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Abstract Action recognition “in the wild” is extremely

challenging, particularly when complex 3D actions are

projected down to the image plane, losing a great deal

of information. The recent growth of 3D data in broad-

cast content and commercial depth sensors, makes it

possible to overcome this. However, there is little work

examining the best way to exploit this new modality.

In this paper we introduce the Hollywood 3D bench-

mark, which is the first dataset containing “in the wild”

action footage including 3D data. This dataset consists

of 650 stereo video clips across 14 action classes, taken

from Hollywood movies. We provide stereo calibrations

and depth reconstructions for each clip. We also provide

an action recognition pipeline, and propose a number of

specialised depth-aware techniques including five inter-

est point detectors and three feature descriptors. Ex-

tensive tests allow evaluation of different appearance

and depth encoding schemes. Our novel techniques ex-

ploiting this depth allow us to reach performance levels

more than triple those of the best baseline algorithm us-

ing only appearance information. The benchmark data,

code and calibrations are all made available to the com-

munity.
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1 Introduction

Recognising actions “in the wild” is useful for many

applications including surveillance, automatic video in-

dexing/search and assisted living. Huge intra-class vari-

ation is inherent to recognition in the wild, caused by

the wide variety of environments, actors, viewpoints

and action styles. We address this issue by exploiting

the invariances inherent in 3D data, and proposing new

approaches to using and encoding this information, to

provide better generalisation capability.

There has been much previous work on “in the wild”

action recognition in 2D data. Likewise, there has been

significant work in recent years, on action recognition

for 3D data “in the lab”, due to the introduction of

cheap consumer depth sensors. However, the crossover
between the two areas, 3D recognition in the wild, has

rarely been considered. It is important to address this

problem as new sources of 3D data such as mobile de-

vices are emerging, in addition to increasing levels of 3D

broadcast data from television networks & film studios.

In the past, benchmark datasets such as KTH [45],

Weizmann [3] or Kinect based datasets [33,5] have been

invaluable in providing comparative benchmarks to ex-

amine how competing approaches perform in action

recognition and detection. However, these staged datasets

now routinely have reported performance rates over

90 %, suggesting that they are reaching the end of their

service to the community. “In the wild” datasets such

as Hollywood [30], Hollywood2 [36] and our Hollywood

3D [15] provide a more challenging problem due to huge

variability in appearance. These more natural datasets

consist of actions extracted from a variety of Hollywood

feature films. They provide a new level of complexity

to the recognition community, arising from the nat-

ural within-class variation of unconstrained data, in-
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cluding unknown camera motion, viewpoint, lighting,

background and actors, and variations in action scale,

duration, style and number of participants. While this

natural variability is one of the strengths of the data,

the lack of structure or constraints make classification

an extremely challenging task.

The use of depth information can help to mitigate

some of these factors. Lighting variations are generally

not expressed in depth data, and actor appearance dif-

ferences are eliminated (although differences in body

shape remain). Additionally, depth provides useful cues

for background segmentation, and occlusion detection.

However, this also introduces new problems such as

the inconsistency of 3D data obtained from disparate

sources with unknown calibrations.

This paper discusses the Hollywood 3D benchmark

dataset for 3D action recognition in the wild. In addi-

tion a broad experimental baseline is produced; many

techniques for 2D “in the wild” recognition are ex-

tended to operate on depth data, including 2 feature

descriptors and 5 interest point detectors. The effect

of incorporating this depth data is comprehensively ex-

amined and the full source code of all these baseline

techniques is provided to stimulate further research.

Another novel feature descriptor is also proposed based

on recent advances in the estimation of 3D motion fields

(shown in Figures 1 and 2) [17]. This is coupled with

a robust stereo auto-calibration framework to remove

calibration inconsistencies from the resulting features

without human intervention. The resulting calibrations

are also provided to accompany the dataset. Finally

a novel viewpoint-invariant feature encoding scheme is

proposed to make it easier to recognise the similarities

between different shots of the same action.

Compared to the initial presentation of the Holly-

wood 3D benchmark [15] and subsequent extensions

[18], this paper includes makes two primary contribu-

tions. Firstly the evaluation has been significantly ex-

panded including the popular dense trajectories [51] en-

coding technique, and a comparison of techniques other

authors have proposed for this benchmark, including

deep-learning based approaches [24,23], implicit cali-

bration [27] and new feature descriptors [35,27]. This

helps to provide additional insight into the field, be-

yond what was possible with the initial baseline exper-

iments. Secondly, deeper discussion is also included of

the scene-flow encoding, compared to the initial work

in [18]. This includes a discussion of the 3D motion es-

timation pipeline.

(a) Left video (b) Disparity

(c) X velocity (d) Y velocity (e) Z velocity

Fig. 1: The appearance and disparity (top row) for a Eat

action from the Hollywood 3D dataset. The 3D motion

field is also shown on the bottom row. The primary

motion is concentrated on the arm and head, which

move towards each other.

(a) Left video (b) Disparity

(c) X velocity (d) Y velocity (e) Z velocity

Fig. 2: The appearance and disparity (top row) for a

Drive action from the Hollywood 3D dataset. The 3D

motion field is also shown on the bottom row. Note that

the primary motion occurs on the foreground regions of

the car, with secondary x and y motion on the passen-

gers.

2 Related Work

A common practice in action recognition is to focus at-

tention on parts of the scene which are identified as

salient by interest point detectors [29]. One advantage

is tractability, reducing the quantity of data for subse-

quent processing [11,30,33]. In the past, this approach

has also helped to suppress irrelevant background infor-

mation. Note that in this paper we make a distinction

between saliency and interest points. The estimated

“interest” of any image point is a continuous number re-

ferred to as the point’s saliency. The parts of an image



Hollywood 3D: What are the best 3D features for Action Recognition? 3

Fig. 3: “In the wild” action recognition pipeline, making use of depth information at various stages. The green

elements refer to dataset pre-processing, while blue elements relate to the recognition pipeline.

which have a saliency score greater than a particular

threshold are then collectively referred to as the set of

interest points. Generally speaking interest points are

also filtered via non-maxima suppression, to prevent

duplicate entries.

Some approaches segment the actor, for example us-

ing the Kinect’s user mask [12,33,5]. This enables com-

plex “volumetric” descriptions of the actor’s body over

time [54,52,50,39]. However, for “in the wild” action

recognition it remains challenging to segment the actor

reliably, due to noisy 3D data, cluttered environments,

and scenes containing multiple people. This is still an

active area of research, with current techniques [7,55,

21] only able to provide rough bounding boxes, rather

than the per pixel segmentations generally used in vol-

umetric description. As such, it is still common to use

interest point detectors for recognition in the wild. Re-

cently an intermediate encoding approach, called Dense

Trajectories, has been successful [51,10]. As the name

implies, this is based on densely sampled local features,

with temporal accumulation along the trajectories. In

this paper we explore both interest point and dense tra-

jectory encoding schemes.

