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Abstract. We investigate the recognition of actions “in the wild” using 3D mo-
tion information. The lack of control over (and knowledge of) the camera con-
figuration, exacerbates this already challenging task, by introducing systematic
projective inconsistencies between 3D motion fields, hugely increasing intra-
class variance. By introducing a robust, sequence based, stereo calibration tech-
nique, we reduce these inconsistencies from fully projective to a simple similarity
transform. We then introduce motion encoding techniques which provide the nec-
essary scale invariance, along with additional invariances to changes in camera
viewpoint.
On the recent Hollywood 3D natural action recognition dataset, we show im-
provements of 40 % over previous state-of-the-art techniques based on implicit
motion encoding. We also demonstrate that our robust sequence calibration sim-
plifies the task of recognising actions, leading to recognition rates 2.5 times those
for the same technique without calibration. In addition, the sequence calibrations
are made available.

Keywords: Action recognition, in the wild, 3D motion, scene flow, invariant en-
coding, stereo sequence calibration

1 Introduction

In recent years, the field of action recognition has been exploring techniques for ef-
fectively exploiting the wealth of 3D video data which has recently become available.
However, the area of natural or “in the wild” action recognition using 3D data offers
it’s own unique, and so far unaddressed, challenges. Attempting to make use of 3D data
from disparate sources with unknown calibration, adds additional layers of variations
into a field which is already typified by huge intra-class variance and limited training
data. This is especially obvious in recent datasets such as Hollywood-3D [9] which con-
tains a wide variety of 3D data, but provides no calibration information. This severely
limits the amount of 3D information which can be extracted, forcing authors to resort
on projected 2D motion fields [9] or implicit depth encodings [12]. In this paper we
propose not only the use of true 3D motion fields (see Figures 1 and 2) as a descrip-
tor for recognising action categories, but also techniques for reliably extracting robust,
invariant and comparable descriptors from uncontrolled 3D data.

Motion information has long been one of the primary tools to distinguish actions.
Interest points in natural videos are detected based on temporal gradients [14,32] and
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(a) Eat Left video (b) Eat Disparity

(c) Eat World X velocity (d) Eat World Y velocity (e) Eat World Z velocity

Fig. 1: An example Eat action taken from the Hollywood 3D dataset. The appearance
and disparity (top row) are provided. Also shown is a 3D motion field for the sequence.
Note that motion is concentrated on the arm and head, which move towards each other.

motion fields are directly encoded to describe videos [23,21,15]. This is perhaps un-
surprising, as it can be argued that motions are what define an action. In recent years,
3D structural data has seen increasing use in action recognition, however 3D motions
remain conspicuously unexploited. This is primarily due to the difficulty in obtaining
such data. Although the Kinect directly provides 3D structural information at every
frame, the motion fields which warp from one structure to the next are unknown, and
estimating them is still a topic of ongoing research [20,26,8,1].

In addition to the difficulty in extracting such data, there has recently been a rapid
increase in the potential sources of 3D data. This includes consumer devices like the
Kinect, 3D broadcast footage from television networks & film studios, and even upcom-
ing mobile devices like Google’s Project Tango. This variety of input domains further
emphasises the need for invariant encoding, in order to fully exploit the diverse set of
input data.

2 Related Work

In action recognition, it has long been standard practice to employ interest point detec-
tors [14] to focus attention on salient regions of the scene during learning. This serves to
suppress irrelevant background information and reduce the computational complexity
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(a) Drive Left video (b) Drive Disparity

(c) Drive World X velocity (d) Drive World Y velocity (e) Drive World Z velocity

Fig. 2: An example Drive action taken from the Hollywood 3D dataset. The appear-
ance and disparity (top row) are provided. Also shown is the 3D motion field for the
sequence. The primary motion occurs on the foreground regions of the car, with sec-
ondary x and y motion on the passengers.

of many algorithms [6,18,15]. The use of 3D data has removed the need for this step in
much recent work recognising actions in constrained environments, due to the simplic-
ity of segmenting the actor (for example by using the Kinect’s user mask) [18,3,7]. This
enables complex “volumetric” descriptions of the actors body over time [33,31,30,22].
However, for “in the wild” action recognition this is not the case as it generally remains
impossible to segment the actor reliably, due to noisy 3D data, cluttered environments,
and scenes containing multiple people. As such, it is still common to use interest point
detectors as a kind of “soft user mask”. In this paper, we use the depth-aware spatio-
temporal corner detectors of [9] for this purpose.

