

Tracking the Untrackable: How to Track When Your Object Is Featureless

Karel Lebeda¹, Jiří Matas¹, Richard Bowden²

karel@lebeda.sk, matas@cmp.felk.cvut.cz, r.bowden@surrey.ac.uk

¹Center for Machine Perception, Czech Technical University in Prague ²Centre for Vision, Speech and Signal Processing, University of Surrey

MOTIVATION

Conventional tracking

uses features (blobs, corners,...) that are distinguishable (satisfy Moravec/Harris/Förstner condition) and provide point-to-point correspondence (at least).

But what if there's not enough of these? Or if the majority lie on the object contour \Rightarrow influenced by the background.

However, virtual straight lines - tangents - are present, but they have the Aperture Problem!

- Chamfer distance, fit of points to edges in the second image)

Correspondence of a_2^{\star} **Edgestring Tangents** R - tracking k₁, the tangent of X₁ at a₁, k_1 by perpendicular search from a_1 - edge point a₂ found by 1D search, ()tangent k_2 of X_2 at a_2 assumed to correspond to k_1 – note that k_1 corresponds to k_2 even if a_2 is not the point corresponding to a_1 – tangents at a_{γ}^* and a_{γ} are the same

 C_2

 \Rightarrow correspondence of intersection points gives the correct transformation – 1D perpendicular search; similarity of gradient angle, position, appearance

A

Ρ

Ρ

FeatureLess Object tracking

novel idea of using correspondences of tangent lines

- the method learns tangent point reliability to decrease drift and
- remembers multiple models to correct tracker pose on failure
- results competitive on standard sequences
- results superior to *state-of-the-art* trackers on low-textured objects

This work was presented at the ACCV Workshop on Detection and Tracking in Challenging Environments, Daejeon, Korea on 6th November 2012. The authors were supported by the following projects: SGS11/125/OHK3/2T/13, GACR P103/12/2310 and EPSRC EP/I011811/1.