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Abstract. In this work we describe a novel approach to online dense
non-rigid structure from motion. The problem is reformulated, incor-
porating ideas from visual object tracking, to provide a more general
and unified technique, with feedback between the reconstruction and
point-tracking algorithms. The resulting algorithm overcomes the limita-
tions of many conventional techniques, such as the need for a reference
image/template or precomputed trajectories. The technique can also be
applied in traditionally challenging scenarios, such as modelling objects
with strong self-occlusions or from an extreme range of viewpoints. The
proposed algorithm needs no offline pre-learning and does not assume
the modelled object stays rigid at the beginning of the video sequence.
Our experiments show that in traditional scenarios, the proposed method
can achieve better accuracy than the current state of the art while using
less supervision. Additionally we perform reconstructions in challenging
new scenarios where state-of-the-art approaches break down and where
our method improves performance by up to an order of magnitude.

Keywords: Non-rigid SfM, Structure from Motion, Visual Tracking,
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1 Introduction

Non-Rigid Structure-from-Motion (NRSfM) is a problem which has attracted
considerable interest in recent years, from application areas such as medical
imaging and the special effects industry. The problem is usually formulated as
the estimation of camera motion and of a time-varying 3D shape for an a priori
unknown object, using only a set of 2D point trajectories [1–4]. We propose a
modified formulation, where the task is completely unsupervised (with the only
input being a selection of what object to model). In other words, our task is to
estimate the camera motion and time-varying 3D shape of an a priori unknown
object from a previously unseen video-sequence, using only a bounding box in the
first frame. As far as the authors are aware, there is no previous work addressing
simultaneous tracking and non-rigid modelling from a monocular camera.

The NRSfM problem is very challenging, due to the ambiguous separation of
2D observations into rigid camera motion and non-rigid object deformation. This
is exacerbated in the unsupervised scenario, where the observations are noisy,
contain outliers (due to matching failure) and may even belong to background
clutter. Despite these issues, we are able to successfully address the problem
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Fig. 1: Example of input sequence and models output by our method: frames
#60, 70, 80 and 90 of the sequence CubicGlobe.

by adapting techniques from 3D visual tracking. Online estimates of camera
trajectory and object shape can be fed back, to improve the accuracy of the point
tracking as the sequence progresses.

Another major contribution of this paper is that the traditional 3D object
model (defined as a 3D point cloud) is upgraded to a continuous 3D surface using
Gaussian Process shape modelling. [5]. This makes it possible to segment the
object from the background, to reason about self-occlusions, and to intelligently
sample points in regions of low confidence (due to the probabilistic nature of the
model).

To the best of our knowledge, all state-of-the-art NRSfM techniques use 2D
point tracks as their input (with varying levels of density). In this publication, we
present a unified framework which jointly addresses the problems of 2D point track-
ing and NRSfM directly on video frames. The additional 3D information improves
the 2D tracking far beyond what is possible from a generic stand-alone system.
In turn these more accurate point tracks help to refine future NRSfM estimates.

The 2D tracks required by state-of-the-art techniques are often precomputed
(or taken from known annotations). For this precomputation, it is common to
work with a reference template or video frame, against which all other frames
are registered. This is important as the concatenation of frame-to-frame cor-
respondences (e.g. from optical flow) inevitably leads to an accumulation of
errors (drift). However, reference frames limit the possible applications of the
technique. In contrast, we address the problem of track drift explicitly, using
multiple overlapping (both spatially and temporally) sets of dense trajectories,
in addition to easily localised sparse trajectories for long-term consistency. This
obviates the need for a reference frame, and makes it possible to process a wider
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range of scenarios. These include strong rotations and self-occlusions, where there
may be zero overlap between the first frame and some frames later in the video.

Even though the proposed technique does not require any supervision (beyond
a single target bounding box), it extends easily to the more traditional supervised
scenarios using precomputed 2D tracks. Additional point correspondences (such
as tracks of SIFT features, regressed facial landmarks, etc.) can be exploited
within the framework to further improve performance.