When the salient parts of the sequence have been

detected, it is common to compute local descriptors of

these spatio-temporal region. Some of the most popu-

lar descriptors have been based on the gradient of the

appearance information [45,31], spatio-temporal exten-

sions to SIFT and SURF descriptors [46,53] and 2D

motion information [6,37]. However, there has been lit-

tle previous work on feature descriptors including depth

information (which is generally encoded directly at the

holistic level, with the aid of user masks).

The local descriptors from salient regions can then

be accumulated into a single holistic description of the

sequence. One way to achieve this is to take inspira-

tion from highly successful Bag-of-Words techniques in

the field of object recognition, and include an addi-

tional temporal dimension. This entails creating a code-

book of exemplar features, and then accumulating oc-

currences of these exemplars spatially and temporally

across the sequence. This is invaluable for generalisa-

tion, as it provides invariance to a range of important

deformations, such as spatial and temporal translation,

stretching and reflection. However, the accumulation

also leads to much of the relational information being

discarded, such as the spatial configuration and tempo-

ral ordering of features. Laptev et al . attempt to mit-

igate this by splitting the spatio-temporal volume into

sub-blocks, creating a descriptor for each sub-block, and

concatenating them to create the sequence descriptor

[30]. Sapienza et al . follow a similar vein, encoding indi-

vidual sub-sequences, however rather than concatenat-

ing to create a single descriptor, they employ Multiple

Instance Learning (MIL) [43]. This accounts for some

parts of the sequence being irrelevant, for example be-

fore and after the action. In this paper we propose a

number of novel encoding schemes specific to our 3D

motion features, which incorporate additional invari-

ances such as scale and viewpoint invariance.

Some approaches avoid the bag-of-words holistic de-

scription route. These include data-mining and voting

schemes [11] and chains of single-frame recognitions (for

example using HMMs [4]). The lack of the accumulation

step makes the learning task more complex due to the

lack of invariances. However, it has the advantage that

the exact location and time of the action is estimated.

There has also been a recent rise in techniques based

on deep learning, where bag-of-words is obviated. These

range from simply pre-processing the input images [47,

26] to convolving over time [25] and estimating motion

patterns [47].
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3 Paper overview

The structure of the paper roughly mirrors the flow of

the approach, as shown in Figure 3 (green elements indi-

cate dataset pre-processing steps, and blue elements re-

late to the recognition pipeline). First, Section 4 covers

the stereo data extraction approach, with details of the

Hollywood 3D dataset. The proposed auto-calibration

technique is then described in Section 5 and the results

are used to extract 3D structure and motion informa-

tion from the dataset as described in Section 6 using

scene flow estimation.

The recognition pipeline is performed in 3 stages.

Firstly salient points are detected using a range of de-

tection schemes including a number of new schemes

which incorporate the depth information, as discussed

in Section 7. Next, feature descriptors are extracted

from these salient points, encoding both appearance

and depth information. These are discussed in detail

in Section 8, and include extensions of two well known

techniques and a novel motion descriptor based on 3D

motion fields. These local descriptors are then accumu-

lated over the sequence, with 3D motion features using

viewpoint invariant encoding. In Section 9 we present

results classifying these holistic descriptors using a Sup-

port Vector Machine (SVM), while exploiting depth

data at various stages of the pipeline. Our conclusions

about the benefits of depth data in natural action tasks,

and the relative merits of the presented approaches, are

then summarised in Section 10 where the use of depth

consistently outperforms appearance-only recognition.

4 Extracting 3D Action Clips from Movies

There has been a sharp rise in commercially available

3D content, due to the emergence of high definition

home media such as BluRayTMand the introduction of

3D displays into the consumer market. Unfortunately

much of this data is not suitable for action recogni-

tion. Most of the earlier 3D films were constructed via

post-processing techniques (i.e. rotoscoping) from the

original 2D data, and is fundamentally artificial, cre-

ated for effect only. When depth data is extracted from

these films, any fine-detailed depth variations within

objects are missing, with scene depth simplified into

a number of discrete depth planes. Additionally, films

generated entirely through CGI (where 3D versions are

much easier to produce), are unlikely to provide trans-

ferable information on human actions. For this dataset,

we have focused on content captured using commercial

camera rigs such as James Cameron’s Fusion Camera

SystemTMor products from 3ality Technica. These use

Table 1: The number of unique training and test se-

quences for each action in the dataset. The top row is

the training set and the bottom row is the test set.
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real stereo cameras rigs, making it possible to recon-

struct accurate 3D depth maps.

Most 3D films are too recent to have publicly avail-

able transcriptions, and subtitles alone rarely offer ac-

tion cues, so automatic extraction techniques such as

those employed by Marszalek et al. [36] are currently

not feasible and manual labelling was used. This also

ensures that all examples are well segmented from their

carrier movies. This approach led to 650 clips (after

class balancing) spread across 13 action classes, and a

collection of 78 sequences containing no actions. These

NoAction clips were automatically extracted as nega-

tive data, while ensuring no overlap with positive classes.

The dataset was extracted from 14 films1 and is pub-

licly available [13]. In total the dataset contains over an

hour of footage.

Within the dataset, actions are temporally localized

to the frame level, ensuring non-discriminative frames

at the start and end of sequences do not confuse train-

ing, and also improving separation of the NoAction

class. The data is high definition (1920 by 1080 reso-

lution) and is provided for both the left and right view-

points at 24 frames per second.

To emphasize generalization, the 14 films compris-

ing the dataset were split between the train and test

sets on a per action basis. As such, each action is tested

on actors and settings not seen in the training data.

Certain actions are more common than others, and as

in the Hollywood and Hollywood2 datasets, this prior

distribution is reflected in the dataset. The number of

training and test clips is shown in Table 1.

5 Stereo Sequence Auto-calibration

Every sequence in the dataset comprises an appearance

from both the left and right viewpoint (extracted from

1 Drive Angry, Tron: Legacy, My Bloody Valentine, Spy
Kids: All The Time In The World, A Very Harold and Ku-
mar Christmas, Final Destination 5, Underworld: Awakening,
Step Up 3D, Sanctum, Avatar, Resident Evil: Afterlife, Pi-
rates Of the Caribbean: On Stranger Tides, The Three Mus-
keteers and Fright Night
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the original film). For the stereo calibration of these

viewpoints (i.e. the rotation and translation between

the views and the intrinsics parameters of both cam-

eras), the initial release of Hollywood 3D included only

a single generic calibration for the entire dataset. This

was based on the types of cameras and lenses commonly

used in broadcast footage. However, this is overly sim-

ple as in reality the calibration varies greatly between

films (where different cameras may be used), and even

between different shots of the same film (the stereo-rig

may be modified to change the strength of the perceived

depth). This makes extracting consistent 3D informa-

tion difficult from sequence to sequence, introducing a

huge amount of artificial variation to the action classes

and making recognition even more challenging. To mit-

igate this issue, we employ a stereo auto-calibration

stage operating on the video pairs, which ensures ex-

tracted 3D features are more comparable across se-

quences.

