD), 30.0979dE

Denoised Image by (KSWD), 30.7482dB Denaised Image by (Primitive SimCO), 30,9287 dB Denoised Image by (Regularized SimC0Oj), 30.9306d6

W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimization (SimCO) for dictionary update
and learning,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6340-6353, 2012.



Natural Image Denoising

UNIVERSITY OF

SURREY

Training images

19
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PSNR Results SURREY

o = 45 (Input PSNR ~ 15 dB)
Tramning data type Type I Type 11
co-sparsity [ 40 80 40 80
ASimCO 25.73 | 24.24 22.44 | 24.52
IN-AS1mCO 25.74 | 25.37 22.30 | 24.37
ASimCO-Random 25.54 | 25.71 22.57 | 22.71
ASImCO-IKSVD 22.22 | 22.53 22.17 | 22.37
AKSVD 22.17 — 22.18 —
LOST 22.17 | 22.39 22.17 | 22.27
TKSVD 22.17 | 22.19 22.18 | 23.11
(NA)AOL 23.54 22.18
GOAL 23.85 22.19

J. Dong, W. Wang, W. Dai, M. Plumbley, Z. Han, and J. A. Chambers, "Analysis SimCO algorithms for sparse
analysis model based dictionary learning", IEEE Transactions on Signal Processing, vol. 64, no. 2, pp. 417 - 431, 20
2016.
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Despeckling — Signal Model SLIRREY
Signal model: W=golu

L

fl) =pue™ T = (L - 1)

Transformed model:
logw = logg + logu.
N’ D S

S—— —
Z y v

Optimisation problem:
Y* = argmin}iZ, Z:}l:l(Yw + erJ_YfJ) + 4[| QY]|;.
Y

21



Despeckling — Signal Recovery SRREY

Alternating direction method of multipliers (ADMM):

m n
arg minz Z (YL-J- + eZiJ_Y"J) + A ||T||¢
Y =1 4&=dj=1
s.t. T = QY

Augumented Lagrangian function of the above function:
m n —y
Z Z (Y;; +e%i7Yi) + AlIT|l, + y(B,QY — T) + Sy — T||%
i=14—dj=1

m n
=D > (Yo eBY) + AT + 2B + QY — Tl 2 B2
i=14&—dj=1 2 2

The ADMM algorithm iteratively updates each of the variables {Y, T, B} while
keeping the rest fixed.
The restored log-image ¥ can be obtained by reshaping the solution Y*, and thus

the denoised image g is obtained by taking the exponential transform of .
22



Despeckling — Real SAR Imagess SURREY

J. Dong, W. Wang, J. A. Chambers, "Removing speckle noise by analysis dictionary learning", in Proc. IEEE Sensor
Signal Processing for Defence (SSPD 2015), Edinburgh, UK, September 9-10, 2015.
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Source Separation:
Cocktail party problem

UNIVERSITY OF

SURREY

Microphone1

icrophone2

i@ I
Speaker1 j:@ " Q
S1(t) /
S~ e
Y=
K= o
1 0 <

24



Blind Source Separation & S BBEY
Independent Component Analysis

Mixing Process Unmixing Process
S X P N

S H XME : Yy Independent?

N : : |

Unknown :Known: : | Optimize

Mixing Model: X = Hs Q@Scaling Matrix ]
De-mixing Model: y = Wx = WHs = PDs

Permutation Matrix ]

25
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Frequency Domain BSS & < SUIRREY
Permutation Problem

a I W M S, x 0.5

/ a)l : S, X1 \ S (a))
/"W S; % 0.
w, ~

s W et 51 % 0-4

Ly seiimpeatoiien Sy X 0.3 A

T~ +3,(®)
-
Solutions:

\MHM Sy x1.2
FDICA
Beamforming

Spectral envelope correlation

WA

26
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Computational Auditory Scene SURREY
Analysis

« Computational models for two conceptual
processes of auditory scene analysis (ASA):

— Segmentation. Decompose the acoustic
mixture into sensory elements (segments)

— Grouping. Combine segments into groups, so
that segments in the same group likely originate
from the same sound source

27



CASA - Time-Frequency Maskifi§RREY
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Demos due to Deliang Wang. Recent psychophysical tests show that the ideal

binary mask results in dramatic speech intelligibility improvements (Brungart et

al.’06; Li & Loizou’08) 28



Underdetermined Source % SURREY
Separation

0.06 0.08 0.1

3 4
1
Time domain Time-frequency domain

(e )