One major issue in NRSfM research is the regularisation of non-rigid object
deformations. With unconstrained deformation, there is a trivial solution for
any set of observations, where the camera does not move and observations
are explained by complicated object deformations. To prevent this, the shape
deformation is usually defined as arising from a weighted combination of basis
shapes. In this paper we employ a novel set of constraints and regularisation,
which ensure that every basis shape represents an extreme (but feasible) pose
of the target object. Shape deformations are then constrained to lie within
the feasible manifold (a convex subspace) formed by these basis shapes. This
regularisation renders the method very robust to overfitting.

To summarise, the primary contributions of this paper are: 1) a unified
framework to jointly solve the online (although not real-time), direct, template-
free NRSfM and point tracking tasks, 2) the use of Gaussian Process shape model
and 3) novel constraints to regularise the basis shape selection. The source code
of the method will be made available online.

2 Related work

Most approaches to NRSfM are factorisation-based [6], as introduced by Bre-
gler et al. [7]. To simplify the problem, the orthographic camera model is used
[8, 3, 9, 4]. This way, the 2D point locations (per frame) can be expressed as an
affine function of the 3D locations, which are in turn a linear combination of basis
shapes. The set of projection equations (for each 3D point and video frame where
it is visible) is then rewritten as a matrix-matrix multiplication. The projection
multiplication is decomposed (usually using SVD) back to the factors, yielding
the camera parameters (translation and rotation, for each frame), basis shape
mixing parameters (i.e. coefficients of the linear combination, for each frame)
and basis shape locations (for each point).

This problem is inherently ill-posed, having significantly more unknowns than
equations. To render it solvable, additional constraints are applied. In the original
paper [7], the low-rank constraint was applied, effectively setting/limiting the
number of basis shapes. All following approaches use this constraint and apply
additional constraints, priors, heuristics and regularisations. These include spatial
smoothness of shape [10, 3, 11, 12] (the points lying close to each other in 2D tend
to lie close to each other in 3D); temporal smoothness of shape [1, 10, 3, 9] (the
shape changes smoothly over time); temporal smoothness of camera poses [1, 3]
(the camera trajectory is smooth in time); and inextensibility [11, 12] and other
physics-based priors [1, 13]. In this paper we propose an additional constraint,
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Table 1: Comparison of state-of-the-art approaches for dynamic shapes recon-
struction.

Zollhofer Newcombe Garg Yu Proposed
Property [15] [16] [17] [18]

Template-free X X X
Direct X X X X
Monocular RGB X X X
Online X X X X

that each basis shape must relate to a feasible target pose, greatly improving the
stability of the optimisation.

One limitation of the factorisation-based formulation is that it is conditional
on all 2D tracks spanning the length of the video. This condition is removed
by either estimating the missing data [14] or using methods based on Bundle
Adjustment (BA) [1, 10], such as the proposed method. In this case, matrix
factorisation is replaced with global optimisation of the model parameters (basis
shapes, mixing coefficients and camera trajectory). Another reason for the use of
Bundle Adjustment is its ability to solve for more complicated camera models.
Finally, BA-based techniques also scale well in terms of memory and computation
time.

Table 1 compares the properties of selected state-of-the-art NRSfM approaches.
Although there are many more works, this comparison captures general trends
which can be observed in the field. All current techniques use either a template,
a precomputed set of 2D trajectories, or an RGBD camera to address the task.
To the best of the authors’ knowledge, there has been no prior approach to solve
NRSfM which would be at the same time direct, template-free and using only a
single RGB camera.

3 Method

In this section, we present our novel formulation of the NRSfM problem. See
Figure 2 for an overview of the proposed algorithm. Its input is a video-sequence
and optionally additional (independently estimated) trajectories. Its outputs
are the camera trajectory, reconstructed basis shapes (point clouds) and the
mixing parameters for each frame. From these, the time-varying shape can be
reconstructed at any frame (i.e. the instantaneous shape). Optionally, the shape
can be extracted in the form of an explicit polygonal mesh, parametrisable by
the coefficients.

