

Fixing the Locally Optimized RANSAC

Karel Lebeda, Jiri Matas, Ondrej Chum

karel@lebeda.sk, {matas, chum}@cmp.felk.cvut.cz

(1) - (3)

(Alg. **3**)

Center for Machine Perception, Czech Technical University in Prague http://cmp.felk.cvut.cz/software/LO-RANSAC/

Overview

The problem of local optimization for RANSAC is revisited. The following improvements of the LO-RANSAC procedure are proposed:

- its (complex) structure validated and tuned,
- the use of a truncated quadratic cost function,
- the use of an inlier limit for the least squares computation,
- several implementation issues were fixed.

Why LO?

- Increases the precision of the returned model.
- Increases the number of inliers and thus less samples are needed.

The speed-up over LO [1] is typically 10-30% for LO⁺ and up to 6-fold for LO', with negligible effect on the precision.

Increasing the stability

LO-RANSAC

Algorithm 1 LO-RANSAC.	Algorithm 2 Local Optimization step.
1: for $k = 1 \rightarrow K(\mathcal{I}^* , \eta)$ do 2: $S_k \leftarrow$ randomly drawn minimal sample 3: $M_k \leftarrow$ model estimated from sample S_k 4: $\mathcal{I}_k \leftarrow find_inliers(M_k, \theta)$ 5: if $ \mathcal{I}_k > \mathcal{I}_s^* $ then 6: $M_s^* \leftarrow M_k; \mathcal{I}_s^* \leftarrow \mathcal{I}_k$ 7: $M_{LO}, \mathcal{I}_{LO} \leftarrow$ run Local Optimization (Alg. 2) 8: if $ \mathcal{I}_{LO} > \mathcal{I}^* $ then 9: $M^* \leftarrow M_{LO}; \mathcal{I}^* \leftarrow \mathcal{I}_{LO}$	Input: $M_s^*, m_{\theta}, reps$ 1: $M_{m_{\theta}} \leftarrow \text{model estimated by LSq on } find_inliers(M_s^*, m_{\theta} \cdot \theta)$ 2: $\mathcal{I}_{base} \leftarrow find_inliers(M_{m_{\theta}}, \theta)$ 3: for $r = 1 \rightarrow reps$ do 4: $S_{is} \leftarrow \text{sample of size } s_{is} \text{ randomly drawn from } \mathcal{I}_{base}$ 5: $M_{is} \leftarrow \text{model estimated from } S_{is} \text{ by LSq}$ 6: $M_r \leftarrow \text{Iterative Least Squares } (M_{is}, m_{\theta}, iters)$ (Alg. 7: end for 8: return the best of M_s^* , all M_{is} , all M_r , with its inliers
10: update K 11: end if 12: end if 13: end for 14: return M*	Algorithm 3Iterative Least Squares.Input: $M_{is}, m_{\theta}, iters$ 1: $M' \leftarrow$ model estimated by LSq on $find_inliers(M_{is}, \theta)$ 2: $\theta' \leftarrow m_{\theta} \cdot \theta$ 3: for $i = 1 \rightarrow iters$ do4: $\mathcal{I}' \leftarrow find_inliers(M', \theta')$ 5: $w' \leftarrow$ computed weights of \mathcal{I}' (depend on model)6: $M' \leftarrow$ model estimated by LSq on \mathcal{I}' weighted by w' 7: $\theta' \leftarrow \theta' - \Delta_{\theta}$ 8: end for9: return the best M'

Top-hat – RANSAC cost function, inlier count (inlier 1, outlier 0). **Truncated quadratic** – MSAC cost function.

The top-hat cost function often scores different models with the same score [4] – the quadratic function as a tiebreaker ("tb" note in the graph).

The graphs show the used cost functions and the dependence of an estimation error on the cost function and the error scale (on the "wash" image pair). For its greater stability and robustness to the error scale selection, we use quadratic cost function in further experiments.