Once salient parts of the sequence have been detected, various local feature de-
scriptors are generally extracted from these regions. Local features which have proved
effective in the past include gradient based appearance information [27,16], 2D mo-
tion information [21,4] and spatio-temporal extensions to SIFT and SURF descriptors
[28][32]. For “in the wild” action recognition, the use of the Hollywood-3D dataset has
prompted the investigation of local features based on 3D information. However, previ-
ous work has been limited by the lack of consistent calibration information. As such,
authors have been forced to rely on the recognition system learning to generalise across
variations arising from miscalibration [12,9]. It is here that one of the major contribu-
tions of this paper lies, overcoming this limitation and making it possible for a new
and powerful type of local information to be extracted to encode actions, based on 3D
motion fields.
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The final stage of “in the wild” action recognition, is often for the collection of lo-
cal features to be encoded into a single holistic description of the sequence, often via a
Bag-of-Words approach with a codebook of exemplar features. This approach is analo-
gous to the highly successful Bag-of-Words techniques for object recognition, but with
an additional temporal dimension. The Bag-of-Words approach to sequence encoding
is generally performed by accumulating occurrences spatially and temporally across the
entire sequence. This provides invariance to a range of important deformations, such as
spatial and temporal translation, stretching and reflection. This is invaluable for gener-
alisation, but it also leads to much of the relational information being discarded, such
as the spatial configuration and temporal ordering of features. Laptev et al. attempt to
mitigate this by splitting the spatio-temporal volume into sub-blocks, creating a de-
scriptor for each sub-block, and concatenating them to create the sequence descriptor
[15]. Sapienza et al. follow a similar vein, encoding individual sub-sequences, however
rather than concatenating to create a single descriptor, they employ Multiple Instance
Learning (MIL) [25]. This accounts for some parts of the sequence being irrelevant, for
example before and after the action. In this paper we propose a number of novel encod-
ing schemes, incorporating invariances particularly suited to our 3D motion features,
such as scale and viewpoint invariance.

The remainder of this paper is structured as follows. Section 3 describes the robust
auto-calibration technique proposed for use with varied footage. We then explain how
this calibration allows comparable 3D motion information to be extracted from varied
sequences, and propose invariant encoding schemes in Section 4, allowing us to make
the best use of the varied training sequences. Finally, in Section 5 the proposed tech-
niques are evaluated on a recent dataset for 3D action recognition “in the wild” and
compared against the existing state of the art results.

3 Stereo Sequence Auto-calibration

To extract comparable 3D motion information from multi-view sequences, we need
some form of calibration between the views. This is particularly an issue for “in the
wild” action recognition, where the camera models, and layout, change between se-
quences. Without accounting for these differences, extracted 3D information varies
greatly from sequence to sequence. This introduces a huge amount of artificial vari-
ation to the action classes, making classification even more challenging. To mitigate
this issue, we introduce an approach for stereo auto-calibration of video pairs.

The first step towards calibrating a pair of video sequences I l and Ir, each of which
consists of n frames (I l

1...n and Ir
1...n), is to detect a set of candidate correspondences.

In this paper, sets (Sl and Sr) of SIFT [19] points s = (x, y, τ) are extracted, where,

S = {s : SIFT (Iτ (x, y)) > λs} . (1)

based on the threshold λs. Each SIFT point si has an associated SIFT descriptor fi.
Correspondences between point detections are calculated subject to the condition that
their descriptors are closer than a threshold λf , and that they occur at the same frame
in both sequences,

C =
{

(sli, s
r
j) : |f l

i − fr
j | < λf and τ li = τ rj

}
. (2)
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Given this set of cross sequence correspondences, the epipolar geometry of the
scene is estimated using 7-point RANSAC with Local Optimisation [17]. The funda-
mental matrix is estimated by

F = arg min
F ′

∑
εs
(
sl>i , sri |F ′

)
, (3)

where εs is the Sampson error (linearised approximation to projection error). In this
work εs also applies a truncated quadratic cost function (as in MSAC), which provides
an approximation to the maximum likelihood estimate [29].