As the first step (line 1 in Figure 2) for the first frame, a bounding box is used
to specify the target. Within this boundary, sparse and dense 2D features are
extracted (lines 2 and 3) as detailed in Section 3.1. Optionally, further supervision
points can be supplied (line 4) from another source (such as regressed landmarks
in the case of a face sequence). These 2D points are backprojected to the dense
object model (see Section 3.3 for details) and then duplicated K times to form
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1: request bounding box from user
2: S1 ← detect initial sparse features
3: D1 ← initialise dense features
4: *L1 ← load any supervision features
5: B← initialise 3D point basis (S1,D1,L1)
6: for t = 2→ T do
7: St ← track by Lucas-Kanade (St−1)
8: Dt ← track by dense image registration (Dt−1)
9: *Lt ← load any supervision features

10: Ct ← estimate camera pose (B,St,Dt,Lt)
11: if ||C′ −Ct|| > θC then
12: C′ ← Ct

13: Optimise B, C1...Ct, α1...αt by BA
14: M← retrain shape model (B,α1...αt)
15: St

new ← St∪ detect sparse features (M)
16: Dt

new ← Dt∪ detect dense features (M)
17: end if
18: *Create and output explicit mesh model.
19: end for

Fig. 2: The proposed algorithm overview. Lines marked with * are optional.

the initial basis shapes (line 5). The mixing coefficients are initialised to 1/K.
For more details on how the (time-varying) point clouds are represented, see
Section 3.2.

On every subsequent frame, we first track the existing 2D features in the new
image frame, as specified in Section 3.1 (lines 7&8). Using these 2D tracks and
their 3D correspondences, we estimate the current camera parameters (line 10).
Unless the camera has undergone significant motion (line 11 in Figure 2), the
algorithm continues processing the next frame.

In the case where the camera has moved far enough since the last Bundle
Adjustment to provide a sufficient baseline for depth estimation, we jointly
optimise (line 13) all the variables in the system: basis shapes, their per-frame
mixing coefficients up to the current time and the camera trajectory to the
current frame . Bundle Adjustment is preferred over filtering and other methods
since it provides better performance given the same inputs [19]. Due to the novel
regularisation, the obtained basis shapes are well constrained and extremely
stable, which helps avoid difficulties with the basis ambiguity issue [8].

After the 3D point clouds have been optimised, the implicit model is retrained
(line 14). This model then provides the object/background segmentation, needed
for creation of new points to be tracked. New dense tracks are initialised in the
whole image region containing the target object (line 16), while new sparse tracks
are initialised only where low confidence in the 3D shape renders them beneficial
(line 15). This directed sampling is the main advantage of tackling tracking and
reconstruction simultaneously. The corresponding 3D point clouds are initialised
by back-projecting the points locations to the model. See Sections 3.1 and 3.3
for details.
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3.1 Obtaining point trajectories

Estimation of dense point tracks within a video sequence is inherently burdened
by the drift problem: concatenation of frame-to-frame point correspondences
leads to error accumulation, rendering long term dense trajectories unreliable.
This is traditionally countered by having a reference frame, to which all other
frames are registered, instead of concatenation. While this removes drift caused
by accumulation of errors, it adds the requirement to have a single frame which
overlaps all other frames. This in turn prevents application to sequences with
strong rotation and self-occlusion. We instead address this problem directly, by
limiting the temporal span of dense tracks to a fixed number of frames. Multiple
sets of these tracks are then created, overlapping in both time and space. These
are combined during the optimisation, being reconstructed in the common 3D
world. Additionally, for long-term consistency, sparse features are used, which are
easily localisable and can be tracked frame-to-frame more robustly. Furthermore,
the visibility of these sparse points is maintained based on the dense model (i.e.
due to self-occlusion) and the points may be redetected when they become visible
again, facilitating loop closures.

The dense features Dt are sampled on a regular grid within the initial bounding
box (in the first frame), or within the area of the estimated object boundary
found by projecting the model into the current frame P (M|Ct). The density
of these points is set by the user to control the trade-off between processing
time and level of model detail. After each BA, new dense features are created,
spanning the entire area of the projected model, to ensure overlap between the
subsets of dense trajectories within Dt. The dense frame-to-frame tracks are
obtained by registering feature images obtained through deep-learning [20].