The first step towards calibrating the pair of video

sequences I l and Ir, each of which consists of n frames

(I l1...n and Ir1...n), is to detect a set of candidate cor-

respondences. In this paper, sets (Sl and Sr) of SIFT

[34] points are extracted, where

S = {s : DoG (Iτ (x, y)) > λs} , (1)

based on the threshold λs. Non-maxima suppression is

also applied to avoid prevent multiple interest points

being generated by the same feature. Each resulting

SIFT point comprises a space-time location si = (x, y, τ)

(where x, y is the image position and τ is the frame

number). Additionally each point has an associated SIFT

descriptor f i. Correspondences between point detec-

tions are calculated subject to the condition that their

descriptors are closer than a threshold λf , and that they

occur at the same frame in both sequences,

C =
{

(sli, s
r
j) : |f l

i − f
r
j | < λf and τ li = τ rj

}
. (2)

Given this set of cross sequence correspondences, the

epipolar geometry of the scene is estimated using 7-

point RANSAC with Local Optimisation [32]. The fun-

damental matrix is estimated by

F = arg min
F ′

∑
εs
(
sli, s

r
i |F
′), (3)

where εs is the Sampson error (linearised approxima-

tion to projection error). In this work εs also applies a

truncated quadratic cost function (as in MSAC), which

provides an approximation to the maximum likelihood

estimate [48].

Given the estimated F we can also extract the set

of inlier correspondences,

Ĉ =
{

(sli, s
r
i ) :

∣∣sl>i Fsri ∣∣ < λr
}
, (4)

Fig. 4: Distribution of estimated focal lengths over

20000 repetitions, on the 2 different sequences pairs

shown (wide-angle, close-up Eat shot, and extreme

zoom Drive shot).

which obey the epipolar constraints estimated. For the

experiments in this paper, the detection, matching and

inlier thresholds (λs, λf and λr respectively) use the

default values suggested by their respective authors.

5.1 Full 3D sequence calibration

Estimating the epipolar geometry between the sequences

is only the first step to consistent 3D calibration. Next

the focal length (and hence the Essential matrix E)

must be estimated. This is feasible, subject to the as-

sumption of square pixels, and that focal length is con-

sistent between the two sequences (this assumption is

reasonable, as stereo capture rigs generally utilise the

same type of camera for both views, and it would be

jarring for the audience if one eye was zoomed differ-

ently to the other). This can then be combined with

constraints on the rank of F , and the trace of E, to con-

struct a Polynomial Eigenvalue Problem (PEP) which

may be efficiently solved [28]. As with the estimation

of F , this is solved in a RANSAC framework, using the

inliers to the epipolar geometry Ĉ.

Unfortunately, for 3D footage it is very common for

cameras to be in a near-parallel configuration. This ad-

versely affects the stability of the PEP, which (although

deterministic) may become sensitive to changes in the

input correspondences Ĉ. In other words, for a given

Ĉ a particular E is estimated consistently. However,

adding or removing a small number of points from Ĉ

can in some cases lead to significant differences in the

estimated E. Due to the offline nature of the auto-

calibration system, coupled with efficient PEP solvers,

the process can be repeated a number of times. Each it-

eration finds a slightly different F and Ĉ which in turn

leads to a different E.

Figure 4 shows the distribution of focal lengths es-

timated over a large number of repetitions, for two se-

quence pairs with different levels of zoom. The distri-

bution of focal lengths arising due to the near-parallel
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camera configuration follows the log-normal distribu-

tion which should be expected from a multiplicative

entity such as the focal length. As such, we can achieve

robustness to near-parallel cameras, by taking the mode

of this distribution, for each sequence pair. In our ex-

periments we use 100 calibration repetitions to model

this distribution, which takes a few minutes in our sin-

gle thread Matlab implementation. This is reasonable

as it only needs to be performed once per sequence and

is part of the pre-processing (i.e. it does not need to be

repeated for each new experiment).

Finally, given our robust estimate of E, it is pos-

sible to estimate the projection matrices P l and P r

for the cameras [20]. This leads to 4 possible solutions.

We select the solution that maximizes the number of

corresponding point pairs Ĉ intersecting in front of the

cameras,

P l,P r = arg max
P

′l,P
′r

∑
(sli,s

r
i )∈Ĉ

sign(dl) + sign(dr), (5)

where dl and dr are the distances along the rays defined

by homogeneous points s̄li, s̄
r
i and D is the 3D position

of the rays intersection,

dls̄
l
i = P

′lD and drs̄
r
i = P

′rD. (6)

The proposed approach to stereo sequence calibra-

tion has some limitations. Firstly, lens distortion is not

included in the model. This is acceptable for a wide

range of footage from Kinect devices and broadcast

sources, which generally exhibit little distortion, how-

ever this may be an issue for upcoming 3D mobile de-

vices. Secondly, in order to exploit correspondences over
entire sequences, a consistent focal length is assumed

(i.e. no zooming within a single shot). In theory the

technique could be extended by collecting correspon-

dences within a sliding window, and estimating a time

varying focal length. However, to obtain a sufficient

number of correspondences within the window, it be-

comes necessary to reduce robustness by allowing weaker

matches. In practice the “no zooming” assumption is

reasonable as most modern broadcast footage prefers to

zoom between shots rather than within shots. Addition-

ally, zooming is particularly unlikely while important

actions are being performed. As a result only around

1% of the sequences in the Hollywood 3D dataset con-

tain a zoom. Hence, the robustness gained by utilising

this assumption is far more significant than any limita-

tions it imposes.

The final limitation is that the reconstructions ob-

tained by our calibration technique (available online),

are only consistent with each other up to a similar-

ity transform (for comparison, reconstructions using the

original generic calibration was consistent up to a ho-

mography). The removal of projective distortions does

reduce the variability in the data, but the remaining

scale ambiguity still must be addressed during encod-

ing.

6 Structure and 3D Motion Estimation

Once we have an estimated calibration, we can extract

3D structure and motion information from the dataset.

For the structural information (i.e. stereo matching) we

use a GPU-accelerated bilateral grid filtering approach,

as described by Richardt et al . [41]. This technique at-

tempts to estimate smooth but edge-preserving scene

structures based on filtering theory, and unlike many

other modern stereo techniques, scales well to the large

amount of high-resolution content in the dataset.

