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and Richard Bowden, Senior Member, IEEE

Abstract—Long term tracking of an object, given only a single
instance in an initial frame, remains an open problem. We
propose a visual tracking algorithm, robust to many of the diffi-
culties which often occur in real-world scenes. Correspondences
of edge-based features are used, to overcome the reliance on
the texture of the tracked object and improve invariance to
lighting. Furthermore we address long-term stability, enabling
the tracker to recover from drift and to provide redetection
following object disappearance or occlusion. The two-module
principle is similar to the successful state-of-the-art long-term
TLD tracker, however our approach offers better performance
in benchmarks and extends to cases of low-textured objects. This
becomes obvious in cases of plain objects with no texture at all,
where the edge-based approach proves the most beneficial.

We perform several different experiments to validate the
proposed method. Firstly, results on short-term sequences show
the performance of tracking challenging (low-textured and/or
transparent) objects which represent failure cases for competing
state-of-the-art approaches. Secondly, long sequences are tracked,
including one of almost 30 000 frames which to our knowledge is
the longest tracking sequence reported to date. This tests the re-
detection and drift resistance properties of the tracker. Finally,
we report results of the proposed tracker on the VOT Challenge
2013 and 2014 datasets as well as on the VTB1.0 benchmark
and we show relative performance of the tracker compared to
its competitors. All the results are comparable to the state-of-
the-art on sequences with textured objects and superior on non-
textured objects. The new annotated sequences are made publicly
available.

Index Terms—Machine vision, image motion analysis, visual
tracking, long-term tracking, low texture, edge, line correspon-
dence.

I. INTRODUCTION

A. Motivation

THIS paper addresses the task of visual tracking of a priori
unknown low-textured objects in long-term scenarios. To

achieve such a goal, a tracker needs to learn and adapt a
model of object appearance to follow the object or to redetect
it after full occlusions. This is, however, often difficult due to
factors such as low texture of the object, or varying lighting
conditions. We directly address these common sources of
failure by abandoning more common point features and using
lines instead; line features are more robust to lighting and
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Fig. 1: Examples from challenging sequences.

are present even in cases of low-textured objects where point
features are scarce.

Visual tracking is a field of computer vision which has
been thoroughly studied over the years. Many approaches have
been proposed including tracking via local optimisation [22],
[25], regression [9], detection[1], segmentation [26], generative
models [27] and online learning [7], [8]. Long-term trackers
attempt to model and adapt to changes in object appearance
over time, using multiple observations to enrich their repre-
sentations. This in turn leads to drift due to the difficulty
of unsupervised learning. Recent approaches overcome this
through a combination of detection combined with local search
and intelligent online update strategies, which can compensate
for drift via redetection. As such, consistency of appearance
is extremely important, because radical changes can cause
tracking failure or corruption of the model. The notion of
appearance typically relies on texture or other strong visual
attributes. However, there are a whole range of scenarios where
sufficient texture is either absent or highly variable due to
changes in pose or scene illumination. While this is only true
for a subset of tracking sequences, it is a common source of
tracking failure for most approaches.

Figure 1 shows example frames from two challenging
sequences which typically lead to tracking failures. Figures 1a
to 1c show images from Ross et al. [27] where the initial target
face is so dark that visual features are almost indistinguishable
to the human eye. However, as shown by the bounding box,
the proposed LT-FLO tracker is capable of tracking the entire
sequence (see supplementary material for a results video).
Even Ross et al. do not track this sequence from the start, only
beginning at the 300th frame (shown in 1b) where the visual
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appearance from lighting is more consistent with the remainder
of the video. This sequence was recently used in a visual
tracking benchmark [31] starting from the latter frame as well.
Similarly Figures 1d–1f show a texture-less object (a single
piece of white paper on a light background). Trackers which
rely on texture or appearance fail on this sequence. Again
the bounding box shows LT-FLO’s ability to successfully
track in this scenario. Furthermore, we demonstrate LT-FLO
successfully tracking a sequence of over 29 000 frames which
to our knowledge is the longest sequence reported to date.

B. Related Work

One of the most influential works in the field of visual track-
ing is undoubtedly the Lucas-Kanade tracker (LK) [22]. This
technique iteratively matches image patches by linearising the
local image gradients and minimising the sum of squared
pixel errors. It has been recently extended using segmentation-
like object/background likelihoods [25]. Many current trackers
follow and extend the idea of LK tracking by adding an upper
layer managing a cloud of low-level tracklets [16], [19], [20],
[23]. One recent example is a Local-Global Tracker (LGT) [4]
by Cehovin et al., using a coupled-layer visual model. The
local layer consists of independently tracked visual patches,
constraining the appearance of object components. The global
layer models object features such as colour, shape or motion.
The global model is learned from the local patches and in
turn it constrains the addition of new patches. Consistency
of local trackers is enforced; however changes in shape are
possible, allowing LGT to track highly non-rigid objects. All
of these approaches are based on variants of point features,
which renders them ineffective in cases where these are scarce,
or unstable.

Another approach is tracking by detection where tracking is
defined as a classification task. Grabner et al. [7], [8] employ
an online boosting method to update the appearance model
while minimising error accumulation. Babenko et al. [1] use
multiple instance learning, instead of traditional supervised
learning, for a more robust tracker. Zheng et al. [32] address
drift during tracking using a dynamic set of basis classifiers,
employing different basis classifiers for different problems. All
of these, however, suffer from the need to convert the estimated
object position into a set of labelled training examples, and to
couple the objective for the classifier (label prediction) to the
objective for the tracker (object position estimation), which
is difficult to perform optimally. The Struck tracker [9] solves
this by explicitly using structured output prediction to avoid
the need for these intermediate steps.

Kalal et al. combined tracking with detection in their
Tracking-Learning-Detection (TLD) [15] framework, where
(in)consistency of the tracker and detector helps to indicate
tracking failure. While the tracker estimates the frame-to-
frame motion, the detector treats every frame as independent
(as in a tracking-by-detection scenario). Positive and negative
examples are learned according to the (dis-)agreement of
these two components, improving further detection. Explicit
modelling of failures for both components coupled with in-
dependent detection makes this tracker suitable for long-term

tracking, with inherent drift-resistance and redetection after
full occlusions. In all of these cases, the learned detector needs
a consistent texture to distinguish between the object and the
background, making it unsuitable for texture-less tracking.