For the sparse tracks St, we extract SIFT and Hessian-Affine feature points,
which are specifically chosen to be robustly localisable over long timescales. These
are then tracked using pyramidal Lucas-Kanade. Unlike the dense features, the
temporal span of the sparse tracks is unlimited. This means that we do not
need to ensure spatial overlap between consecutive “batches” of tracks, as for
the dense points. Indeed, it is counterproductive to sample too many sparse
points within any particular region of the target object, as this results in wasted
computation. To prevent this, we employ the probabilistic nature of our model
which is based on Gaussian Processes and extract new features only in areas
with high uncertainty of the shape (i.e. where the new features will be the most
beneficial; see Section 3.3 for details).

For both sparse and dense tracks, background features may become included
in either the initial bounding box or later segmentation. For this reason, feature
filtering takes place, based on their reconstructed 3D location relative to the
model. Features inconsistent with the model are considered outliers and are not
used in further computations.
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3.2 Non-rigid 3D reconstruction

Along with the majority of state-of-the-art approaches, we express the instanta-
neous 3D shape Bt as a linear combination of basis shapes B:

Bt = Bαt. (1)

This instantaneous shape can be projected to find the equivalent 2D observations:

ût = P
(
Bt|Ct

)
, (2)

i.e. every 3D point in Bt is projected by a camera with parameters Ct to create
the concatenated 2D point matrix ût. The camera model used in our experiments
is full projective, however the approach generalises to any other camera model
(e.g. orthographic, spherical, etc.) as long as it provides a unique back-projection
(a 2D point to a 3D ray) for any 2D image location. This way we separate (for
every frame) the rigid motion as the camera motion (captured by Ct) and the
non-rigid motion as the shape deformation (captured by αt).

The common 3K-rank constraint used extensively throughout the NRSfM
literature, is equivalent to fixing the number of basis shapes to K. In this paper
we introduce a novel regularisation which forces the basis shapes to be meaningful
modes, or linearly independent “extremes”, of the target’s shape. This is done
via the following constraints:

1>Kα = 1 and αj ∈ [0; 1] , (3)

where αj is the j-th element of α. This effectively limits the targets shape to a
convex combination of the basis shapes (i.e. a finite K − 1 dimensional manifold
in the full shape space, e.g. a triangle on a 2D hyperplane for K = 3). This
is important during the optimisation process (see below) and is also useful for
modelling and visualisation.

The projection equation provides a simple geometric error to be minimised
during the rigid camera pose estimation:

Ct = arg min
C

∥∥ρ (ut − P (Bt|C))∥∥ (4)

where ut comprises the 2D sparse, dense and supervision points, and ρ is an
element-wise robust cost function, to provide outlier tolerance (similar to [21]).
This is minimised using the conditional gradient method.

There are two ways in which the instantaneous 3D shape for each frame could
be estimated. Firstly, the unknown set of coefficients αt could be included as
parameters to Equation (4) and estimated for each frame, jointly with the camera
pose. The second approach is to postpone the estimation of the mixing coefficients
(αt ← αt−1) until the next bundle adjustment. Empirically we find that the
latter approach is more stable as it allows more observations and additional
regularisation to be used to constrain the non-rigid deformations.

Theoretically, there is nothing preventing BA from being executed on every
frame, however that would be excessively time-demanding (BA is the most
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time-consuming stage of the algorithm even with sparse execution, see Table 3).
Requiring a baseline of sufficient width (non-negligible camera motion) between
two consecutive BA runs creates well-timed on-request executions on keyframes
characterised by equidistant camera poses.