Experimental evaluation

Non-linear iterative optimization (bundle adjustment, BA) was initialized by the output of MSAC refined by one linear least squares (6), and of fully locally optimized MSAC (7). The latter provides better initialization.

Speeding up Local Optimization

Time consumption of LO - solving sets of linear equations repeatedly. Proposed reduction: - to lower the number of equations,

– to lower the number of repetitions.

 LO^+ – a limit on the number of correspondences that participate in the estimation of model parameters (a use of random subset).

LO' – no subsampling, only iterative least squares (with the inlier limit).

The full dataset contains 16 image pairs for epipolar geometry and 16 pairs for homography estimation. These images were previously used for an evaluation in a number of publications. The dataset is available at: http://cmp.felk.cvut.cz/data/geometry2view/.

	Results							standard deviation				
		(1)	(2)		(3)	(4)		(5)	(6	6)	(7)	minimal value
Treesere		MSAC	+ LSq	LO	LO ⁺		LO'		MSAC + LSq + BA	LO + BA		
Image	10 000 runs	1000	J runs	10 000 runs	10 000 runs		10 000 runs		100 runs	100 runs		$ = (X \pm \sigma_v (X_m - X_M))) $
EPIPOLAR GEO	OMETRY											
In	aliers 295.2 ± 16.5 (245-336)	$311.4 \pm 15.3 (24)$	9-339)	333.5 ± 6.7 (274-339) 74.0 ± 1.5 (62.76)	330.7 ± 5.7 (278-339) 74.2 ± 1.2 (62.76)		325.1 ± 9.2 (266-340) 73.0 ± 2.1 (60.76)		313.7 ± 16.7 (267-339)	$332.1 \pm 8.0 (280-339)$		
nine Erro	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(3-8.1)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$73.0 \pm 2.1 (60-76)$ 1.07 ±0.54 (0.3-6.9)		1.47 ± 0.97 (0.4-5.1)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		mean value
Tim	ne (ms) 2.4 (NA)	2.7 (NA)	12.2 (NA)	9.8 (NA)		3.6 (NA)		L8499.7 (NA)	12006.1 (NA)		
	mples $65.4 \pm 26.0 (21-203)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-203)	49.2 ± 12.1 (21-185) 1.0 ± 0.1 (1.2)	49.1 ± 12.1 (21-185) 1.0 ± 0.0 (1.2)		49.6 ± 12.6 (21-185) 1.0 ± 0.1 (1.2)		66.8 ± 27.5 (25-161) 0.0 ± 0.0 (0.0)	51.3 $\pm 14.9 (25-125)$		Probability of TCs being inliers
	$\frac{1}{10000000000000000000000000000000000$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5-76)	$1.0 \pm 0.1 (1-2)$	73.3 ± 1.8 (57-78)		$69.8 \pm 2.8 (53-78)$		$67.4 \pm 4.2 (55-75)$	73.2 ± 1.5 (64-76)		
H Inlie	ers (%) 67.4 ± 4.7 (54-82)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9-82)	78.6 ± 1.7 (62-83)	$78.8 \pm 1.9 (61-84)$		75.1 ± 3.0 (57-84)		72.5 ± 4.5 (59-81)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		y: the probability
