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What is the problem? How do we identify causal relationships?

» Granger causality models only linear relationships!
» Our entropy-based method allows complex non-linear
relationships to be modelled!

> In tracking, the camera and object motions
are often linked.

> If the relationship between the camera
motion and object motion can be

identified, it could help improve tracking!

1. DIFFERENTIAL ENTROPY
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How do we solve it?
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» We employ transfer entropy to identify and

4. OPTIMAL PARAMETERS

(At*,n™) = argmax T (At,n) s.t. f(At,n) >0
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' » Maximise TE (column height)

(column colour) is over some

|° threshold.

. » Provides properties of the
causal relationship!

such that relative improvement

TIME-BASED CAUSAL PREDICTION
» Predicted variable as a function of time:
yr = ¢s(t | y1.4-1)
> Encoded causal relationship:

Y = Ot | Yy1.0-1,T1 41—, n7)
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» We demonstrate 62% improvement in

prediction. Tracking by Struck on the VTB
dataset is improved by 7% in accuracy and
22% in robustness!

How do we use the causal relationships
in tracking?

2. TRANSFER ENTROPY

» Camera motion estimation is easier than object tracking. 0 20 40 60 80 100

EXPLOITING CAUSAL RELATIONSHIPS

Where can it be useful? X", At > Using ihe identified causal relationships, we can predict t
A ) D¢ the object pose in the next frame... > G B - _ " _ lisation!
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n
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8 o7 ” Yyt = da(yt) How well do we do?
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» Gaussian Process
Regression with
concatenated
features!

non-linear tran.

» In this sequence, where the cameraman
follows the subject, tracking is reduced and
a fixed bounding box provides near-perfect

results:
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> |If there is a causal relationship between X and ',
then adding knowledge about Y brings more
information to a system which does not know X, than
to one which does!

3. IDENTIFYING STATISTICALLY
SIGNIFICANT RELATIONSHIPS
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EXPLORING CAUSAL RELATIONSHIPS
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» Ground-truth parameters identified (At =4, n=1).

CAUSALITY
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: : : | amples overlapping, not independent!
benefits to Sl traCkmg algorlthm' » Welch's test with shuffled data instead of simple t-test. t

» No ground truth available, but intuitively correct!
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» Higher accuracy
and confidence
than autoreg-
ression when
using causal
prediction.
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» Outperforming
global predictors,
Kalman filter,
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autoregression.

Category| Struck Struckgmc Strucky,

BC 0.60/1.9 05519  0.61/1.7 » VOT measures

DEF 0.55/24 0.552.6  0.60/2.2 (accu racy/robustness)
FM 0.53/32 05133  0.57/2.5

PR 0.53/2.6 05030  0.55/2.0 on the VTB50 dataset.
v 0.58/2.1 051/1.9  0.60/1.6 {4 '
LR 0.51/1.4 04811  0.56/1.0 > Causal predlctlon aid
MB 0.53/3.0 0.5129  0.56/2.0 performance, while
0CC 0.552.5 0.5429  0.59/2.0 :

OPR 05523 05427  0.59/1.9 simple background

oV 0.55/3.0 0.58/2.7  0.55/2.5 : :

SV 05223 04927  0.57/1.9 m_otlon compensation
All 05524 051726  0.59/1.9 fails.

CONCLUSION

REFERENCES

What should you take away?

» We explore causal relationships between camera
and object motion.

» These relationships (even complex non-linear)
can be identified and measured.

» Camera motion estimation is more robust to
errors than tracking — causal prediction.

» Causal prediction outperforms autoregression
and Kalman filter (by over 60%)!

» SOTA tracker improved by 7&22% in benchmark.

» Performance of ANY tracker can be improved!
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