The cost function optimised in BA is similar to (4), with several major
differences:

min
B,Ct,At

t∑
τ=1

‖ρ (uτ − P (Bατ |Cτ ))‖+ Λα(At) + ΛB(B) + ΛC(Ct)

s.t. 1>Kατ = 1 and ατj ∈ [0; 1] ∀j, τ ,
(5)

where At includes all mixing vectors up to frame t and Ct contains all cameras
up to frame t. Since it is vital to update the mixing coefficients α during BA, the
combination of basis shapes needs to be expressed explicitly. The projection errors
are summed across all the frames seen thus far (a windowed version, limited to a
recent history may be considered if speed is an issue). The robust cost function ρ
employed here is the Cauchy loss, as provided by the Ceres Solver [22]. Finally,
there are additional priors and regularisations employed. Significant effort is given
to these throughout the literature, and sometimes they constitute the major
novelty of an article [10, 23].

We employ the temporal smoothness of shape prior. This means the shape
cannot change suddenly over time. This is achieved by penalising fast changes in
the mixing coefficients:

Λα(At) = wα

t∑
τ=2

||ατ−1 − ατ ||2 (6)

where wα is an appropriate weighting.
In the proposed method, we want the basis shapes to be extremes (rare,

but feasible instances) of the shape variation. In other words, the instantaneous
shapes are required to span a (convex) subspace, tightly bounded by the basis
shapes. This renders the method very robust to overfitting. The first requirement,
that the instantaneous shapes span a limited space, is achieved by limiting the α
coefficients (Equation (3)). The second requirement, that the bounding subspace
is tight around the observed poses, stems from the need to decouple the rigid
and non-rigid motions. Therefore we introduce the final regularisation term:

ΛB(B) = wB

K∑
i=2

i−1∑
j=1

‖Bi − Bj‖2 (7)

where wB is an appropriate weighting.
Finally, to enforce the prior of temporal smoothness of camera trajectory, a

different cost is chosen. It is desirable to penalise sudden changes in camera
parameters without creating an energy inhibiting free camera motion in the world.
Therefore the following is used:

ΛC(Ct) = wC

t∑
τ=2

{
1 if||Cτ−1 −Cτ || ≥ θC
0 if||Cτ−1 −Cτ || < θC

, (8)
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where θC is a chosen threshold and wC is a large (relative to the other costs)
constant.

3.3 Object-background segmentation

For successful 2D tracking in the presence of background clutter, it is necessary
to segment the object of interest from the background. The reconstructed 3D
points can give a rough idea where the object is located, however they are not
sufficient for segmentation. For this reason, we keep a dense model of the object.
It is modelled as a Gaussian Process (GP) in polar coordinates, similarly to [24],
where the distance of the surface from the object centre is a function of its bearing
angles (azimuth and elevation).

The Gaussian Process is trained on the reconstructed 3D points, and is
retrained after every bundle adjustment as follows. Firstly, the 3D points in a
canonical shape (combined from the basis shapes B using α′ averaged over the
history thus far) are expressed as vectors in polar coordinates, i.e. as a radius
r and a pair of angles (θ, φ) per point. All the points are then used as training
data, regressing the radius from the angles: r = GP(θ, φ|κ), where κ is the kernel
of the GP (in this work we use a combination of exponential, white-noise and
bias kernel; its parameters are optimised to maximise the observation likelihood
on the training data).

The model can be queried in any direction (θ, φ), yielding the local radius.
As a result, the model densifies the point cloud, fitting a continuous surface
to the sparse points. This way, it tells us where the object is; both in the 3D
space (reasoning about occupancy, intersections and self-occlusion) and in the
2D image plane (the aforementioned object-background segmentation). Hence
when initialising new point tracks, these can be filtered to occupy only the target
area. The depth of the 3D features can then be initialised using the intersection
between rays from the camera centre and the shape model.

3.4 Final model extraction

This section deals with creation of an explicit 3D model, which is the final
product of any SfM algorithm. The GP model described above is implicit and
non-parameteric, i.e. while the object’s presence/absence can be queried at any
point, it has no discrete set of parameters or elements (e.g. vertices or edges), and
therefore cannot be simply stored for later use, without also storing the entire
state of the system. Furthermore, it tends to oversmooth in both interpolated and
extrapolated regions. Finally, the canonical GP model cannot be warped according
to the mixing coefficients α. For these reasons, we produce another model, which
is a standard watertight triangular mesh. This model can be provided online,
i.e. after processing every new frame, however that is usually not required. The
triangular model is created using Poisson reconstruction [25, 26] on the canonical
shape B′. To achieve this, a set of surface normals N is estimated from the GP
model (by sampling points in a very close neighbourhood and fitting a tangent
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plane), corresponding to every point in B′. The Poisson equation is solved to find
the hidden function H, whose gradient approximates these normals