Erro	or (px) $0.48 \pm 0.33 (0.1-3.0)$	$0.37 \pm 0.33 (0.$	1-3.4)	$0.18 \pm 0.11 (0.1-2.7)$	$0.18 \pm 0.10 (0.1-2.0)$		$0.31 \pm 0.12 (0.1-1.9)$		$0.34 \pm 0.25 (0.1-1.7)$	$0.16 \pm 0.04 (0.1-0.4)$		y. the probability
	$\begin{array}{c c} \text{ne (ms)} & 1.1 & (NA) \\ \text{mples} & 61.0 \pm 25.1 & (11-211) \end{array}$	1.3 () 61.0 ± 25.1 (1)	NA) -211)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.3 (NA) 49.5 ± 15.9 (11-183)		$\begin{array}{c c} 2.1 & (NA) \\ 49.7 \pm 16.1 & (11-183) \end{array}$		$\begin{array}{c c} 2459.5 & (NA) \\ 63.7 & \pm 27.0 & (13-151) \end{array}$	$\begin{array}{c c} 2046.8 & (NA) \\ 52.3 & \pm 20.7 \ (13-136) \end{array}$		
LO	$\begin{array}{c c} count \\ 0.0 \\ \pm 0.0 \\ (0-0) \end{array}$	0.0 ± 0.0 (1.0 ± 0.0 (1-2)	1.0 ± 0.1 (1-3)		1.0 ± 0.1 (1-3)		$0.0 \pm 0.0 (0-0)$	$1.0 \pm 0.0 (1-1)$		Histogram of the probability
In	nliers 66.9 ± 4.1 (52-77)	71.9 ± 2.7 (5	3-76)	73.9 ± 0.6 (69-76)	74.0 ± 0.6 (69-77)		73.7 ± 0.9 (68-76)		72.9 ± 2.0 (66-76)	74.0 ± 0.2 (73-75)		of TCs being inliers
	ers (%) 77.8 ± 4.7 (60-90) or (px) 078 ± 0.52 (0.2.5.1)	83.6 ± 3.1 (6	(2-88)	86.0 ± 0.7 (80-88) 0 31 ± 0.03 (0 2 0 5)	86.0 ± 0.7 (80-90) 0.31 ± 0.03 (0.2.0.5)		85.7 ± 1.0 (79-88) 0.30 ± 0.03 (0.2.0.7)		84.7 ± 2.3 (77-88) 0.38 ± 0.15 (0.3,1,2)	86.0 ± 0.3 (85-87) 0.35 ± 0.02 (0.3.0.4)		v: the probability
i Elle	$\frac{\text{or }(\text{px})}{\text{ne }(\text{ms})} = \frac{0.18 \pm 0.32}{0.4} \text{(NA)}$	0.6	NA)	6.0 (NA)	5.8 (NA)		1.6 (NA)		812.4 (NA)	685.8 (NA)		v: number of points in a hin
San San	mples 21.8 ± 10.1 (5-103)	21.8 ± 10.1 (5	-103)	21.7 ± 9.8 (5-103)	21.7 ± 9.8 (5-103)		21.7 ± 9.8 (5-103)		21.6 ± 9.9 (6-50)	21.6 ± 9.9 (6-50)		y. number of points in a bin
LO	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$)-0)	1.0 ± 0.0 (1-1)	1.0 ± 0.0 (1-1)		$1.0 \pm 0.0 (1-1)$		$0.0 \pm 0.0 (0-0)$	$1.0 \pm 0.0 (1-1)$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-52) 1-95)	$51.3 \pm 0.4 (51-52)$ $93.2 \pm 0.8 (93-95)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		51. 7 ± 0.5 (51-52) 94.0 ± 0.8 (93-95)		50.6 ± 1.0 (47-52) 92.0 ± 1.9 (85-95)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
fise Erro	or (px) $ $ 1.04 ± 0.61 (0.2-5.2)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-2.9)	$\begin{bmatrix} 0.27 \pm 0.04 & (0.2-0.6) \end{bmatrix}$	$0.27 \pm 0.03 (0.2-0.5)$		$0.28 \pm 0.02 (0.2-0.6)$		$0.32 \pm 0.13 (0.2-0.9)$	$0.26 \pm 0.03 (0.2-0.4)$		Conclusions
(p) Tim	ne (ms) 0.3 (NA)	0.4 (NA)	5.4 (NA)	5.4 (NA)		1.4 (NA)		132.2 (NA)	107.4 (NA)		
	$\begin{array}{c c} \text{mples} & 16.7 \pm 9.8 & (3-92) \\ \text{count} & 0.0 \pm 0.0 & (0-0) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-92))-0)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 16.7 \pm 9.7 & (3-72) \\ 1.0 \pm 0.0 & (1-1) \end{array}$		15.8 ± 8.9 (3-43) 0.0 ± 0.0 (0-0)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