There are also many successful approaches using particle
filtering for tracking. One of the most notable is CONDENSA-
TION (Conditional Density Propagation) [13], which brought
into the field of visual tracking the use of particles for non-
parametric modelling of a pose probability distribution. Ross et
al. [27] extended particle filtering by introducing incremental
learning of an object appearance subspace that allowed the
model to adapt to changes.

There have been previous attempts to decrease the re-
liance on object texture, including previous use of edge-based
features. The aperture problem (see Figure 2) renders these
spatially unstable, as neighbouring pixels along the direction
of the edge are indistinguishable [11]. For this reason, con-
ventional trackers often avoid edges. However, such features
are still valuable: e.g. Smith et al. used lines in a visual
SLAM framework [29]. For tracking, Tsin et al. [30] fit line
segments modelling the object to detected edge-points. The
same approach was used in [6], [10], when searching for the
pose of a wireframe-represented, user-specified, 3D object.

C. Contributions
Our approach uses principles similar to model-based track-

ing using edges, but the object model is learned in a com-
pletely unsupervised manner. We propose to overcome the
aperture problem by estimating the geometry from edge-
based line correspondences. To cope with situations involving
insufficient point-to-point correspondences, line-to-line corre-
spondences are used. These are robust to shifts along the edge.
The line correspondences are employed within a robust motion
estimation framework for frame-to-frame tracking. We also
propose an approach to learning the manifold of observed
object poses in a probabilistic manner. This probability is then
directly used to reject “impossible” poses.

As a second major contribution we propose a redetection
strategy that identifies when a tracking failure or object
disappearance occurs and uses the online model of appearance,
in conjunction with the learnt pose manifold, to relocate
the object. This gives the tracker long-term stability, which
combined with its inherent drift resistance renders it suitable
for tracking long video sequences with full occlusions. It is
the first long-term edge-based tracker. We dub the tracker LT-
FLOtrack (Long-Term FeatureLess Object tracker).

Finally, we make the new sequences publicly available
including manual ground-truth annotations. These will be
made available for download from authors’ website.

This paper unifies our previous conference publications
[20] and [19], while bringing additional insight into the
internal workings, new formalisation of the long-term module,
and extended experimental evaluation. Performance of LT-
FLOtrack is measured using the VOT2013 and VOT2014
benchmarks and it is shown to be one of the best performing
(placed fifth out of almost 30 evaluated trackers on VOT2013).
Additionally, the proposed tracker was evaluated using the
VTB1.0 benchmark and placed third in the leader-board.
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Fig. 2: Establishing line correspondences regardless of the
aperture problem.

The LT-FLOtrack algorithm is introduced in Section II. It
consists of two parts shown in Sections III and IV. Section V
describes the probability density estimation and Section VI the
redetection scheme. Our claims are experimentally validated
in Section VII and conclusions are drawn in Section VIII.

II. TEXTURE-LESS TRACKING

The task of the tracker is to find a pose Pt (position,
rotation, size) of an object in frame It. The tracked object
is represented as a set of edge points (locations of locally
maximal intensity gradient). The fundamental elements for
tracking are tentative correspondences of lines tangential to
edges in the image. In other words, to estimate the frame-to-
frame motion of the target object, we use correspondences
of lines, which are in turn defined by correspondences of
edge-points. This is a similar task to estimation of the image
transformation from point correspondences. Edge points are
present even in low-texture scenarios where point features are
scarce, they are however more difficult to use.

Figure 2a shows two points {at−1,bt−1} identified on the
contour of an object and their tangent lines. Attempting to
locate the motion of these points in the next consecutive frame
is ill-defined. Figure 2b shows that a local search normal
to the edge direction incorrectly identifies correspondences
{at,bt} which are shifted along the contour, instead of the
true correspondence {at∗,bt∗}. This is due to the well known
aperture problem, which makes it impossible to detect the cor-
rect motion for points laying on edges. Should these incorrect
corresponding pairs {(at−1,at), (bt−1,bt)} be used directly
as point-to-point corrsepondences, the estimated motion would
be incorrect. However, under the assumptions of a small shift
between two consecutive frames and a local linearity of the
edges, these points generate the same tangent lines as the true
correspondences. By using the intersection ct of the tangent
lines and its motion from the intersection in the previous frame
(ct−1), transformations can be calculated using edge features
while overcoming the aperture problem. The intersection can
be seen as a virtual corner point, where the two edges forming
the corner are allowed to be separated.

In other words, traditional techniques use point features
(e.g. corners) to simultaneously provide the two orthogonal
constraints needed to overcome the aperture problem. We
instead use pairs of distant non-parallel lines, each providing
one constraint, to define the virtual corners.

Figure 3 shows an overview of the LT-FLOtrack. It con-
sists of two modules performing different tasks. The first is
a short-term tracker, which finds line correspondences and
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Fig. 3: Overview of the LT-FLOtrack algorithm.

TABLE I: Used notation.

Symbol Meaning
It Frame t
Pt Object pose in frame t (location, size, orientation,...)

(pt,qt) Point-to-point correspondence in frame t
(kt, lt) Line-to-line correspondence in frame t (kt is defined

by pt in It−1, lt is defined by qt in It)
S Frame to frame transformation (Pt = S(Pt−1))
Qt Edge quality field

Ψ(P) Probability distribution of P
ϕt State of the short-term tracker (Pt,pt+1, Qt)

dG(l, l′) Geometric difference between l and l′

estimates frame-to-frame transformations (block (i)). It then
updates knowledge about the object in each frame (block (ii)),
including the positions of good edges to track and observed
edge stability (edge quality field). The short-term tracker is
formalised in Algorithm 1.

The second module maintains long-term relations. In cases
of low confidence within the short-term tracker, a procedure
to correct the pose is performed (block (iii)). Alternatively, if
short-term tracking leads to a correct pose estimate, its state
is stored (block (iv)) for future corrections. Block (iv) also
includes updates to the observed pose probability distribution
Ψ(P). The used notation is summarised in Table I.