∆H = ∇N . (9)

A collection of smoothed model vertices may then be selected from the H0

isosurface.
Since the task in NRSfM is reconstruction of time-varying shape, the model

needs to be non-rigid as well. The transfer of the deformation is achieved as
follows. Firstly, a rigid model is created using the canonical shape B′, analogously
to the GP model training. Every vertex of the mesh model is assigned a fixed
set of features in the cloud, determined as its k nearest neighbours (set to 3
in our experiments). Since for each 3D feature the offset of basis poses (from
the canonical shape) is known, the offset of basis poses of each vertex can be
computed as a mean of offsets of its k nearest neighbours. Since the topology
of the model does not change when performing the warp, its basis shapes differ
only by the vertex coordinates: these are computed by applying the offsets to
the canonical model.

Finally, the texture of the model is extracted from the image sequence. As
we only provide the model at the end, the sequence is processed again in the
second pass. The model is warped into the appropriate shape for each frame
using previously estimated mixing coefficients, and the texture of visible mesh
faces is updated. For every pixel of the texture, we keep a full-covariance normal
distribution in the RGB space and the mean is used as the resulting colour. The
observer “samples” are weighted according to the observation angle.

4 Experimental results

4.1 Synthetic experiments

We perform an initial quantitative evaluation on the synthetic CubicGlobe
dataset. This sequence contains a rotating globe which repeatedly warps into
cubic shape and then back to sphere. We report performance of the proposed
algorithm with a number of quantitative measures, comparing against several
state-of-the-art template-free NRSfM techniques which have source code available
online. These include BALM [27], using Augmented Lagrange multipliers to solve
for the bilinear factorisation problem in the presence of missing data, LIIP [28],
using isometric deformation instead of basis shape combination and SoftInex [12]
which employs the material inextensibility prior as a soft constrain in its energy
function. These tests measure three important properties of a successful NRSfM
technique. Firstly its accuracy of modelling: the fit of the basis shapes to a
perfect cube/sphere (the error is expressed relative to the model size, i.e. the
sphere radius and half of the cube side). The second measured quantity is the
accuracy of camera tracking: camera rotation error measured in the angle-axis
representation as angular error of both the axis and the rotation angle (since
the global coordinate frame is not fixed, the rotation is measured as relative to
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Table 2: Reconstruction results on the CubicGlobe sequence.
Cube (%) Sphere (%) Axis (◦) Angle (◦) Depth (%)

BALM 51±54 14±12 52.6±28.0 56.9±39.7 5±26
LIIP 29±20 5± 5 12.9±20.4 8.1± 4.4 50±29
SoftInex 4± 3 3± 2 22.3± 8.5 11.8± 8.1 79±13

Proposed 3± 3 3± 3 0.4± 0.8 3.5± 1.4 95± 3

the first frame). Finally, we measure the depth error of the instantaneous point
locations, as Spearman correlation (to overcome the inherent scale ambiguity
of the 3D reconstruction) between the measured and ground-truth depth. The
sequence will be made available online including all ground truth information,
such as shape, trajectory, depth, etc..

It is important to note that all three state-of-the-art comparison methods
use the orthographic camera model to simplify computation. This makes it more
challenging to evaluate the camera trajectory and depth correlations against
the ground truth. To resolve this issue a state of the art Perspective-n-Point
algorithm [29] with outlier rejection was used to find the optimal projective
camera pose, given the reconstructed 3D point clouds.

Since there are no ground-truth point tracks for this sequence, we provided
the state-of-the-art techniques with tracks obtained by our technique. LIIP and
SoftInex do not handle occlusions; therefore we run them only on a limited
portion of the sequence (the first 50 frames), with only those tracks, which are
visible in all 50 frames. Furthermore, the competing approaches do not directly
provide meaningful basis shapes. Therefore we use the instantaneous shape from
frames 30, 90 and 150 for cube, and 1, 60, 120 and 180 for sphere (where the
ground truth shape is pure). The table contains the best possible performance
for each of these.