												LO ⁺ -RANSAC properties:
HOMOGRAPHY												
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(-70) 4-35)	66.8 ± 1.1 (62-69) 33.4 ± 0.5 (31-34)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		66.0 ± 1.7 (50-70) 33.0 ± 0.9 (25-35)		65.3 ± 2.6 (55-69) 32.6 ± 1.3 (28-34)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		 high stability (almost non-
Erro	or (px) $\begin{vmatrix} 1.23 \\ \pm 0.57 \\ (0.3-7.6) \end{vmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-3.9)	$0.88 \pm 0.16 (0.6-1.4)$	$0.88 \pm 0.15 (0.5-1.5)$		$0.82 \pm 0.28 (0.3-2.5)$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		random algorithm in naturo)
i e Tim	ne (ms) 6.8 (NA)	6.8 ((NA)	19.6 (NA)	18.6 (NA)		5.5 (NA)		28.5 (NA)	45.1 (NA)		random algorithm in nature),
	mples $438.9 \pm 155.3(223-1676)$	$\begin{array}{c c} 438.9 \pm 155.3(223) \\ 0.0 \ \pm 0.0 \end{array}$	-1676))-0)	$254.5 \pm 18.6(223-800)$ $2.5 \pm 1.2 (1-8)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$273.2 \pm 40.7(210-815)$ $2.6 \pm 1.2 (1-9)$		444.8 $\pm 168.3(252-1051)$ 0.0 ± 0.0 (0-0)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		 high precision in a broad
	$\frac{1}{10000000000000000000000000000000000$	371.4 ± 18.2 (26	4-398)	$ 390.6 \pm 1.3 (387-396) $	$390.5 \pm 2.1 (383-397)$		$387.9 \pm 4.4 (345-398)$		$379.0 \pm 8.6 (350-392)$	$387.1 \pm 0.6 (386-388)$		rando of conditions
Inlie Ser	$ers(\%)$ 65.3 ± 6.5 (45-78)	73.8 ± 3.6 (5	2-79)	77.6 ±0.3 (77-79)	77.6 ±0.4 (76-79)		77.1 ± 0.9 (69-79)		75.3 ± 1.7 (70-78)	77.0 ± 0.1 (77-77)		
Sng Erro	or (px) 3.65 ± 0.92 (2.0-10.6)	2.59 ± 0.50 (0.	9-4.8)	$\begin{array}{ $	2.86 ± 0.08 (2.6-3.1)		2.25 ± 0.20 (1.5-3.2)		3.15 ± 0.21 (2.3-3.6)	$2.97 \pm 0.01 (2.9-3.0)$		 lower sensitivity to the choice
Image: Constraint of the second secon	mples $21.0 \pm 9.4 (7-71)$	2.0 (1) 21.0 ± 9.4 (7)	(-71)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.3 (IVA) 20.9 ± 9.2 (7-52)		$\begin{array}{c} 110.0 \\ 21.8 \\ \pm 9.6 \\ (8-54) \end{array}$	$\begin{array}{c} 112.4 \\ 21.8 \\ \pm 9.5 \\ (8-51) \end{array}$		of inlier-outlier threshold and
LO	$0.0 \pm 0.0 (0-0)$	0.0 ±0.0 ()-0)	1.0 ± 0.0 (1-1)	1.0 ± 0.0 (1-1)	_	1.0 ±0.0 (1-1)		0.0 ±0.0 (0-0)	1.0 ± 0.0 (1-1)		
	nliers $277.3 \pm 21.5 (187-305)$	303.0 ±5.4 (26)-305)	305.0 ± 0.0 (305-305)	305.0 ± 0.0 (305-305)		305.0 ± 0.1 (303-305)		305.0 ± 0.2 (304-305)	305.0 $\pm 0.0 (305-305)$		• It offers a significantly better