III. SHORT-TERM TRACKER

To find the pose Pt, the short-term tracker estimates
a (similarity) transformation S, such that Pt = S(Pt−1).
Algorithm 1 describes this short-term part of LT-FLOtrack,
where F is the total number of frames to process. Lines 4 to
8 correspond to the block (i) and lines 3 and 9 refer to the
block (ii) of Figure 3. In each frame, a set of edge-points pt

is generated (line 3). Successfully matched correspondences
(inliers to S) from the last frame (qt−1) are retained and
new edge-points are generated to keep a stable number of
correspondences. As this number has a significant impact on
execution times, it should be as low as possible. To estimate a
suitable number of correspondences for a given sequence, we
propose a data-driven method, which accounts for the object’s
size and complexity; see Section III-A for details.
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Algorithm 1 The Short-term Tracker

1: Q1 ← initialise point quality field
2: for t = 2→ F do
3: pt,kt ← generate edge-points and lines (It−1)
4: q′t, l′t ← find tentative correspondences (pt, It)
5: S′′ ← estimate transformation by LO-RANSAC (kt, l′t)
6: qt, lt ← find tent. correspondences (pt, It, init by S′′)
7: S′ ← estimate transformation by LO-RANSAC (kt, lt)
8: S← refine transformation (S′, Qt−1)
9: Qt ← update point quality field (pt, S, Qt−1)

10: end for

The first step is to determine which edges are good for
tracking. These should be invariant to the brightness changes
and evenly distributed on the object, i.e. strong edges should
be selected where possible and weaker edges only in regions of
low contrast. LT-FLOtrack uses an iterative procedure, which
searches for strong nearby edges. A point pt0 is randomly
drawn from inside the object bounding box (given by Pt−1).
The edge search is then performed along a line normal to the
edge direction [10], starting from this point, to find pt1. This
is iterated until convergence (ptn = ptn−1). Using only the
gradient, this is dubbed an unguided edge search. The selected
edge-points are defined as

ptn = arg max
p̄∈pt

n−1
+λ~∇It−1(pt

n−1
)

||~∇It−1(p̄)|| · exp(−λ2/σ2) ,

(1)
where λ is the distance along the gradient direction and σ
a scaling factor (based on the object size). Notice that since
we search edge-point (and consecutively line) correspondences
between the previous and the current frame, the points pt are
localised in It−1.

When establishing correspondences (line 4), another edge
search is required, however the task is different. Instead of
locally strong edges, we seek edges similar to those from the
previous frame. As such, a guided (using information from
the previous frame) edge search is used. This searches for
positions with similar gradient angle and local appearance. The
search starts at the locations of edge-points from the previous
frame:

q′t = arg max
q̄∈pt+λ~∇It−1(pt)

(
cos(∆α) + 1

2

)
· δ(pt, q̄) · Ω(λ)

s. t. q̄ is a local maximum of gradient ,
(2)

where δ(pt, q̄) measures similarity of local appearance of It−1

around pt and It around q̄, ∆α is the difference between
gradient angles at It−1(pt) and It(q̄) and Ω is a locality-
preserving regularisation. We use cosine as a measurement
of angle error due to its tolerance (the flat region around
zero), robustness (no outlier over-penalisation) and absence of
problems with angle periodicity. It is scaled and shifted to the
[0; 1] range. For the guided edge search, multiple search lines
are used: normal to the edge in the last frame (~∇It−1(pt))
and offset by ± π

10 .

Fig. 4: Examples of an image and its edge quality field after
several frames of tracking.

The tentative edge-point correspondences (pt,q′t) are then
transformed to line-to-line correspondences (kt, l′t) using the
gradient direction:

kt = pt + λn; −∞ ≤ λ ≤ ∞ , (3)

where n is normal to the gradient:

n = J~∇It−1(pt) , (4)

using J, a matrix of 2D counter-clockwise rotation,

J =

[
0 −1
1 0

]
. (5)

The same process is performed for edge-points q′t to get lines
l′t.

LO-RANSAC [21] uses the correspondences (kt, l′t) to es-
timate a geometric transformation S′′ between the two frames
(Algorithm 1, line 5), maximising image evidence Et. This
is defined as the average fit of edge-points from It−1 to the
edges in It. The computation of image evidence is based on
an oriented Chamfer distance [24], [28] as

Et(S′′) =
1

N t

∑
pt

ept · Λ , (6)

ept =
1

1 + d(S′′(pt))
· cos(∆α) + 1

2
, (7)

where d(·) is Euclidean distance of a point to the nearest
Canny’s edge [3], ∆α is the difference between the gradient
angle of a point and its nearest edge (taking rotation induced
by S′′ into account), N t is the number of correspondences and
Λ is a regularisation term penalising large changes between
Pt−1 and Pt (smoothness enforcing prior). The minimal
sample for RANSAC is a triplet of lines, whose intersections
(the virtual corner points) are used to generate a transformation
hypothesis. To get a more precise transformation with a
higher number of inliers, we repeat the process using the
transformation estimate as initialisation (lines 6 and 7). In this
second iteration, the new locations of correspondences qt and
lt are computed. LO-RANSAC is then executed again using
the new correspondences.

The estimated transformation S′ is usually more accurate
than S′′, however it may still be noisy, which would ultimately
result in tracker drift. It is therefore necessary to stabilise
the estimation relative to previous frames. In LT-FLO this is
done by learning the locations of edges, which have previously
predicted a correct transformation. This knowledge is stored as
an edge quality field Qt, giving an estimate of object structure
(stable edges, see Figure 4 for an example). We expect the
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corresponding edges in the new frame to fit to this model
of previously stable edges w.r.t. the estimated transformation
(line 8 of Algorithm 1):

S = arg max
S̄

∑
qt

Qt−1(S̄−1(qt)) ; (8)

maximised using Nelder-Mead iterative optimisation of the
transformation parameters. In every frame, Qt is updated as
follows:

Qt = ω · S(Qt−1) +
⋃
pt

ept , (9)

where ω is a forgetting factor (line 9 of Algorithm 1). The
field Q1 is initialised taking all the edge-points from the first
frame as reliable (line 1).

We define a set of inliers It(S) as a subset of correspon-
dences (kt, lt) having low geometric error dG with respect to
the estimated transformation S (frame indices t omitted):

I(S) =
{

(k, l)
∣∣∣√dG(l,S(k))2 + dG(k,S−1(l))2 ≤ θd

}
.

(10)
This can be equivalently seen as a set of point-to-point
correspondences (pt,qt), since lines are defined by edge-
points. See Section III-B for details on the geometric error
of line correspondences. The subset of edge-point inliers qt

(i.e. defining lines belonging to the inlier set) is retained for
use in the next frame as pt+1. Additional edge-points are then
generated as described above (line 3 of Algorithm 1), which
encloses the short-term tracking loop.