See Table 2 for results. It is clearly visible that BALM failed completely on this
sequence, producing large reconstruction and camera rotation errors. Similarly,
the depth reported by BALM is not correlated to the GT depth. The results of
LIIP are significantly better, with much lower reconstruction errors and rotation
error reduced by an order of magnitude, compared to BALM. The average depth
correlation is 0.5. SoftInex produces even better 3D reconstructions, with error
comparable to the proposed method (although of only one side of the object since
it does not handle occlusions). The camera pose is less accurate than that of LIIP,
the reported depth is nevertheless strongly correlated with the ground truth.

The results of SoftInex demonstrate an interesting phenomenon. While the
per-frame point depth, returned by the algorithm (and used to infer the non-rigid
shape) is realistic, it is “flipped” in the z-direction for some frames (i.e. the
object side is turned inside out; this is probably due to the lack of temporal
smoothness constraint). For a fair comparison, we had to detect and correct this
during our experiments. Without this, the results of SoftInex are significantly
worse, e.g. the depth correlation drops to 16 %. When using the proposed method,
the reconstructed models cover the whole object (as visualised in Figure 1) with
very low errors. The camera rotation demonstrates even better performance, with
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Fig. 3: Mixing coefficients αt in the CubicGlobe sequence (GT shown dotted).

Table 3: Times of processing the first 180 frames of the CubicGlobe sequence.
The last row does not sum up to 100 % due to various overhead computations,
visualisation, I/O wait, etc.

Tracking Reconstruction Modelling

BALM (s) 1 357 248 372
LIIP (s) 1 357 18 768 372
SoftInex (s) 1 357 5 416 372

Proposed (s) 1 357 3 234 372
22 % 52 % 6 %

error reduced by an order of magnitude due to its inherent ability to perform
tracking and modelling simultaneously. The depth estimated by the proposed
method is nearly perfect, reaching 95 % correlation with the observed depth.

See Figure 3 for visualisation of the obtained mixing coefficients αt in the first
180 frames of the CubicGlobe sequence. The shape is changing from spherical
to cubic linearly, which was closely captured by the coefficient change. Notice
the “cropped” peaks, a typical artefact of the proposed method. This is caused
by the compactness prior, forcing the basis shapes (spherical and cubical in this
case) to lie close to each other and hence being unable to truly capture the very
extremes. It, however, does not significantly affect the overall performance, as
can be seen in both the qualitative (Figure 1 and the supplementary material)
and quantitative (Table 2) results.

Table 3 shows a breakdown of the execution speed for the different algorithms.
It should be reiterated that the competing state-of-the-art techniques use point
tracks provided by the proposed method. Therefore the times for point tracking
and model training (necessary for tracking) should be included in their timings
for a fair comparison. These are marked in grey. It is also worth noting, that the
time for LIIP and SoftInex was consumed in computing reconstruction from only
260 tracks in 50 frames, while the others from nearly 20 000 tracks in 180 frames.
BALM also has scaling issues in terms of memory usage. Operating on the same
point tracks used in the proposed approach, BALM consumed more than 200 GB
of RAM, two orders of magnitude more than the proposed algorithm.

4.2 Real data experiments

To show the performance of the proposed algorithm on real data, we firstly use
the recently published 300VW dataset [30–32]. In Figure 4 we compare the per-
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Fig. 4: Comparison of BALM (left two columns) against the proposed technique
(right two columns) on the 300VW:002 sequence. Results are shown using only
the sparse supervision (top row), and using the sparse supervision with additional
densely estimated trajectories (bottom row).