S,
X [ G a3 Ay
X, ayy Gy Uy; Ay

\S4 )
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Source Separation as a Sparseg. uwvessmyor

SURREY

Recovery Prol(a)lem N
x (1 s,(1
Reformulation: 5 5

xl(.T) A, - A, Sl(.T)
. : [A:Nl A]:\/IN} .

xM.(l) - Y g SN.(l)

xM'(T) SN&T)

— (R

= The above problembcan be interpretedfas a signal recovery
problem in compressed sensing, where M is a measurement
matrix, and b is a compressed vector of samplesinf. A;isa
diagonal matrix whose elements are all equal to ;.

= Asparse representation may be employed for f, such as:

f=@c

» @ isatransform dictionary, and c is the weighting coefficients

corresponding to the dictionary atoms. 30



Source Separation as a Sparse AR
Recovery Problem (cont.)

Reformulation:

b=Mc and M=MD
= According to compressed sensing, if M satisfies the restricted
isometry property (RIP), and also c is sparse, the signal f can be
recovered from b using an optimisation process.
= This indicates that source estimation in the underdetermined
problem can be achieved by computing ¢ using signal recovery

algorithms in compressed sensing, such as:

Basis pursuit (BP) (Chen et al., 1999)

Matching pursuit (MP) (Mallat and Zhang, 1993)
Orthogonal matching pursuit (OMP) (Pati et al., 1993)
L1 norm least squares algorithm (L1LS) (Kim et al., 2007)
Subspace pursuit (SP) (Dai et al., 2009)

AN NI NI N NN

31



Dictionary Learning for

Underdetermined Source Separation

& UNIVERSITY OF

SURREY

Separation system for the case of M =2 and N =4:

Clustering

Blocking

x5 Separating

Dhctionary
Learning

Reconstruction

T

32



Source Separation — Sound Demo

s1 s2 s3 s4
& & & &
x1 X2
es1 es2 es3 es4
& & & &

T. Xu, W. Wang, and W. Dai, Compressed sensing with adaptive dictionary learning for
underdetermined blind speech separation, Speech Communication, vol. 55, pp. 432-450, 2013.
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Beamforming — Sparse SURREY
Representation Formulation

 Extends the classic Bayesian approach to a sequential
maximum a posterior (MAP) estimation of the signal over

time.

e Sparsity constraint is enforced with a Laplacian like prior
at each time step.

 An adaptive LASSO cost function is minimised at each
time step k for M array sensors

2
B H(yk_AXk)HE M

C.Ak(xk) GE +I“L Z_ ka |I

m=1

ﬁ:m‘

C. Mecklenbruker, P. Gerstoft, A. Panahi, M. Viberg, “Sequential Bayesian sparse signal reconstruction using
array data,” IEEE Transactions on Signal Processing, vol. 61, no. 24, pp. 6344 - 6354, 2013.

34



Beamforming — Portland03 IRREY

Underwater Acoustic Dataset
 Data collected in 2003 in Portland harbour

« 31 element linear hydrophone array on the sea floor

« Single moving target: Sequence one “Beam-on” to the array,
Sequence two “end-fire” to the array

35
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UNIVERSITY OF

Beamforming — PortlandO3 SURREY
Underwater Acoustic Dataset

Sequence one — One target moving beam-on to the array

Broadband response 124.6136 to 249.863 Hz Broadband response from 125 Hz to 185 Hz

of Amival (degrees)

Direction

o} | "4'

| !
5 ! w | el

\I‘

0 500 1000 1500 2000 2500 3000 3500

Time from start / (s) 500 1000 1500 2000 2500

Time from stait (s)
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Beamforming — Portland03 SURREY
Underwater Acoustic Dataset

Sequence two — One target moving end-fire to the array

Broadband response 124.6136 to 249.863 Hz Broadband response from 125 Hz to 250 Hz
g e
ol 1% g A .
‘ || I‘ !II‘I 1 |
25 |
HH
H | |
20

Beam number

-
()}

Direction of Arrival (degrees)

10

]l ‘| 4 Ll

0 500 1000 1500
Time from start / (s)

0 500 1000 1500 2000
Time from start (s)

M. Barnard and W. Wang, “Sequential Bayesian sparse reconstruction algorithms for underwater acoustic
signal denoising” Proc. IET Conference on Intelligent Signal Processing, December, 2015.
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Multi-Speaker Tracking SUIRREY

Challenges:

= Modelling the appearance of the moving speakers (or more
broadly, moving objects) under different (office) environments
with a variety of lighting conditions and camera resolutions.