To allow reference to the short-term tracker in a compact
form, we adopt the following notation. The complete state
of the tracker (or model of the object) will be referred to as
ϕt−1 and includes information about the object pose Pt−1,
edge-points1 pt and the edge quality field Qt−1. The short-
term tracker can then be seen as a series of consecutive calls
to a tracking function, initialised at Pt−1:

Pt = Tϕt−1(It,Pt−1) . (11)

The update of the current state comprises of updating Qt−1

to Qt according to Equation (9), estimating Pt = S(Pt−1)
and generating new points pt+1, which can be concisely
summarised as

ϕt = update(ϕt−1) . (12)

A. On the Number of Generated Edge-points

To estimate a sufficient number of correspondences for
the successful tracking of a given sequence, we employ an
approach that accounts for the object’s size and complexity.
The number of final correspondences after the edge search is
usually lower than the number of generated edge-points. Fur-
thermore, this dependency is strongly non-linear and saturates
(see Figure 5).

In LT-FLOtrack, this saturation level is found in the first
frame by initialising with a high number of random points.
Then the number of generated points is set proportional to the
saturation level. This is adjusted according to the observed
scale changes in subsequent frames.

1Points pt are computed from It−1.
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B. Geometric Error of Line Correspondences
Previously, we have worked with terms such as “inliers”,

or “consistent line correspondence”, which require a measure
of distance between projected and measured line features (an
equivalent to the projection error for point correspondences).
But what does it mean for two lines l and l′ to be close to each
other? Hartley [12] stated that distance (or geometric error)
of lines has to be measured with respect to some point of
interest. He suggested to use the distance between a line and
line segment. This approach yields usable results. However,
our lines are not defined by segments, and are infinite in extent.
It is therefore necessary to calculate intersections between the
lines and all four sides of the tracked object bounding box.
Computational complexity is then prohibitively large.

A more feasible approach is to see the distance as two inde-
pendent components – difference of angles dA and difference
of position dP with respect to a given point of interest pi
(e.g. centre of gravity of the tracked object, as can be seen in
Figure 6). The error of position is defined as the difference
between the distances from the lines to pi, in normalised
homogeneous coordinates as:

dP =
∣∣pTi l∣∣− ∣∣pTi l′∣∣ . (13)

The angular error is defined as the length of the shortest
possible line segment with endpoints on the lines. The distance
between this segment and the intersection of the lines is a
constant L, which can be derived from the size of the tracked
object, or set manually.

dA = 2 · L · tan
∆α

2
, (14)

where ∆α is the angle between the lines. Finally, the geomet-
ric error term is computed as

dG =
√
d2
P + d2

A . (15)

This technique gives errors similar to Hartley’s approach
in significantly lower time (10-fold speed-up with correla-
tion coefficient 0.9). It should be noted that dP is strongly
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underestimated in the case of pi laying between the lines.
However, as we are usually concerned with the distance of
lines that are close to each other, this condition appears rarely
(correspondences are incorrectly classified as inliers less that
one percent of the time).

IV. LONG-TERM MODULE

Using line-correspondences for short-term tracking works
well for short sequences. However, for longer sequences it
suffers from error accumulation (drift) and is not robust to
severe occlusions.

The long-term module of LT-FLO continuously checks the
image evidence score Et, as this is a good indicator of the
quality of the estimated transformation. When Et decreases
suddenly, this indicates a problem (the confidence in the
current solution is low). On such an occasion, the short-term
tracker may experience difficulties and may need correction
(block (iii) of Figure 3). The desired property of the (local)
correction is that it can, given the last known pose of the
tracked object, estimate its new pose regardless of any drift
in the short-term tracker. Furthermore, it should identify a
disappearance of the object (either because of a tracker failure
or a full occlusion) and start a global redetection.

A correction procedure is proposed, which fulfils these re-
quirements and works both on a local level and in a redetection
scenario. The long-term module has several states of the short-
term tracker stored – a set Φ (initialised as Φ = {ϕ1}).
When a tracking failure is detected, the short-term tracker
is initialised using each of the stored states ϕu at the last
known valid pose Pt−1. A process analogous to the standard
short-term tracking function Tϕt−1 is performed, yielding
several correcting hypotheses in addition to the current one
(using ϕt−1). Each hypothesis is assigned a score Γ, based
on transformation quality, temporal consistency and the inlier
ratio (Equations (6, 8&10)), where

Γ
(
Tϕ(It,P)

)
= Et(Sϕ) ·

∑
qt

Q(S−1
ϕ (qt)) ·

√
|It(Sϕ)|
N t

,

(16)
Sϕ is the estimate of the transformation given by tracking
from a state ϕ. The best correcting hypothesis is selected as:

ϕ∗ = arg max
ϕ̄∈Φ

Γ
(
Tϕ̄(It,Pt−1)

)
, (17)

where all the corrections are initialised from the position Pt−1.
It is then used for correction where appropriate, replacing the
current estimate:

S =


Sϕ∗

if Γ(ϕ∗) > Γ(ϕt−1)
∧
||P(ϕ∗)−P(ϕt−1)|| ≥ θ2

Sϕt−1 otherwise ,

ϕt =


update(ϕ∗)

if Γ(ϕ∗) > Γ(ϕt−1)
∧
||P(ϕ∗)−P(ϕt−1)|| ≥ θ2

update(ϕt−1) otherwise ,
(18)

where P(ϕ∗) is a shorthand for Tϕ∗(It,Pt−1) and Γ(ϕ∗) for
Γ
(
Tϕ∗(It,Pt−1)

)
(and analogously for ϕt−1, they are used

TRACK

T
R

A
C

K

TRACK & LEARN

C
O

R
R

E
C

T

Pose difference
||P(φ*)– P(φt-1)||

Corr. score
Γ(φ*)

Γ(φt-1)

θ
2

θ
1

(tracking so far good enough)

(tracking so far perfect)

(c
or

re
ct

io
n 

ba
d,

R
E

JE
C

T
)

(c
or

re
ct

io
n 

go
od

,
A

C
C

E
P

T
)

Fig. 7: Possible situations during correction. Thresholds for
the decisions are calculated from the object size.

for conciseness also further in the text). The threshold θ2, as
well as θ1 (see below), are calculated from the object size.

If the best correcting hypothesis estimated is an object pose
similar to the current one, ||P(ϕ∗) − P(ϕt−1)|| < θ2, it
is a signal that the original estimated pose was correct and
the current state is not replaced as it is expected to be better
adapted to the current object appearance. In the extreme case,
when the agreement of the estimated pose is (almost) exact,
the current state is stored for use in future corrections (block
(iv) of Figure 3):

Φnew =

{
Φ ∪ϕt−1 if ||P(ϕ∗)−P(ϕt−1)|| < θ1

Φ otherwise .
(19)

See Figure 7 for a schema of these situations. The estimated
pose P and score Γ of ϕ∗ are compared with the ones obtained
before the correction (using ϕt−1).