Given the estimated F we can also extract the set of inlier correspondences,

Ĉ =
{

(sli, s
r
i ) :

∣∣sl>i Fsri
∣∣ < λr

}
, (4)

which obey the epipolar constraints estimated. For the experiments in this paper, the
detection, matching and inlier thresholds (λs, λf and λr respectively) use the default
values suggested by their respective authors.

3.1 Full 3D sequence calibration

Estimating the epipolar geometry between the sequences is only the first step to con-
sistent 3D calibration. Next the focal length (and hence the Essential matrix E) must
be estimated. This is feasible, subject to the assumption of square pixels, and that fo-
cal length is consistent between the two sequences (this assumption is reasonable, as
stereo capture rigs generally utilise the same type of camera for both views). This can
then be combined with constraints on the rank of F , and the trace of E, to construct a
Polynomial Eigenvalue Problem (PEP) which may be efficiently solved [13]. As with
the estimation of F , this is solved in a RANSAC framework, with the inliers to the
epipolar geometry Ĉ used as input.

Unfortunately, in general 3D footage it is very common for cameras to be in a near-
parallel configuration. This adversely affects the stability of the PEP, which (although
deterministic) may become sensitive to changes in the input correspondences Ĉ. In
other words, for a given Ĉ a particular E is estimated consistently. However, adding
or removing a small number of points from Ĉ can in some cases lead to significant
differences in the estimated E. Luckily, the offline nature of the auto-calibration system,
coupled with efficient PEP solvers, mean the process can be repeated a number of times.
Each iteration finds a slightly different F and Ĉ which in turn leads to a different E.

Figure 3 shows the distribution of focal lengths estimated over 1000 repetitions,
for two sequence pairs with different levels of zoom. The distribution of focal lengths
arising due to the near-parallel camera configuration, follows the log-normal distribu-
tion which should be expected from a multiplicative entity such as the focal length. As
such, we can achieve robustness to near-parallel cameras, by taking the mode of this
distribution, for each sequence pair. In our experiments we use 100 calibration repeti-
tions to model this distribution, which takes a few minutes in our single thread Matlab
implementation.

Finally, given our robust estimate of E it is possible to estimate the projections
matrices P l and P r for the cameras [11]. This leads to 4 possible solutions as shown
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(a)

(b)

(c)

Fig. 3: Distribution of estimated focal lengths over 20000 repetitions, on the 2 different
sequences pairs shown in B and C (wide-angle, close-up Eat shot, and extreme zoom
Drive shot).

in Figure 4. We select the solution that maximizes the number of corresponding point
pairs Ĉ intersecting in front of the cameras,

P l,P r = arg max
P ′l,P ′r

∑
(sl

i,s
r
i )∈Ĉ

sign(dl) + sign(dr), (5)

where dl and dr are the distances along the rays defined by homogeneous points s̄li, s̄
r
i

and D is the 3D position of the rays intersection,

dls̄
l
i = P

′lD and drs̄
r
i = P

′rD. (6)

The proposed approach to stereo sequence calibration has some limitations. Firstly,
lens distortion is not included in the model. This is acceptable for a wide range of
footage from Kinect devices and broadcast sources, which generally exhibit little distor-
tion, however this may be an issue for upcoming 3D mobile devices. Secondly, in order
to exploit correspondences over entire sequences, a consistent focal length is assumed
(i.e. no zooming). In theory the technique could be extended by collecting correspon-
dences within a sliding window, and estimating a time varying focal length. However, to
obtain a sufficient number of correspondences within the window, it becomes necessary
to reduce robustness by allowing weaker matches. Finally, the reconstructions achieved
by our calibration technique, are only consistent with each other up to a similarity trans-
form (reconstructions using a generic calibration are consistent up to a homography).
The removal of projective distortions does greatly reduce the variability in the data, but
the remaining scale ambiguity still must be addressed during encoding.
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Fig. 4: The 4 possible solutions for stereo camera projection matrices, with a given E
matrix. Note that only one solution leads to the 3D point being in front of both cameras
[11].