To replace the 2D optical flow descriptor with a 3D

“scene flow” descriptor, the 3D motion field was esti-

mated. At time t this motion field is related to 4 dif-

ferent input frames. As shown in Figure 5 these are I lt,

Irt, I
l
t+1 and Irt+1, and scene-flow estimation can be

seen as trying to find the scene structure at 2 different

times, while also estimating exactly how one structure

warps into the other. As such, the task is then to find

a set of 6D vectors w (comprising 3D world position

x, y, z and 3D world velocity ẋ, ẏ, ż), which are consis-

tent with all 4 images observations. There are many ap-

proaches to achieve this, but for estimating 3D motion

fields for action recognition, we use the sampling based

Scene Particles [16] approach. This is well suited to ac-

tion recognition as it provides excellent performance at

object boundaries [14] (where most salient point detec-

tions occur during human action sequences). In addi-

tion the approach is orders of magnitude faster than

competing variational techniques, which is vital when

dealing with the large quantities of data present in ac-

tion recognition datasets.

For a given w we can use the estimated calibra-

tions to find its projection in all 4 relevant images. We

can then measure the quality of this w based on the

Brightness Constancy Assumption which is common in

motion estimation algorithms (i.e. for a real point on

the scene structure, its appearance should not change

over time, or with viewpoint). We measure conformance

to this assumption using the variance of the appearance

of the 4 projected points,

p(I l, Ir | w) = Γ

 ∑
m∈{l,r}

t∑
τ=t-1

(
Imτ (Pmwτ )− Ī

)2
4

 , (7)

where Ī is the mean observed appearance across all 4

frames, and wτ is the 3D end point of the flow cor-
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(a) None (b) Stereo Match (c) Optical Flow

(d) Optical Flow and Stereo Match (e) Scene Flow

Fig. 5: Detection of correspondences between the two cameras, and between two points in time (shown in black and

green). This illustrates the scene flow estimation task, and it’s relation to optical flow (OF) and stereo matching

(SM).

responding to frame τ . The Γ is an Intelligent Cost

Function (ICF) [17] which is a type of robust scoring

function using Gaussian Processes to reflect the distri-

bution of motion errors in real scenarios.

This ICF is trained using the Middlebury stereo

dataset [44]. Real correspondences are extracted us-

ing the ground truth, alongside deliberate “erroneous

matches”. These are then used to train a matching func-

tion which ideally separates correct and incorrect cor-

respondences, while accounting for realistic lightning

effects such as specularities and under/over-exposure.

Conditioning the error on the observations in this way

greatly improves robustness when compared to simply

penalising the squared error.

We can embed this likelihood function in an effi-

cient estimation scheme, such as a particle filter, in or-

der to estimate consistent sets of motions w over the

sequence, which maximize p(I l, Ir | w). This efficient

scheme is important, as the size of most action recogni-

tion datasets preclude the use of variational optimiza-

tion based techniques [22], which our experiments indi-

cated would take thousands of years to complete.

When using particle filtering to estimate the scene

flow probability distribution, special attention must be

paid to the coverage of the estimate. If all the “Scene

Particles” are collected within a standard approxima-

tion framework, the particles will accumulate over time.

In this case they will approximate the probability distri-

bution in confident regions of the scene (such as strong

edges) with great accuracy, while areas of low accuracy

such as untextured regions will be represented sparsely

by a small number of samples. To resolve this issue we

adopt the “ray resampling” strategy, where the pop-

ulation of each viewing ray is treated independently

during resampling to ensure even coverage of the scene.

Another way to view this procedure is that every ray

is assigned its own particle filter, but with the particles

being capable of moving between rays at every frame

increment. For further details see [17].

7 Interest Point Detection

Once the dataset has been preprocessed by extracting

the structure, 3D motion and calibration information,

the additional information present in this data may be

exploited. This can be done at various stages of the

pipeline, but we first look at interest point extraction,

in order to detect more salient features, and discount ir-

relevant detections. The extended algorithms discussed

in this section are based on the Harris Corners work

by Laptev and Lindeberg [29], the Hessian points algo-

rithm by Willems et al. [53] and the Separable Filters

technique by Dollar et al. [8]. For a comparison of the

original 2D interest point detection schemes (without

the proposed depth-aware extensions), see the survey

paper by Tuytelaars and Mikolajczyk [49].
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7.1 4D Interest Points

The Harris Corner [19] is a frequently used interest

point detector, which was extended into the spatio-

temporal domain by Laptev et al. [29]. The detector

is based on the second-moment-matrix (ψ) of the Gaus-

sian smoothed spatio-temporal volume (I). Interest points

are detected in the spatio-temporal volume as locations

where ψ contains 3 large eigenvalues, i.e. there is strong

intensity variation along 3 distinct spatio-temporal axes.

To avoid eigenvalue calculation at every point, the fol-

lowing approximate formulation is used where (u, v, w)

is a spatio-temporal position and k is typically 0.001:

H(u, v, w) = det (ψ (u, v, w))− k trace (ψ (u, v, w))
3
.

(8)

To extend the operator into 4D, the power of the trace is

increased, and ψ must be expanded to a 4 by 4 matrix,

incorporating the differential (Iz) along z. However, the

combination of appearance and depth streams does not

constitute volumetric data (i.e. measurements are not

dense along the new dimension as in an MRI scan). This

is referred to as 3.5D rather than 4D data, and gradients

cannot be directly calculated along the z axis. Instead,

the relationship between the spatio-temporal gradients

of the depth stream and those of the appearance stream

are exploited. If Ix,Iy,It are intensity gradients along

the spatial and temporal dimensions and Dx,Dy,Dt are

the gradients of the depth stream (and omitting the

spatio-temporal location (u, v, w)) a simple application

of the chain rule allows us to estimate Iz.

Iz =
dI
dx
dz
dx

+

dI
dy

dz
dy

+
dI
dt
dz
dt

=
Ix
Dx

+
Iy
Dy

+
It
Dt

(9)

This allows us to define ψ as

ψ = g(σ2, τ2) ∗


IxIx IxIy IxIt IxIz
IxIy IyIy IyIt IyIz
IxIt IyIt ItIt ItIz
IxIz IyIz ItIz IzIz

 , (10)

where g(σ2, τ2) is a Gaussian smoothing function, with

spatial and temporal scales defined by σ and τ respec-

tively.

The set of 4D Harris interest points F4D-Ha is de-

fined as the set of spatio-temporal locations within the

sequence, for which H is greater than the threshold

λ4D-Ha

F4D-Ha = {u, v, w|H (u, v, w) > λ4D-Ha}. (11)

In [53], Willems et al. extended the Beaudet Saliency

Measure [1] into the spatio-temporal domain. Rather

than the second-moment-matrix of Laptev et al. they

calculated the Hessian (µ) of the Gaussian smoothed

spatio-temporal volume (I). The detected interest points

relate to areas with strong second order intensity deriva-

tives, including both blobs and saddles.