The corrections may consume a significant portion of
the execution time. As the asymptotic time complexity is
O(F · |Φ|), it is not feasible to keep all observed states.
Therefore a method is needed to maximise the diversity of the
learned states to cover as much variation in object appearance
as possible in a fixed space and time (in our experiments,
|Φ|max = 5). Therefore a limit is placed on the cardinality of
Φ and when it is reached, the state used least often in recent
corrections is replaced, as this is a good indicator of a state’s
usefulness in the future:

Φnew = Φ \ arg min
ϕ̄∈Φ

Υ(ϕ̄) , (20)

where Υ is the number of occasions in the past when ϕ̄
was selected according to Equation (17). This prunning is
carried out before expanding the set Φ in the former option
of Equation (19).

V. PROBABILITY OF OBJECT POSE

For many sequences, the object-and-camera system does not
use the entire parameter space of object poses. Instead, only a
significantly smaller subspace is occupied. An example would
be the appearance of a car, followed from the rear. In such
a scenario, there is almost no rotation and scale is correlated
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X-Y coordinates Scale-Rotation
(log-polar coordinates)

Fig. 8: Examples of probability distribution Ψ (scale relative
to the initial size). Top row: tracking a car, change only in
the x-coordinate (visible steps in the upper left image indicate
how narrow Ψ is). Bottom row: tracking the PAGE sequence
with large variation in rotation.

with y-coordinate (related to the actual distance between the
cars), see Figure 8.

This property of the sequences can be exploited to obtain
prior information about the object pose Pt. The distribution
Ψ of the object pose is modelled as a multivariate Gaussian
distribution (Ψ = N (µΨ,ΣΨ), log-normal for the scale
component). This models the distribution well despite the fact
that the true distribution is often not unimodal). We learn the
distribution’s parameters online, from observed object poses,
according to [2]. In the t-th frame, the update is calculated as:

µt = µt−1 +
Pt − µt−1

t
(21)

and

Σti,j =
Σt−1
i,j (t− 1) +

(
P ti − µ

t−1
i

) (
P tj − µ

t−1
j

)
t−1
t

t
,

(22)
where P ti denotes the i-th component of a variable P in the
t-th frame and similarly Σti,j is the (i, j)-th element of the
covariance matrix.

Given this probability distribution Ψ, we can make assump-
tions about the object’s pose. For example, false “corrections”
with extremely low probability can be rejected. This adds the
following constraint to the optimisation in Equation (17):

s. t. Ψ(Tϕ̄(It,Pt−1)) > θΨ . (23)

An example of this constraint’s value is a rectangular object,
which looks very similar when rotated. However, the low
probability of this pose helps us identify such a situation as
incorrect.

VI. FAILURE AND REDETECTION

The first step of the redetection procedure is to identify
object disappearances and/or tracking failure. The proposed
approach to the failure discovery is based on the following
observation. In the correction stage of LT-FLO (block (iii) of
Figure 3), the points from a stored state are applied to the

current frame, to search for correspondences. When they are
moved to an area of weak or noisy gradient, the direction of
the gradient at a particular pixel is not in accordance with its
neighbourhood, i.e. the following does not hold:

|atan2(Ix(p), Iy(p))− atan2(Īx(p), Īy(p))| < 90◦ , (24)

where Ix, Iy are components of the image gradient ~∇I
(i.e. Ix = ∂I

∂x , Iy = ∂I
∂y ) and Ī indicates the average over

the 3 × 3 neighbourhood of p. A failure is identified, when
there is an unusually high number of such points across all
the corrections. The threshold is set using the 99-th percentile
of the fitted normal distribution for that sequence.

Object disappearance and tracking failures are also detected,
based on the geometric properties of the object pose. Specif-
ically, when the tracked rectangle is too small (sizes under
10 px render the similarity function δ unreliable, objects are
thus considered too distant to track), larger than the image,
when a large portion of the tracked rectangle is outside the
image (more than three quarters of the object is out of scene)
or when there are no inliers to the estimated transformation.

Once the tracker detects that the object is lost, a redetection
occurs. Firstly, a local correction is performed (Section IV,
Equation (17)). This is followed by a global redetection, em-
ploying the stored states Φ. Instead of initialisation by Pt−1,
the global redetection is initialised at several random poses
Prand, sampled from the observed object pose distribution Ψ:

ϕ∗ = arg max
ϕ̄∈(Φ∪ϕt−1)

Γ
(
Tϕ̄(It,Prand)

)
; Prand ∼ Ψ . (25)

The best hypothesis is used for correction in the same way as
Tϕ∗ in Equation (18).

After a failure, this global redetection is performed in every
frame, until a good pose is found. Using the pose distribution
to guide the search space is more efficient than a dense
sampling of the whole parameter space. To improve the ability
to generalise to possible, but previously unseen or rare poses,
the search space is extended by multiplying the covariance
matrix ΣΨ by a constant factor during redetection.

VII. EXPERIMENTAL EVALUATION

A. Short-term Tracking

The performance of the LT-FLOtrack algorithm was first
evaluated in a short-term tracking scenario, against a number
of competitive SOTA approaches – TLD [15], LGT [4] and
FoT [23] using both standard and low-textured sequences.
Properties of the sequences are summarised in Table II and
the first frames are shown in Figure 9. The same settings were
used for all the sequences. Although the global redetection was
enabled during all the experiments, it was not required in the
short-term tracking scenario and only local corrections were
employed.

The speeds are shown in Table III. It should be noted that
while the trackers are generally implemented as a compiled
(C/C++) core with Matlab front-end, the FoT tracker is written
completely in C++. All the measurements in this publication
were carried out on a computer with the Intel i7-2600 proces-
sor (3.4 GHz, single core used). LT-FLO takes about 300 MB
of RAM.
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Fig. 9: Short-term tracking dataset. From top and left: DOG [5],
DUDEK [14], MUGN, PAGEN and SPACESHIPN.
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Fig. 10: Results of short-term tracking evaluation. From top
to bottom: DOG, DUDEK, MUG, PAGE and SPACESHIP.

TABLE II: Experimental video sequences for short-term track-
ing. Sequences marked by N are new and will be made
available online with ground truth.