4 Invariant Motion Encoding

The estimated calibration can be used in conjunction with an efficient 3D motion es-
timation scheme such as [10]. This will estimate the “scene flow” (optical flows 3D
counterpart) resulting in 3D structure and velocity (u, v, w) estimates at every point in
the scene.

Given these dense flow fields, we can extract a local 3D motion descriptor around
each of the spatio-temporal interest points within a sequence. We use a spherical co-
ordinate system

φ = arctan
( v
u

)
and ψ = arctan

(w
v

)
, (7)

to describe the 3D orientation of flow vectors. Note that φ refers to the “in plane”
orientation (from the viewpoint of the left camera) i.e. when φ is 0◦, the motion is
toward to the top of the image, when φ is 90◦ the motion is toward the right of the
image, etc. In contrast ψ refers to the “out of plane” orientation, i.e. how much the
motion is angled away from, or towards, the camera.

We encode the distribution of 3D orientations in a region around each interest point,
capturing the nature of local motion field using a spherical histogram H as shown in
Figure 5. This is similar to the approach used for shape context [2], but in the velocity
domain. The contribution of each flow vector to the histogram is weighted based on
the magnitude of the flow vector. Although this histogramming discards much of the
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(a) Spherical orientation histogram (b) An encoded motion field

Fig. 5: (a) The spherical orientation histogram. Different orientation bins are illustrated
with alternating white and black squares. The φ orientation relates to rotation around the
w axis (which points away from the camera). This leads to movement between the cells
of one concentric rings in the histogram. The ψ orientation relates to rotation around
the u axis, i.e. moving between concentric rings. (b) a scene divided into a 3 by 3 grid
of subregions, with the motion of each subregion aggregated (for clarity aggregated
motions are shown in 2D).

spatial information, some general attributes are maintained by separating the region
into several neighbouring blocks, and encoding each of them independently as H1...n.
These sub-region spherical histograms are then combined to form the overall descriptor
H . It should be noted that placing histogram bins at regular angular intervals in this way
leads to the bins covering unequal areas of the sphere’s surface. An exaggerated version
of this effect can be seen in Figure 5a, although in practice fewer bins are used and the
difference is less pronounced. In the future regular or semi-regular sphere tessellations
could be considered to remove this effect [24].

At this stage we introduce our first layer of invariance. By normalising the local
descriptors, we are able to resolve the scale ambiguity which remained in our auto-
calibration of Section 3. As mentioned previously, our motion fields are only consistent
up to a similarity transform. However, the normalised spherical histograms,

H̄ =
H

|H|
(8)

are consistent up to a 3D rotation, making these 3D motion descriptors much more com-
parable between camera configurations, and thus suitable for “in the wild” recognition.
In addition to this, the normalised features provide invariance to the speed at which ac-
tions are performed, as only the shape and not the value of the motion field is encoded.
This is again very import for “in the wild” recognition, with many different actors, each
of whom have their own action style.
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4.1 Rotational Invariance

Next we look at including viewpoint invariance in our 3D motion features (i.e. removing
the final 3D rotation ambiguity, and making the descriptors completely consistent). This
is one of the biggest challenges for “in the wild” action recognition. The the same action
viewed from different angles looks completely different. However, as we are using the
underlying 3D motion field, it is possible to modify our feature encoding to be invariant
to such changes.

We firstly encode invariance to camera roll (i.e. rotation around the z axis) by cy-
cling the order of the subregion histogramsH1...n such that the the subregion containing
the largest amount of motion occurs first. This re-arranged, roll-invariant, descriptor is
referred to as H̄r (see Figure 6).

Fig. 6: H̄r The subregions of the encoded motion field are re-arranged such that the
region of maximum motion occurs first. This provides some degree of invariance to
camera roll.