Erro	$\operatorname{rers}(\%) = 72.6 \pm 5.6 (49-80)$ or (px) = 1.78 ± 1.01 (0.4-15.1)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8-80) 4-2.6)	79.8 ± 0.0 (80-80) 0.66 ± 0.00 (0.7-0.7)	79.8 ± 0.0 (80-80) 0.66 ± 0.00 (0.6-0.7)		79.8 ± 0.0 (79-80) 0.60 ± 0.08 (0.3-0.9)		79.8 ± 0.0 (80-80) 0.67 ± 0.03 (0.6-0.8)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		starting point for bundle ad-
	$\frac{1.10}{1.1} (NA)$	1.3 (NA)	16.0 (NA)	11.0 (NA)		1.9 (NA)		82.6 (NA)	26.0 (NA)		(DA) there the Cold
	mples $12.8 \pm 5.8 (6-53)$	$12.8 \pm 5.8 (6)$	-53)	12.8 ± 5.8 (6-50)	12.8 ± 5.8 (6-50)		12.8 ± 5.8 (6-50)		12.3 ± 5.7 (6-38)	12.3 ± 5.7 (6-38)		jusiment (BA) than the Gold
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J-U)	1.0 ± 0.0 (1-1)	1.0 ± 0.0 (1-1)		1.0 ± 0.0 (1-1) 173 7 ± 1.8 (137, 174)	I	U.U ± 0.0 (0-0) L 172.7 ± 6.5 (130.174)	1.0 ± 0.0 (1-1)		Standard method advocated in
	$\operatorname{hers}(\%) \mid 75.3 \pm 6.2 (49-81)$	$ 80.2 \pm 3.6 (6)$	B-81)	$\begin{vmatrix} 114.0 \pm 0.0 & (114-114) \\ 81.3 \pm 0.0 & (81-81) \end{vmatrix}$	$81.3 \pm 0.0 (81-81)$		81.2 ± 0.9 (64-81)		80.7 ± 3.1 (65-81)	$\begin{vmatrix} 1.4.0 & \pm 0.0 & (174-174) \\ 81.3 & \pm 0.0 & (81-81) \end{vmatrix}$		the Uartley Ziecormon heals [2]
Erro	or (px) 1.48 ± 0.49 (0.5-6.0)	1.09 ± 0.19 (0.	7-2.7)	$1.08 \pm 0.00 (1.1-1.1)$	1.06 ± 0.01 (1.0-1.2)		$1.02 \pm 0.06 (0.8-1.9)$		1.08 ± 0.12 (1.0-1.7)	$1.05 \pm 0.00 (1.0-1.0)$		ule natuey-Zissennan DOOK [3].
	$\begin{array}{c c} \text{ne (ms)} & 0.7 & (\text{NA}) \\ \text{mples} & 11.7 + 5.8 & (6.56) \\ \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NA) -56)	$\begin{array}{ c c c } 9.7 & (NA) \\ 11.7 + 5.8 & (6.51) \end{array}$	7.6 (NA) 11.7 \pm 5.8 (6.51)		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{c cccc} 61.2 & (NA) \\ 10.2 & \pm 4.3 & (6-20) \end{array}$	$\begin{bmatrix} 53.1 & (NA) \\ 10.2 & \pm 4.3 & (6.20) \end{bmatrix}$		The implementation is made
Image: Apple state	$\begin{array}{c c} \text{count} & 0.0 & \pm 0.0 & (0-0) \\ \hline 0.0 & \pm 0.0 & (0-0) \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)-0)	$1.0 \pm 0.0 (1-1)$	$1.0 \pm 0.0 (1-1)$		$1.0 \pm 0.0 (1-1)$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ 10.2 \pm 4.3 (0-29) \\ 1.0 \pm 0.0 (1-1) $		nublich available

References

[1] O. Chum, J. Matas and J. Kittler. Locally Optimized RANSAC. In DAGM-Symposium, pages 236–243, 2003.

[2] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM, 24(6): 381–395, 1981.

[3] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2004.

[4] P. H. S. Torr and A. Zisserman. Robust computation and parametrization of multiple view relations. In Proc. of the ICCV, pages 727–732, 1998.

publicity available.