Name Resolution Frames
DOG [5] 320×240 1 353
DUDEK [14] 720×480 1 145
MUGN 640×480 737
PAGEN 640×480 539
SPACESHIPN 640×360 360

TABLE III: Speed comparison of different trackers (in FPS).

Name LT-FLO TLD LGT FoT
DOG 6.3 4.3 3.4 405.5
DUDEK 3.3 2.0 2.1 131.7
MUG 4.8 2.6 2.8 230.6
PAGE 3.1 2.7 2.5 212.4
SPACESHIP 1.5 5.0 4.6 112.9

Figure 10 shows the results. Performance is measured using
location error (distance of the bounding box centre from its
ground truth position) and scale error (logarithm of ratio of the
estimated object size to its ground truth size, 0 means no error
at average). The values were averaged over 20 executions.

For the DOG sequence, the most challenging part is between
frames 700 and 1200, with a strong scale change and occlusion
by the image boundary. While LT-FLO has no major problems
and FoT experiences only light scale drift, LGT and TLD have
severe problems, both in localisation and scale estimation.

The largest challenge of the DUDEK sequence comes around
the 210th frame, when the face is occluded by the right hand.
While LT-FLO’s pose is corrected in several frames, TLD
requires a significantly longer time and the other trackers
never fully recover (see Figure 11 for details). LT-FLO also
experiences difficulties around frame 800, where background
points influence tracking and cause drift. Nevertheless, LT-
FLO recovers in every run.

Due to non-existent texture in the MUG scene, LGT is
unable to track this sequence; the points simply drift off the
mug and stay at the person’s wrist. TLD often suffers from
under- or overestimation of the object size and sometimes loses
it completely. We mark these frames, where the object was
(incorrectly) reported as missing in more than half the runs,
by a dotted line. Frames where the object is always lost have
no yellow plot at all. FoT works well in this sequence until
around frame 550, where it fails. LT-FLO is comparable up
to around frame 500, at which point tracking is lost in some
of the runs, resulting in a poorer average score. However, the
object is successfully re-detected before frame 600.

For PAGE, LGT performs similarly to the MUG sequence,
all the points stabilise at the person’s hand and wrist. FoT uses
only features from fingers and TLD often loses tracking and
rarely re-detects even when the paper returns to a pose similar
to the initial one. LT-FLO experiences difficulties, but still
significantly outperforms all the others. Due to higher errors
observed in this sequence for all the trackers, a rescaled plot
of the position error is shown in Figure 11.

SPACESHIP is an augmented reality sequence (computer
generated object on a real background). The tracked object
becomes mostly transparent with only the outline roughly
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Fig. 11: Results of short-term tracking evaluation: the PAGE
sequence and a detail of the most challenging part of the
DUDEK sequence.

TABLE IV: Experimental sequences for long-term tracking.

Name Resolution Frames
CARCHASE [15] 290×217 9 928
PANDA[15] 312×233 3 000
VOLKSWAGEN[15] 640×480 8 576
LIVERRUNN 320×240 29 700
NISSANN 640×480 3 800

visible. TLD reflects this by confidently reporting it as missing.
LGT fails to separate the target from the background, leading
to high errors from the beginning and a failure later when
it starts moving. Both FoT and LT-FLO track successfully
throughout the sequence until the end when the object is
partially occluded by trees. Their performance is comparable;
FoT having slightly lower position error and LT-FLO lower
scale error.

B. Long-term Tracking

In the short-term tracking scenario, LT-FLOtrack’s perfor-
mance is comparable or superior to state-of-the-art trackers.
However, it obviously still loses track in cases of full oc-
clusion/disappearance, thus it is necessary to test robustness
of trackers to these conditions. For the evaluation of long-
term tracking, different sequences are necessary. Not only
should they be longer, but more importantly they must include
full occlusions, background clutter and scale and illumination
changes [15]. A common source of such sequences are traffic
scenes such as car chases, when a vehicle is followed by
another (possibly aerial) vehicle. The majority of sequences
in this evaluation are therefore of this type. These sequences
explore redetection capability and predisposition to drift. Their
properties are tabulated in Table IV and the first frames are
shown in Figure 12.

In a long-term tracking scenario, it is necessary to check
whether the detection/tracking is precise (when the overlap
with the ground truth bounding box is higher than 50 %)
as well as to check for successful detection of object dis-
appearance. Kalal et al. [15] applied the precision/recall/F-
measure comparison. To check sensitivity of trackers to the
initialisation, we run the experiments multiple times with
the bounding box in the first frame shifted by 5 % in both
horizontal and vertical direction and also scaled up and down
by 5 % (averaging the results over all 7 possibilities). We also
introduce the concept of partial occlusion into the evaluation
process. When the object is not fully visible, but not fully
occluded, the tracker can receive a score for either overlap of
bounding boxes or for reporting disappearance.

Fig. 12: Long-term tracking dataset. From top and left: CAR-
CHASE [15], PANDA [15], VOLKSWAGEN [15], LIVERRUNN

and NISSANN.

TABLE V: Results of long-term tracking. Tabulated values are
in the format: F-measure (speed in FPS). The mean values
(and mean st. deviations) are weighted by number of frames.

Name LT-FLO TLD
CARCHASE .42±.07 (3.2) .15±.08 (11.3)
PANDA .17±.04 (4.1) .23±.07 (12.0)
VOLKSWAGEN .51±.20 (3.0) .62±.13 ( 5.4)
LIVERRUN .56±.20 (6.1) .29±.28 ( 4.0)
NISSAN .88±.14 (4.1) .63±.14 ( 4.4)
mean .53±.17 (4.9) .36±.22 ( 6.0)

We compare our tracker with TLD [15], the first explicitly
long-term tracker. The results can be found in Table V. The
trackers were initialised by a tight bounding box. It should be
noted that the experiments of TLD on their own dataset have
significantly different results if their own initialisation is used
(better on the CARCHASE and PANDA sequences and worse on
the VOLKSWAGEN sequence, relating to F-measures of 0.45,
0.49 and 0.57 respectively). This indicates high sensitivity to
the initialisation.

The results show that LT-FLO is capable of long-term
tracking with competitive performance. In three out of five of
the tested sequences it performed significantly better than TLD
and comparably on one sequence. Also the average perfor-
mance is better than TLD. The worst results of LT-FLO were
acquired on the PANDA sequence. This highlights sensitivity
to highly non-rigid objects with out-of-plane rotation.