Fig. 5: Reconstructed model overlaid over frames from the 300VW:002 sequence.
The shape space visualises the weighted combination of the independent basis
shapes. See the supplementary material for an animated version of this figure.

formance of the proposed technique against BALM on the 300VW:002 sequence.
When given only the sparse facial landmarks, BALM performs similarly to the
proposed technique. However, it has difficulties integrating noisier observations;
when BALM is provided with the denser internal trajectories generated by the
proposed method, it fails to produce a reasonable reconstruction. In contrast
the proposed technique is able to fuse these, to produce a far more detailed
reconstruction than from the landmarks alone. Figure 5 shows the resulting
reconstruction of our technique and the trajectory of the model in the shape
space defined by B.

It is not only the reconstruction which benefits from the proposed joint
approach. Using a non-rigid model can significantly improve tracking results
as well. This is demonstrated in Figure 6, where results are compared between
rigid and non-rigid 3D tracking. For non-rigid objects, a “centre” is ill defined.
Therefore, a face-tracking scenario is used and the accuracy of landmark tracking
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Fig. 6: Landmark tracking error on the 300VW:002 sequence, when using rigid
and non-rigid tracking and reconstruction. Left: error histogram, right: landmark
error from low (green) to high (red).

Fig. 7: Example of modelling results on Face [17] (left) and T-shirt [33] (right).
From top to bottom: original video frames; video frames overlaid with the
instantaneous models; the instantaneous model on its own (untextured).

is measured. The error is defined as the distance between the GT and the
landmarks tracked using the non-rigid 3D model. For each landmark, the error is
averaged over all frames. It can be seen that the proposed method has a fraction
of landmarks tracked with near-zero error, while the rigid case has no “perfectly
tracked” landmarks. Additionally, the rigid variant has a significant portion of
landmarks tracked with errors around 20–30 px (mostly near the mouth where
the non-rigid deformation is the most pronounced). On average, the tracking
error is reduced from 17.4±14.1 to 10.8±10.5 px by using a non-rigid model.

In Figure 7 we explore the performance of the proposed technique in the fully
unsupervised scenario, on the Face [17] and T-shirt [33] sequences. See the sup-
plementary material for resulting videos. The models generated by our approach
are similar to the results generated by state-of-the-art NRSfM techniques. How-
ever, it should be re-emphasised that we solve a much more challenging problem:
the fully unsupervised online scenario. As can be seen, all estimated target poses
are feasible and the estimated shapes model the deformations well despite the
lack of supervision. It is also obvious from the second row that estimates of the
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(a) (b)

Fig. 8: (a) Details of the model obtained (directly) from the T-shirt sequence [33].
(b) Basis shapes obtained from the Face sequence [17].

Table 4: Quantitative results on the T-shirt sequence.

PCA [33] Uncon. LVM [33] CLVM [33] DDD [18] Proposed

Error (mm) 18.44 15.50±1.78 14.79±0.90 7.05 17.82±4.72

rigid motion (i.e. the camera pose) are extremely accurate. In Figure 8a, the
canonical T-shirt model (before cropping to contain only the region of interest)
is shown in detail. Notice the creases near the top of the model, caused by the way
the t-shirt is held. Figure 8b shows the basis shapes automatically identified by
our method and used in the reconstruction shown in Figure 7 (with a wireframe
mesh overlaid to help visualise the 3D shape). Finally, Table 4 brings quantitative
comparison on the T-shirt sequence. The results indicate the proposed approach
is competitive with state of the art, even though it does not use a template or
another kind of prior knowledge and operates directly on the raw RGB images.

5 Summary

In this paper, a novel NRSfM algorithm was introduced. Its main advantage
over conventional NRSfM approaches is that it requires no external supervision
(e.g. pre-computed clean point tracks): everything required is computed directly
from the input video and the only external input is the target selection by a
bounding box in the first frame. It is able to autonomously create 3D models from
unseen video-sequences. The proposed algorithm is more generic than state-of-
the-art methods, with trivial extension to different camera models and additional
priors, constraints and regularisations. In addition, it removes several important
limitations of conventional methods, most importantly it provides robustness
against strong target rotation and self-occlusion.

One of the limitations of the approach is the assumption that the object is
roughly compact. Therefore the model is unable to capture more complicated
shapes such as walking humans. This is however a limitation of virtually all
current model-free approaches.
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