As in the 4D Harris scheme, gradients along z are es-

timated using the relationships between the depth and

intensity stream gradients. This allows the 4D Hessian

µ to be calculated as

µ = g(σ2, τ2) ∗


Ixx Ixy Ixt Ixz
Ixy Iyy Iyt Iyz
Ixt Iyt Itt Itz
Ixz Iyz Itz Izz

 . (12)

The set of interest points F4D-He is calculated as the set

of spatio-temporal locations, for which the determinant

of µ is greater than the threshold λ4D-He

F4D-He = {u, v, w|det (µ (u, v, w)) > λ4D-He}. (13)

7.2 Interest Points in 3.5D

In part, the Harris and Hessian interest point operators

are motivated by the idea that object boundary points

are highly salient, and that intensity gradients relate

to boundaries. However, depth data directly provides

boundary information, rendering the estimation of the

intensity gradient along z somewhat redundant. An al-

ternative approach would be to employ a “3.5D” rep-

resentation, using a pair of complimentary 3D spatio-

temporal volumes, from the appearance and depth se-

quences. This can be applied to the Harris measure,

F3.5D-Ha={u,v,w|θ(u,v,w) + αφ(u,v,w)>λ3.5D-Ha}, (14)

and the Hessian measure

F3.5D-He ={u, v, w|det(ξ) + αdet(ζ)>λ3.5D-He}. (15)

Where θ and φ are Equation 8 applied to the appear-

ance and depth streams respectively, while ξ and ζ are

the 3 by 3 Hessians. The relative weighting of the ap-

pearance and depth information is controlled by α. This

approach exploits complimentary information between

the streams, to detect interest points where there are

large intensity changes and/or large depth changes.

7.3 3.5D Separable Filters

A third highly successful approach to interest point

detection, is the Separable Linear Filters technique of

Dollar et al. [8]. Peaks are detected within a spatio-

temporal volume, after filtering with a 2D Gaussian in
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the spatial dimensions, and a quadrature pair of Gabor

filters hev and hod along the temporal dimension,

S(I) = (I ∗ g(σ2) ∗ hev)2 + (I ∗ g(σ2) ∗ hod)2. (16)

Employing the same 3.5D approach used for the Harris

and Hessian detectors, leads to

F3.5D-S={u, v, w|S(I(u, v, w))+αS(D(u, v, w))>λ3.5D-S},
(17)

where I and D are the appearance and depth streams

respectively.

7.4 Dense Trajectories

An alternative scheme to detecting interest points which

we explore is accumulation via densely sampled tra-

jectories. In this approach, feature points are densely

sampled in the first frame, and are tracked over time

by median filtering of the motion field [51]. Any trajec-

tories which are static are assumed to be part of the

background and are ignored. To prevent drift during

tracking, an upper limit is placed on the length of the

trajectories, after which a new grid of dense points is

sampled.

Local features can then be accumulated over the

trajectory to form a single descriptor, encompassing the

spatio-temporal behaviour of a particular part of the

scene.

8 Feature Descriptors

Once feature points have been detected, the next stage

is to extract descriptors to encode the characteristics of

these salient regions for classification. The descriptors

can be based on various types of information, including

appearance, motion and saliency, but we wish to also

include our additional depth information.

8.1 RMD

The Relative Motion Descriptor (RMD) introduced by

Oshin et al. [40] has been shown to perform well in a

large range of action recognition datasets, while making

use of only the saliency information obtained during

interest point detection. A spatio-temporal volume η

is created, containing the interest point detections and

their strengths. The saliency content of a sub-cuboid,

with origin at (u, v, w) is defined for a sub-cuboid of

dimensions (û, v̂, ŵ) as

c(u, v, w) =

(û,v̂,ŵ)∑
γ=0

η([u, v, w] + γ). (18)

For efficiency this is implemented as an integral volume.

The descriptor δ of the saliency distribution at a posi-

tion (u, v, w) can then be formed, by performingN com-

parisons of the content of two randomly offset spatio-

temporal sub-cuboids, with origins at (u, v, w) +β and

(u, v, w) + β′:

δ(u,v,w)=

N∑
n=0

{
2n if c([u, v, w]+βn)>c([u, v, w]+β′n)

0 otherwise

(19)

Note that the collections of offsets β0..N and β′0..N
are randomly selected prior to training, and then main-

tained, rather than selecting new offsets for each clip.

By extracting δ at every location in the sequence, a

histogram may be constructed, which encodes the oc-

currences of relative saliency distributions within the

sequence, without requiring appearance data or motion

estimation. Increasing the number of comparisons N

leads to improved descriptiveness, however the result-

ing histograms also become more sparse. A common al-

ternative is to compute several δ histograms, each using

different collections of random offsets β0..N and β′0..N .

The resulting histograms are then concatenated, with

the result encoding more information without sparsify-

ing the histogram. However, this comes at the cost of

the independence between bins, i.e. introducing some

possible redundancies.

We propose extending the standard RMD described

above, by storing the saliency measurements within a

4D integral hyper-volume, so as to encode the behaviour

of the interest point distribution across the 3D scene,

rather than within the image plane. The 4D integral

volume can be populated by extracting the depth mea-

surements at each detected interest point. RMD-4D

descriptors can then be extracted, using comparisons

between pairs of sub-hypercuboids. The resulting his-

togram encodes relative distributions of saliency, both

temporally, and in terms of 3D spatial location. As with

the original RMD, the descriptor can be applied in con-

junction with any interest point detector and is not

restricted to the extended interest point detectors de-

scribed in Section 7 (provided that a depth video is

available during descriptor extraction).
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8.2 Bag of Visual Words

One of the most successful approaches in action recog-

nition is to concatenate a range of local descriptors and

to calculate a bag of words representation. Laptev et

al . [30] used this approach to great effect to combine

HOG and HOF descriptors (defined as G and F ). Both

histograms are computed over a small window, storing

coarsely quantized image gradient and optical flow vec-

tors, respectively. This provides a descriptor ρ of the

visual appearance and local motion around the salient

point at I(u, v, w).

ρ(u, v, w) = (G (I (u, v, w)) , F (I (u, v, w))) (20)

When accumulating ρ over space and time, a Bag of

Words (BOW) approach is employed. Clustering is per-

formed on all ρ obtained during training, creating a

codebook of distinctive descriptors. During recognition,

all newly extracted descriptors are assigned to the near-

est cluster center from the codebook, and the frequency

of each clusters occurrences are accumulated. In this

work K-Means clustering is used, with a Euclidean dis-

tance function as in [30]. To extend ρ to 4D, we include

a Histogram of Oriented Depth Gradients (HODG):

ρ(u,v,w)=
(
G
(
I(u,v,w)

)
,F
(
I(u,v,w)

)
,G
(
D(u,v,w)

))
. (21)

Thus the descriptor encapsulates local structural infor-

mation, in addition to local appearance and motion.

The bag of words approach is applied to this extended

descriptor, as in the original scheme. Importantly, this

descriptor is not dependent on the interest point de-

tector, provided the HODG can be calculated from the

depth stream D. By normalising these local descrip-

tors, we are able to resolve the scale ambiguity which

remained in our auto-calibration of Section 5.