Experiments were carried out with the short-term trackers
as well, but results of these are not tabulated as they lost
tracking at or before the first full occlusion (e.g. frame 440
for LIVERRUN or 1860 for NISSAN). These include FoT,
LGT and LT-FLO without global correction, which proves its
importance in long-term tracking.

C. Contributions of Algorithm Components

Local Corrections: To test the contribution of local correc-
tions, only the short-term tracker (as introduced in Section III)
was executed. See the results in Figure 13. First, we run
the short-term tracker on the DOG sequence. The results are
comparable to those of LGT or TLD, with errors almost an
order of magnitude worse than those of LT-FLO.
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Fig. 13: Tracking without local corrections. Left: DOG, right:
PAGE.

TABLE VI: Effect of elements in Equation (16): short-term
tracking (mean bounding box overlap tabulated) and long-term
tracking (F-measure tabulated).

Name E Q I E · Q E · I Q · I E · Q · I
DOG 0.76 0.73 0.74 0.73 0.76 0.74 0.77
PAGE 0.18 0.13 0.27 0.20 0.23 0.32 0.61
PANDA 0.14 0.10 0.08 0.12 0.10 0.21 0.21
NISSAN 0.20 0.42 0.31 0.25 0.41 0.78 0.88

The PAGE sequence is more difficult. Without the correc-
tions, the short-term tracker failed completely several times,
usually after approximately 100 frames. At this point (when
the bounding box overlap decreased below 10 %) we restarted
the tracking from GT, hence the low error after each disconti-
nuity. In this case, the short-term tracker was not able to track
the object throughout the sequence, with high errors reported
very shortly after each manual intervention.

Transformation Quality Measures: To test the contribution
of different components of the transformation quality measure
(E, Q and I in Equation (16)), we tried removing each of them
and testing the final performance of the tracker. Table VI sum-
marises the effect of the elements in both the short-term (DOG,
PAGE) and long-term (PANDA, NISSAN) scenarios. While in
simple sequences (DOG) the variation is low, more challenging
scenarios have significant differences in performance. The full
technique performs the best in all cases.

Thresholds Selection: Finally, we test the effect of changing
the algorithm parameters and its robustness to such selection.
The most important parameters (besides the number of gener-
ated edge-points discussed in Section III-A) are the position
error thresholds θ1 and θ2 as specified in Section IV. These are
defined relative to the object size, as a portion of the bounding
box diagonal. In our implementation, θ1 = 0.03 and θ2 = 0.06
are used.

Figure 14 shows the performance of LT-FLOtrack as a
function of these thresholds. For the DOG sequence, there
is no significant increasing or decreasing trend, indicating
low sensitivity to these parameters. For the PAGE sequence
a similar trend is seen, however the variance is greater. This
is due to the more challenging nature of the sequence and the
effects of random selection within the tracker itself.

D. VOT Challenge 2013 Results

In this section, we report the performance of our proposed
tracker on the standard VOT2013 dataset, in the VOT Chal-
lenge benchmark scenario [17]. The results are tabulated in
Table VII. We report only results of experiments 2 and 3,
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Fig. 14: Sensitivity of the method to parameters: the learning
threshold θ1 (left) and the correction threshold θ2 (right).

TABLE VII: Results of the VOT2013 benchmark on LT-
FLOtrack. The tabulated values are accuracy, robustness and
speed in FPS.

grayscale region_noise
Name Acc. Rob. Speed Acc. Rob. Speed
BICYCLE 0.58 1.73 4.52 0.57 1.60 4.10
BOLT 0.48 5.27 3.16 0.47 4.87 2.99
CAR 0.44 2.00 2.37 0.44 1.33 3.43
CUP 0.87 0.00 8.65 0.79 0.00 9.09
DAVID 0.64 0.07 6.54 0.63 0.33 5.70
DIVING 0.38 1.53 3.06 0.37 1.67 2.72
FACE 0.82 0.00 5.46 0.72 0.07 5.32
GYMNASTICS 0.53 1.33 2.95 0.50 1.20 2.45
HAND 0.45 4.93 3.89 0.45 4.67 4.38
ICESKATER 0.39 2.47 2.51 0.43 1.80 2.26
JUICE 0.89 0.00 6.74 0.78 0.07 6.87
JUMP 0.52 0.27 3.55 0.52 0.20 3.61
SINGER 0.60 0.53 0.67 0.60 0.20 0.76
SUNSHADE 0.68 1.40 5.33 0.63 1.47 5.73
TORUS 0.58 2.27 4.19 0.55 1.87 4.62
WOMAN 0.51 6.33 3.10 0.49 5.53 3.18

TABLE VIII: Overall results of the VOT Challenge 2013 [17].
The trackers are sorted according to combined performance.

Tracker Accuracy Robustness Combined
PLT 5.9 3.0 4.5
FoT 4.3 10.4 7.3
EDFT 7.9 11.8 9.8
LGT++ 14.8 5.2 10.1
LT-FLO 7.3 14.8 11.0
GSDT 10.7 11.4 11.1
SCTT 6.1 16.5 11.3
CCMS 10.0 12.7 11.4
LGT 17.3 5.9 11.6
Matrioska 10.1 13.3 11.7
AIF 7.7 16.2 12.0
Struck 11.5 12.5 12.0
DFT 10.8 13.7 12.2
IVT 10.4 14.8 12.6
ORIA 12.2 15.1 13.7
PJS-S 12.6 15.3 13.9
TLD 9.5 20.2 14.8
MIL 17.9 12.8 15.4
RDET 19.9 11.1 15.5
HT 20.0 12.9 16.5
CT 21.1 13.2 17.1
Meanshift 20.5 15.7 18.1
SwATrack 18.9 19.6 19.3
STMT 22.0 19.3 20.6
CACTuS-FL 24.2 17.8 21.0
ASAM 21.7 23.0 22.4
MORP 25.1 26.7 25.9
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Fig. 15: Accuracy-robustness plot of the VOT Challenge 2013
results. For each tracker, the accuracy and robustness rankings
were computed as a mean over all three experiments. Legend
shown only for the best five trackers, see [17] for a full report.

since LT-FLOtrack performs equally well on both coloured
and greyscale sequences. The performance of LT-FLOtrack is
the best on sequences where a rigid object is tracked (CAP,
JUICE). On the other hand, sequences with highly non-rigid
objects (DIVING, HAND) score lower, as well as cases of
strong out-of-plane rotation (CAR).