We can follow a similar approach for the flow vectors within the subregion his-
tograms, to make the direction of the motions as well as their positions, rotationally-
invariant. If we find the strongest motion vector inH and label its 3D orientation as φ̂,ψ̂
then we can redefine our local orientations in relation to this flow vector,

φp = arctan
( v
u
− φ̂

)
and ψp = arctan

(w
v
− ψ̂

)
. (9)

The resulting descriptors H̄p obtained when encoding φp,ψp makes the flow vectors
robust to camera pitch (rotation around the x axis) in addition to roll, as shown in Fig-
ure 7.

However, due to the separation of φ and ψ our descriptors are still not resistant to
camera pans (rotation around the y axis, which at 90 degrees causes φ orientation to



10 S. Hadfield, K. Lebeda, R. Bowden

Fig. 7: H̄p The orientation (φ̂,ψ̂) of the strongest motion vector in the scene, is used to
normalise the orientation histograms, providing invariance to camera pitch and roll.

become ψ orientation). In addition, normalising based on the maximum flow vector is
sensitive to outliers in the flow field. As such, our final approach is to perform PCA on
the local region of the motion field, extracting 3 new basis vectors u′, v′, w′. Computing
orientation using these basis vectors,

φ′ = arctan
(
v′

u′

)
and ψ′ = arctan

(
w′

v′

)
, (10)

leads to a descriptor H̄ ′ which is invariant to all 3 types of camera viewpoint change,
and also robust to outlier motions. See Figure 8 for an illustration.

4.2 Holistic Sequence Encoding

Whichever local descriptors are used, the final representation of the sequence is formed
by a holistic Bag-of-words encoding. The sequence is described in terms of the fre-
quency of occurrence for various exemplar descriptors (called the codebook). As in the
case of the local descriptors, this space-time accumulation serves to provide invariance
to spatio-temporal translations, scaling etc. but also implies a loss of relational informa-
tion. To somewhat mitigate this, the sequence is divided into space-time blocks, each of
which is encoded independently to provide the final description of the sequence.

5 Results

We evaluate our technique on the recently released Hollywood 3D dataset, which con-
tains over an hour of “in the wild” action footage, taken from 3D broadcasts, cover-
ing 14 action categories. We compare our 3D motion features estimated using a single



Natural actions from invariant 3D motions 11

Fig. 8: H̄ ′ A new set of 3D axes is chosen using PCA, relating to the dominant 3D mo-
tion orientations in the scene. This provides complete invariance to camera viewpoint
change.

generic calibration, and estimated with sequence specific auto-calibration1, against the
current state of the art results on the dataset [12] which uses auto-encoders to implic-
itly model uncalibrated structural information. We also include results for a baseline
method using 2D motion information from optical flow.

Performance is evaluated in terms of Average Precision [5] for each class. Classifi-
cation is performed using an SVM with an RBF kernel, and encoding uses a Mahalono-
bis distance function and a codebook of 40000 elements, facilitating comparison with
[9]. For the feature descriptors each subregion histogram uses 4× 4 bins in the φ and ψ
orientations, leading to a motion feature vector of 144 elements.

In Table 1 we can see that the raw 3D motion features (H̄ -uncal), directly attainable
from the dataset with a generic calibration, perform rather poorly, offering only a minor
improvement over 2D motion based features (HOF [9]). The use of our proposed stereo
sequence auto-calibration (H̄ ) dramatically improves performance, more than doubling
the average precision, by removing the projective distortion effects on the motion field.
This helps to explain why 3D motion estimation techniques have not previously been
exploited for “in the wild” action recognition, despite the fact that actions are generally
defined by their 3D motions. The results also show that the unnormalised features (H),
which are not scale invariant, perform uniformly worse than their normalised counter-
parts. It’s worth noting, however, that Hollywood 3D doesn’t contain the Run/Jog/Walk
ambiguities of some datasets. Instead the wide range of viewpoints and zooms present
in the data favour the more consistent H̄ features.