8.3 3D motion descriptors

The inclusion of structural (depth) features into the

bag of words descriptor does not fully exploit the addi-

tional information in the Hollywood 3D dataset. During

pre-processing we also extracted the 3D motion fields

for the dataset, which can be used as a replacement

for the optical flow features F . We refer to these 3D

motion descriptors as “Histograms of Oriented Scene-

flows” (HOS).

Given the dense 3D flow field (ẋ,ẏ,ż), we can extract

a local 3D motion descriptor using the spherical co-

ordinate system

γ = atan

(
ẏ

ẋ

)
and δ = atan

(
ż

ẏ

)
, (22)

(a) Orientation histogram (b) Encoded motion field

Fig. 6: (a) Orientation bins visualised with alternating

white and black squares. γ is rotation around the w

axis. δ is rotation around the u axis. (b) a scene divided

into a 3 by 3 grid of subregions, with the motion of each

subregion aggregated.

to describe the 3D orientation of flow vectors. Note that

γ refers to the “in plane” orientation (from the view-

point of the left camera) i.e. when γ is 0◦, the motion

is toward to the top of the image, when γ is 90◦ the

motion is toward the right of the image, etc. In con-

trast δ refers to the “out of plane” orientation, i.e. how

much the motion is angled away from, or towards, the

camera.

We encode the distribution of 3D orientations in

a region around each interest point, capturing the na-

ture of local motion field using a spherical histogram

H (see Figure 6) which can be included into the bag

of words descriptor ρ. This is similar to the approach

used for shape context [2], but in the velocity domain.

The contribution of each flow vector to the histogram is

weighted based on the magnitude of the flow vector. As

with HoG, HoF and HoDG this histogramming discards

much of the spatial information. However, some gen-

eral attributes are maintained by separating the region

into several neighbouring blocks, and encoding each of

them independently as H1...n. These sub-region spher-

ical histograms are then combined to form the overall

descriptor H. It should be noted that placing histogram

bins at regular angular intervals in this way leads to the

bins covering unequal areas of the sphere’s surface. An

exaggerated version of this effect can be seen in Fig-

ure 6a, although in practice fewer bins are used and

the difference is less pronounced. In the future, regular

or semi-regular sphere tessellations could be considered

to mitigate this [42].

As above we normalise the descriptors to resolve the

scale ambiguity between sequences. Thus, even though

motion fields are consistent only up to a similarity trans-



Hollywood 3D: What are the best 3D features for Action Recognition? 11

Fig. 7: H̄r The subregions of the encoded motion field

are re-arranged such that the region of maximum mo-

tion occurs first. This provides some degree of invari-

ance to camera roll.

form, the normalised spherical histograms,

H̄ =
H

|H|
, (23)

are consistent up to a 3D rotation, making these 3D mo-

tion descriptors much more comparable between cam-

era configurations, and thus suitable for “in the wild”

recognition. In addition to this, the normalised features

provide invariance to the speed at which actions are

performed, as only the shape and not the value of the

motion field is encoded. This is again very important for

“in the wild” recognition, with many different actors,

each of whom have their own action style.

8.4 Rotational Invariance

Next we look at including viewpoint invariance in our

3D motion features (i.e. removing the final 3D rotation

ambiguity, and making the descriptors completely con-

sistent). This is one of the biggest challenges for “in the

wild” action recognition. The the same action viewed

from different angles looks completely different. How-

ever, as we are using the underlying 3D motion field, it

is possible to modify our feature encoding to be invari-

ant to such changes.

We firstly encode invariance to camera roll (i.e. ro-

tation around the z axis) by cycling the order of the

subregion histograms H1...n such that the subregion

containing the largest amount of motion occurs first

(similar to the orientation normalisation used in shape

context [2], SIFT [34], Uniform LBPs [38] etc.). This

re-arranged, roll-invariant, descriptor is referred to as

H̄r (see Figure 7).

We can follow a similar approach for the flow vectors

within the subregion histograms, to make the direction

of the motions as well as their positions, rotationally-

invariant. If we find the strongest motion vector in H

and label its 3D orientation as φ̂,ψ̂ then we can redefine

Fig. 8: H̄p The orientation of the strongest motion vec-

tor in the scene is used to normalise the histograms,

providing robustness to camera pitch and roll.

Fig. 9: H̄′ A new set of 3D axes is chosen using PCA,

relating to the dominant 3D motion orientations in

the scene. This provides complete invariance to cam-

era viewpoint change.

our local orientations in relation to this flow vector,

γp = atan

(
ẏ

ẋ
− φ̂

)
and δp = atan

(
ż

ẏ
− ψ̂

)
. (24)

The resulting descriptors H̄p obtained when encoding

γp,δp makes the flow vectors robust to camera pitch

(rotation around the x axis) in addition to roll, as shown

in Figure 8.

However, due to the separation of γ and δ our de-

scriptors are still not resistant to camera pans (rotation

around the y axis, which at 90 degrees causes γ orienta-

tion to become δ orientation). In addition, normalising

based on the maximum flow vector is sensitive to out-

liers in the flow field. As such, our final approach is to

perform PCA on the local region of the motion field, ex-

tracting 3 new basis vectors ẋ′, ẏ′, ż′ (the eigenvectors

of the motion field covariance). Computing orientation

using these basis vectors,

γ′ = atan

(
ẏ′

ẋ′

)
and δ′ = atan

(
ż′

ẏ′

)
, (25)

leads to a descriptor H̄′ which is invariant to all 3 types

of camera viewpoint change, and also robust to outlier

motions. See Figure 9 for an illustration.

9 Results

Classification was performed for all tests, with a multi-

class SVM. Note that tests were performed using other
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Table 2: Average precision per class, on the 3D action dataset, for a range of sparse interest point detectors,

including simple spatio-temporal interest points, depth aware extensions and Dense Trajectory encoding. The

Bag of Visual Words (HoG/HoF/HoDG) feature encoding was used. Classes are shown in bold, for schemes

outperforming both of the simple spatio-temporal interest point schemes.

Action 3D-S 3D-Ha 4D-He 4D-Ha 3.5D-S 3.5D-He 3.5D-Ha Dense-Traj
NoAction 11.4 12.1 12.2 12.9 11.4 12.0 13.7 14.2

Run 12.6 19.0 15.9 22.4 12.7 21.8 27.0 27.3
Punch 2.9 10.4 2.9 4.8 2.9 5.7 5.7 9.4
Kick 3.6 9.3 4.2 4.3 3.8 3.7 4.8 9.9
Shoot 16.2 27.9 18.9 17.2 16.2 16.2 16.6 33.8
Eat 3.6 5.0 3.6 5.3 3.6 7.7 5.6 11.9
Drive 15.3 24.8 25.6 69.3 15.5 76.5 69.6 56.8

UsePhone 6.5 6.8 14.7 8.0 6.5 17.7 7.6 12.4
Kiss 6.5 8.4 8.5 10.0 6.5 9.4 10.2 11.4
Hug 2.6 4.3 3.5 4.4 2.6 3.4 12.1 5.3