= Dealling with occlusions when tracking multiple speakers.

= Dealing with the loss of visual trackers due to e.g. the lost view
of the cameras.

Proposed solutions:

= Appearance modelling based on dictionary learning
" |ncorporating identity models of speakers e.g. based on
Gaussian mixture models (GMM) (not to discuss in this talk)
= Audio assisted re-initialisation of visual tracker (or re-booting
of lost visual tracker)
38



Dictionary Learning based ¥ SURREY

Method

Training Sequence

Feature Extraction

Test Sequence

‘ J Dictionary }\
{ Particle Filter |=*—— Audio azimuth

Support Vector Machme

Feature Extraction

|

3-D head position

Overall system to generate the 3-D head position, showing training and testing

(i.e. tracking) phases.

39
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Feature Extraction ' ' SURREY

SIFT descriptor sampling points .
12 pixels

1x Hue histogram (100 dims)
12 pixels

5(’ - 100 |

9x SIFT feature vectors (128 dims)

\IIIIII

- 128 |

8 pradient orientations

Extraction of features from image patches.

40
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DL for Object Recognition ¥ SURREY

et

+0.1 N
oo @ — I -
T ﬂ ...... —_—
(discrete distribution)
patch | feature vector L histogram — classificat
detection | extraction guantization computation i s

The dictionary learning pipeline for object recognition is shown above.
Descriptors (i.e. features, such as SIFT) are clustered into a number of atoms

using e.g. K-means. Each image patch is represented by a single histogram
(coefficient vector) of cluster membership (i.e. atoms).

41



Sc.)ft.As&gnment for {, G
Dictionary Learning

= Hard assignment: each descriptor contributes to only one

histogram bin.
= Soft assignment: more than one descriptors can contribute to

a histogram bin.
42



Soft Assignment for UNIVERSITY OF

.. : SURREY
Dictionary Learning
v K. (Dw,r))
C(W) — 72 J
T 2, K (DOw,. )
J: is the number of atoms in the dictionary
1 is the number of descriptors in the image
D(w,r): is the distance between atom w and the
descriptors 7; .

K_: is a Gaussian kernel with smoothing factor o .
w: is an atom in the dictionary.

This method has shown very good performance for object recognition in
still images (Pascal VOC, ImageCLEF challenge) (van Gemert et al. 2010).
The soft assignment technique can be further enhanced using a locality
constraint approach. 43



Fast Hierarchical Nearest
Neighbour Search

3 QIRREY

pe Visual codewords d., @ High level cluster centre m; == 1« ¢ nearest neighbours to feature vector f;
@ Feature vector f; mmm. High level cluster boundary
O Reconstructed feature vector — Dilated high level cluster boundary
% f i *
/ e
/ N X \ @ X
Sox X X mx
/ ) \ | R
' | X \ : X
\ ' / N ® /
\ -------- = r - LE LY ¢
~ X 2 e &
X X X
X + Pl
X x © v ® '
L)
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Particle Filter based
Tracking Framework

Initialisation

To = {ﬂ,{)(l), b{){l}, [1-(}{‘2), bu[?), 50}

Propagation

—k _k -
Ty =Ti—1+ 8

e

SIE
Ty oc {mf bres

K. ¢

Measurement
P(Te|Z1:e)

Test for degeneracy

& UNIVERSITY OF

) SURREY

F: [ﬁlfﬁ-.ff—f]

| Dictionary
D = [di,da,...,dy]
k +
¥={v1,v2,...,v0}
SUM

M. Barnard, P.K. Koniusz, W. Wang, J. Kittler, S. M. Naqvi, and J.A. Chambers, "Robust Multi-Speaker Tracking via
Dictionary Learning and Identity Modelling", IEEE Transactions on Multimedia, vol. 16, no. 3, pp. 864-880, 2014.
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Demo

& UNIVERSITY OF

SURREY
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Future Work SURREY

o Exploit joint sparsity in both the array and source
domains for source separation and beamforming

o Develop sparse polynomial dictionary learning and blind
sparse deconvolution algorithms for reverberant source
separation and beamforming

o Extend the sparse dictionary learning algorithm to
multiplicative noise removal for sonar imaging

o Develop new sparse methods for large scale array
beamforming and source separation

o Develop multivariate source models for source
separation

47
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