The viewpoint invariant encoding schemes of Section 4.1 (upgrading the motion
fields to fully consistent, rather than “up to a rotation”) provide more modest improve-
ments. Including roll invariance (H̄r) gives only a small performance increase, probably

1 estimated calibrations are available at http://cvssp.org/Hollywood3D/

http://cvssp.org/Hollywood3D/
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because broadcast footage such as that contained in the Hollywood-3D dataset contains
few camera rolls. It may be expected that this scheme would prove more valuable in
other scenarios such as on mobile devices. Attempting to include pitch invariance (H̄p)
by normalising motion orientations actually reduces performance on many of the action
classes. This is likely because normalising by the maximum motion makes the tech-
nique susceptible to outliers in the motion field. It is interesting to note however, that
there is a marked improvement for a small number of actions such as Run and Swim.
This may be because these actions experience greater variation in camera pitch (for
example running shots being seen from above, and swimming shots from underwater).
The final scheme (H̄ ′), including full viewpoint invariance by estimating new motion
orientation axes, provides the greatest performance, with more than 40 % improvement
over the previously state of the art SAE-MD(av) [12] technique. It is interesting to note
that all of these encoding schemes actually throw away some of the information present
within the original features. However, for the task of “in the wild” action recognition,
camera viewpoint invariance outweighs this, by making it easier to generalise between
sequences.

Table 1: Per class Average Precision scores using various types of features encodings,
including 2D motions [9], implicit depth and motion encoding [12], uncalibrated 3D
motions, Unnormalised 3D motions, and calibrated motions encoding varying levels of
invariance to camera viewpoint change.

Action HOF [9] SAE-MD(av) [12] H̄ -uncal H̄ H H̄r H̄p H̄ ′

NoAction 12.5 12.8 13.0 18.0 16.2 17.2 15.3 21.2
Run 18.0 50.4 21.5 44.3 41.1 40.8 55.9 63.1

Punch 2.9 38.0 10.9 48.7 45.6 51.6 52.1 54.2
Kick 3.6 7.9 8.1 18.2 18.2 19.9 18.1 19.9
Shoot 16.3 35.5 24.4 27.1 26.5 30.2 27.9 31.0
Eat 3.6 7.0 5.5 24.2 24.1 24.0 23.1 24.2

Drive 35.1 59.6 45.4 62.3 58.4 62.0 50.2 60.8
UsePhone 8.1 23.9 7.8 18.8 18.2 19.3 18.2 22.3

Kiss 6.7 16.4 7.0 24.2 24.1 24.0 26.3 31.3
Hug 2.6 7.0 3.5 21.8 21.0 22.2 23.8 32.4

StandUp 8.8 34.2 7.1 49.1 47.0 51.8 49.0 50.0
SitDown 4.3 7.0 4.8 16.3 14.1 17.9 16.9 18.1

Swim 6.4 29.5 14.0 28.8 27.1 30.0 43.2 43.0
Dance 2.8 36.3 3.7 45.3 41.8 44.2 48.1 44.9

Overall 9.4 26.1 12.6 31.9 30.2 32.5 33.4 36.9
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6 Conclusions

In this paper we have demonstrated that 3D motion is a powerful tool for recognising the
actions being performed in a scene. However, in order for it to be truly exploited within
the field of “in the wild” action recognition, appropriate sequence calibration techniques
must be employed. To this end we introduce an approach for stereo sequence calibration
which is robust to near parallel cameras setups, and we make available the estimated
calibrations for the entirety of the Hollywood-3D dataset.

We have also shown that one of the biggest issues for “in the wild” recognition,
is the intra-class variability. By using viewpoint invariant encoding schemes, we can
significantly improve the value of our 3D motion features, particularly for actions which
are commonly viewed from different angles.

In the future it would be useful to explore more advanced holistic encoding schemes
for sequences, preserving the invariances encoded in our 3D motion features without
discarding so much relational information. It would also be interesting to investigate
online approaches to auto-calibration, allowing the calibration to change within se-
quences. This would prove valuable for sequences which include zooming cameras,
and also in domains where the cameras are not rigidly attached together and may move
independently (for example surveillance cameras and co-operating drones).
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