StandUp 6.8 10.1 7.0 7.6 6.9 9.1 9.0 17.6
SitDown 4.2 5.3 4.5 4.2 4.2 4.3 5.6 6.7
Swim 5.5 11.3 7.8 5.5 5.5 5.9 7.5 8.4
Dance 2.3 10.1 4.2 10.5 2.2 3.8 7.5 26.5

Average 7.1 12.6 9.8 13.3 7.1 13.4 14.1 17.9

SVM kernels including linear, χ2 and multi-χ2. How-

ever, linear kernels were found to perform poorly while

χ2 kernels greatly increased computation time and had

little effect on performance. Thus for clarity we only

present the results using RBF kernels. To facilitate com-

parisons with the Hollywood 1 and 2 datasets, the Av-

erage Precision (AP) measure was used, as explained

in the PASCAL VOC [9]. Relevant source code is avail-

able online along with the data [13]. RMD tests were

performed with 4 binary comparisons per histogram

(N = 4), concatenating 10 descriptor histograms. BOW

tests were performed with 4,000 cluster centres (as sug-

gested in [30]), with the local histogram descriptors cal-

culated using a block size of 3 by 3, with 8 orientation

bins. For the 3D motion (HOS) features, each subregion

histogram uses 4× 4 bins in the γ and δ orientations.

To aid clarity, we will first examine 3 components

of the framework independently; the interest point de-

tection, the local descriptors, and the motion feature

encoding. We will then summarise the most effective

technique in each area and compare against other tech-

niques designed for “in the wild” 3D action recognition,

including [27] which uses auto-encoders to implicitly

model uncalibrated structural information, and [24,23]

which use Extreme Learning Machines on Dense Tra-

jectory encoded HoG/HoF/MBH descriptors.

9.1 Interest Point Analysis

First we examine the benefits of including depth in-

formation during interest point detection. Clearly this

is the least significant stage of the pipeline to include

depth; no information from the depth stream is encoded

in the descriptors, and depth information cannot be

used by the classifier to distinguish actions. Instead,

the depth stream is used only to make more informed

decisions about which regions of the appearance stream

to encode and which to discard. This is particularly true

after the encoded regions are accumulated into a single

holistic descriptor.

For these comparisons the standard Bag of Words

descriptor (see Section 8.2, HoG/HoF/HoDG) is used.

The traditional spatio-temporal interest points (Sepa-

rable Filters 3D-S and Harris Corners 3D-Ha) are com-

pared to the proposed depth aware interest point detec-
tors and the currently state-of-the-art Dense Trajecto-

ries approach (also using the 3D Bag of Words descrip-

tor). The AP for each class is shown in Table 2, with

bold entries indicating performance greater than both

of the standard spatio-temporal schemes.

The type of saliency measure used has a surprisingly

large effect on the performance, with the average per-

formance for the best scheme being more than double

that of the worst, even using the same feature encod-

ing. For the standard spatio-temporal schemes, Harris

points (3D-Ha) outperform separable filter points (3D-

S) for all actions. This is also reflected in the depth

aware schemes, and is unsurprising, as separable filters

were designed primarily for computational speed. Hes-

sian based interest points prove less informative than

the extended Harris operators in both the 4D and 3.5D

case. For all detectors, the 4D schemes outperform their

standard spatio-temporal counterpart, while the 3.5D

approach proves more informative than the direct 4D
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extension. This confirms the belief that the calculation

of intensity gradients along z is redundant, and that

the combination of intensity and structure gradients is

a stronger measure of saliency. The Dense-Trajectory

approach proves to be the more descriptive than the

sparse interest points, when used to encode the same

feature descriptors. However this comes at the price of

significantly increased computational cost due to it’s

dense nature.

Interestingly, certain actions consistently perform

better, when described by depth aware interest points.

These are actions such as Kiss, Hug, Drive and Run

where there is an informative foreground object, which

depth aware interest points are better able to pick out.

In contrast, actions such as Swim, Dance and Shoot are

often performed against a similar depth background, or

within a group of people, and the inclusion of depth in

the saliency measure is less valuable. This suggests that

a combination of standard spatio-temporal, and depth

aware schemes may prove valuable.

The complexity of the depth aware interest point

detectors remains of the same order as their spatio-

temporal counterparts (linear with respect to u, v and

w). Naturally the multiplicative factor is increased how-

ever, with 3.5D techniques being roughly twice as costly,

and 4D techniques taking 4 times as long.

9.2 Structural Descriptor Analysis

Next, the use of structural information at the feature

level was explored, using the best performing Inter-

est Point detection schemes from the previous analysis.

These results are shown in Table 3. The best performing

descriptor for each saliency measure is shown in bold.

The RMD descriptor has it’s own holistic accumulation

scheme and so does not fit well with Dense Trajectory

encoding. However, the Bag of words descriptor can be

evaluated in both sparse and dense scenarios.

It should be noted that previous work using Dense

Trajectories has employed them as both an accumula-

tion scheme, and as a feature descriptor. It is possible

that this could provide additional information, further

improving performance. However, the purpose of this

analysis is to quantify the value of depth based fea-

tures. Further, it should be noted that features such as

Eigenjoints [54] or Actionlets [52] (which are currently

state-of-the-art for non-“in the wild” 3D action recog-

nition) cannot be evaluated as the user masks and body

skeletons normally provided by the Kinect, cannot be

produced in this more complicated scenario.

Both types of descriptor show a consistent improve-

ment when incorporating structural information, with

Table 3: Correct Classification rate and Average Pre-

cision for different local features using the 2 top per-

forming saliency measures. The best feature for each

saliency measure is shown in bold.

Descriptor Saliency CC AP
RMD 3.5D-Ha 12.3 11.9
RMD-4D 3.5D-Ha 17.2 14.4
HoG/Hof 3.5D-Ha 17.9 13.0
HoG/Hof/HoDG 3.5D-Ha 21.8 14.1
HoG/Hof/HoDG Dense-Traj 20.8 17.9

increases of around 20 % in both average precision and

correct classification. This demonstrates the value of

such features for recognizing actions in the wild. Over-

all, the Bag of Words descriptors perform somewhat

better than the RMD descriptors. This is unsurprising

as the RMD relies only on interest point detections,

without the inclusion of any visual and motion infor-

mation.

The complexity of the RMD-4D is greater than the

standard RMD (being linear in the range of depth val-

ues, as well as in u, v and w). This is somewhat miti-

gated by the use of integral volumes however, meaning

that runtimes are still on the order of seconds using a

single CPU. In contrast the extraction of HoDG fea-

tures relates to only a 50 % increase in runtime of the

standard bag of words descriptor (although the com-

plexity remains linear). However the increased feature

vector length does lead to an increased cost during

codebook generation, as K-Means is generally linear in

the number of dimensions.

9.3 Motion Descriptor Analysis

Taking the best descriptor so far (HoG/HoF/HoDG),

we next investigate improvements to the motion based

portion of the descriptor, in light of the available depth

information. This set of experiments was performed us-

ing the 3.5D-Ha interest point detector.

In Table 4 we can see that the raw 3D motion fea-

tures (H̄ -uncal), directly attainable from the dataset

with a generic calibration, perform rather poorly, offer-

ing only a minor improvement over 2D motion based

features (HOF [15]). The use of our proposed stereo

sequence auto-calibration (H̄ ) dramatically improves

performance, almost tripling the average precision, by

removing the projective distortion effects on the mo-

tion field. This helps to explain why 3D motion esti-

mation techniques have not previously been exploited

for “in the wild” action recognition, despite the fact

that actions are generally defined by their 3D motions.
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Table 4: Per class Average Precision scores using vari-

ous types of motion features, including 2D motions, un-

calibrated 3D motions, unnormalised 3D motions, and

calibrated motions encoding varying levels of invariance

to camera viewpoint change.

Action HOF H̄ -
uncal

H̄ H H̄r H̄p H̄′

NoAction 12.5 13.0 18.0 16.2 17.2 15.3 21.2
Run 18.0 21.5 44.3 41.1 40.8 55.9 63.1
Punch 2.9 10.9 48.7 45.6 51.6 52.1 54.2
Kick 3.6 8.1 18.2 18.2 19.9 18.1 19.9
Shoot 16.3 24.4 27.1 26.5 30.2 27.9 31.0
Eat 3.6 5.5 24.2 24.1 24.0 23.1 24.2
Drive 35.1 45.4 62.3 58.4 62.0 50.2 60.8
UsePhone 8.1 7.8 18.8 18.2 19.3 18.2 22.3
Kiss 6.7 7.0 24.2 24.1 24.0 26.3 31.3
Hug 2.6 3.5 21.8 21.0 22.2 23.8 32.4
StandUp 8.8 7.1 49.1 47.0 51.8 49.0 50.0
SitDown 4.3 4.8 16.3 14.1 17.9 16.9 18.1
Swim 6.4 14.0 28.8 27.1 30.0 43.2 43.0
Dance 2.8 3.7 45.3 41.8 44.2 48.1 44.9
Overall 9.4 12.6 31.9 30.2 32.5 33.4 36.9

The results also show that the unnormalised features

(H), which are not scale invariant, perform uniformly

worse than their normalised counterparts. It is worth

noting, however, that Hollywood 3D does not contain

the Run/Jog/Walk ambiguities of some datasets. In-

stead the wide range of viewpoints and zooms present

in the data favour the more consistent H̄ features.

The viewpoint invariant encoding schemes of Sec-

tion 8.4 (upgrading the motion fields to fully consistent,

rather than “up to a rotation”) provide more modest

improvements. Including roll invariance (H̄r) gives only

a small performance increase, probably because broad-

cast footage such as that contained in the Hollywood-

3D dataset contains few camera rolls. It may be ex-

pected that this scheme would prove more valuable in

other scenarios such as on mobile devices. Attempting

to include pitch invariance (H̄p) by normalising motion

orientations actually reduces performance on many of

the action classes. This is likely because normalising by

the maximum motion makes the technique susceptible

to outliers in the motion field. It is interesting to note

however, that there is a marked improvement for a small

number of actions such as Run and Swim. This may

be because these actions experience greater variation

in camera pitch (for example running shots being seen

from above, and swimming shots from underwater). In

addition, the motions are generally stronger for these

actions which may make the dominant direction more

reliable. The final scheme (H̄′), including full viewpoint

invariance by estimating new motion orientation axes,

provides the best performance. It is interesting to note

that all of these encoding schemes actually discard some

of the information present within the original features.

However, for the task of “in the wild” action recogni-

tion, camera viewpoint invariance outweighs this, by

making it easier to generalise between sequences.

It should be noted that there are more advanced

features such as Motion Boundary Histograms (MBH)

which have proven very powerful for 2D action recogni-

tion in recent years. However, depth-aware extensions

of these complex features are beyond the scope of this

work.

9.4 Current State of the Art

From this extensive analysis, our best approach to “in

the wild” 3D action recognition is to use the Dense

Trajectory encoding scheme, combined with the bag-of-

words descriptors including 3D structure and motion.

In addition, we found that calibrated 3D motion fea-

tures are far more powerful than their 2D counterparts,

especially when encoded with full viewpoint invariance

(H̄′). In Table 5 we show these 3 techniques indepen-

dently (without using depth aware components in the

rest of the pipeline) against the combination of all 3

techniques in a single framework. We also show results

for the other techniques currently submitted to our on-

line leaderboard [13], including several deep-learning

based techniques. Clearly the calibrated 3D motion fea-

tures (HOS) offer the largest improvements, but all of

the proposed techniques offer significant improvement

over their spatiotemporal counterparts (quantified in

parentheses). In addition these gains are complemen-

tary, and in combination provide a more than three-fold

improvement in performance.

10 Conclusion

In this paper, we introduced a large publicly available

corpus of 3D data (and code) for the action recogni-

tion community to compare techniques in natural envi-

ronments. Further, we have demonstrated the intrinsic

value of this 3D information throughout the Natural

Action Recognition pipeline. Specifically, a variety of

new interest point detection algorithms incorporating

depth data have been shown to improve action recog-

nition rates, doubling performance in some cases, even

using standard features. Additionally, popular feature

descriptors have been modified to encode structural

information, demonstrating an average of 20 % addi-

tional improvement in performance. We have also dis-

cussed the use of 3D information for estimating a new,
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Table 5: The current state of the art for in the wild 3D action recognition. For each of our depth-aware extensions,

the improvement over spatio-temporal techniques is shown in parentheses.

Algorithm SAE-MD MVRELM Disp-Pyr Enriched 3.5D Structure 3D Motion Den-Traj HOS
(Av)[27] [24] {1,3}[23] IPs [35] IPs Features (HOS’) HoG/HoDG

mAP 26.1 29.9 30.5 30.1 14.1 (+12%) 17.9 (+22%) 36.9 (+293%) 37.4

more advanced class of motion features based on scene-

flow. These provide recognition rates significantly bet-

ter than previously state-of-the-art techniques, partic-

ularly when utilising the proposed viewpoint-invariant

encoding.

In fact, our results demonstrate that invariances are

vital for features used in recognition “in the wild”.

The proposed robust stereo sequence calibration step

is needed to fully exploit the power of 3D informa-

tion in the presence of large intra-class variation. As

a result, the estimated calibrations for the dataset have

been made publicly available, in addition to the stereo

data, reconstructed depth and code for the baseline

techniques.

Future work should focus on more complex feature

descriptors, particularly focused on mitigating the spar-

sity which may arise in higher dimensional feature spaces.

It would also be useful to develop further the invariant

holistic encoding schemes for local features, preserving

the invariances encoded in our 3D motion features with-

out discarding so much relational information.
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