Table VIII brings an overall comparison of all trackers com-
peting in the VOT Challenge 2013. In this highly competitive
challenge, LT-FLOtrack performed favourably compared to
other state-of-the-art trackers and finished fifth place in the
competition of 27. See Figure 15 for a visual comparison
of trackers’ performance in the challenge. Rankings in both
accuracy and robustness are plotted, the higher and further
right a tracker is, the better its rank. LT-FLOtrack, while
having only average robustness (mainly due to its inability
to track articulated objects), excels in the accuracy ranking,
where its drift-resistant nature proves invaluable. However,
it should be noted that the VOT Challenge does not test
properties where LT-FLO is the strongest, in particular low
texture and long sequences (possibly with full occlusions), but
it does provide evidence that it remains comparable on these
simpler sequences.

E. VOT Challenge 2014 Results

The same experiments were carried out on the VOT2014
dataset – see Table IX for results [18]. Among the best scoring
are, unsurprisingly, rigid-object sequences such as SPHERE
or CAR (not to be confused with the VOT2013 sequence of
the same name). Although the tracked object in the SURFING
sequence is a person, LT-FLOtrack performs well, since the
person does not move his limbs such that body articulation
creates a problem. On the other side of the spectrum is highly
articulated DIVING (as in VOT2013), and BALL, which, while
rigid, contains strong out-of-plane rotation.

In Figure 16 we compare the performance of LT-FLO with
other trackers competing in the VOT2014 challenge. As can be

TABLE IX: Results of the VOT2014 benchmark on LT-
FLOtrack. The tabulated values are accuracy, robustness and
speed in FPS.

baseline region_noise
Name Acc. Rob. Speed Acc. Rob. Speed
BALL 0.38 4.07 5.01 0.38 4.27 5.09
BASKETBALL 0.52 4.60 2.04 0.48 4.80 2.12
BICYCLE 0.58 1.67 5.05 0.57 1.60 4.41
BOLT 0.50 4.40 3.20 0.46 5.07 3.23
CAR 0.75 0.87 4.27 0.68 0.87 4.62
DAVID 0.68 0.00 7.60 0.62 0.20 6.51
DIVING 0.24 3.27 2.68 0.28 3.53 3.02
DRUNK 0.59 0.93 1.77 0.45 0.73 2.07
FERNANDO 0.32 1.27 1.49 0.32 1.40 1.21
FISH1 0.36 6.80 4.85 0.33 7.20 4.37
FISH2 0.27 6.27 2.61 0.23 6.13 2.73
GYMNASTICS 0.56 1.07 3.13 0.51 2.20 2.57
HAND1 0.48 3.80 3.70 0.47 4.67 4.77
HAND2 0.40 9.00 3.63 0.35 9.13 4.21
JOGGING 0.68 1.13 5.46 0.63 1.07 5.57
MOTOCROSS 0.61 1.67 2.43 0.55 1.47 2.56
POLARBEAR 0.63 0.00 5.19 0.54 0.07 4.77
SKATING 0.40 1.73 4.17 0.44 1.60 4.26
SPHERE 0.81 0.00 4.48 0.76 0.00 4.50
SUNSHADE 0.70 1.33 5.28 0.69 1.20 5.45
SURFING 0.80 0.07 9.54 0.72 0.07 9.13
TORUS 0.58 1.73 4.78 0.58 2.13 4.12
TRELLIS 0.62 2.13 5.58 0.60 1.67 5.93
TUNNEL 0.60 0.60 2.68 0.55 0.67 2.05
WOMAN 0.55 5.53 3.57 0.50 5.40 3.72
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Fig. 16: Accuracy-robustness plot of the VOT Challenge 2014
results. For each tracker, the accuracy and robustness rankings
were computed as a mean over the two experiments. Legend
shown only for the best five trackers, see [18] for a full report.

seen from the accuracy-robustness plot, the proposed tracker
again performs well in terms of accuracy, being placed near
the top of the vertical axis. It should again be noted that
the benchmark has a very different focus than this paper
and it fails to test our contributions: texture-less objects,
transparencies and long-term sequences. However, it is useful
to show the long-term and texture-less adaptations do not
preclude competitive performance in standard sequences.

F. Visual Tracker Benchmark 1.0 Results

The proposed tracker was additionally evaluated in the
context of the Visual Tracker Benchmark 1.0 [31], also known
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TABLE X: Results (AUC on OPE test) on the VTB1.0 benchmark [31]. The trackers are sorted according to overall performance.

Tracker IV OPR SV OCC DEF MB FM IPR OV BC LR All
SCM 0.473 0.470 0.518 0.487 0.448 0.298 0.296 0.458 0.361 0.450 0.279 0.499
Struck 0.428 0.432 0.425 0.413 0.393 0.433 0.462 0.444 0.459 0.458 0.372 0.474
LT-FLO 0.422 0.398 0.453 0.430 0.374 0.326 0.315 0.409 0.456 0.412 0.369 0.444
TLD 0.399 0.420 0.421 0.402 0.378 0.404 0.417 0.416 0.457 0.345 0.309 0.437
ASLA 0.429 0.422 0.452 0.376 0.372 0.258 0.247 0.425 0.312 0.408 0.157 0.434
CXT 0.368 0.418 0.389 0.372 0.324 0.369 0.388 0.452 0.427 0.338 0.312 0.426
VTS 0.429 0.425 0.400 0.398 0.368 0.304 0.300 0.416 0.443 0.428 0.168 0.416
VTD 0.420 0.434 0.405 0.403 0.377 0.309 0.302 0.430 0.446 0.425 0.177 0.416
CSK 0.369 0.386 0.350 0.365 0.343 0.305 0.316 0.399 0.349 0.421 0.350 0.398
LSK 0.371 0.400 0.373 0.409 0.377 0.302 0.328 0.411 0.430 0.388 0.235 0.395
DFT 0.383 0.387 0.329 0.381 0.439 0.333 0.320 0.365 0.351 0.407 0.200 0.389
L1APG 0.283 0.360 0.350 0.353 0.311 0.310 0.311 0.391 0.303 0.350 0.381 0.380
MTT 0.305 0.362 0.348 0.342 0.280 0.274 0.333 0.395 0.342 0.337 0.389 0.376
OAB 0.300 0.358 0.370 0.368 0.351 0.324 0.358 0.345 0.414 0.341 0.304 0.370
LOT 0.286 0.364 0.335 0.378 0.345 0.312 0.331 0.355 0.467 0.385 0.189 0.367
MIL 0.311 0.350 0.335 0.335 0.369 0.282 0.326 0.340 0.382 0.373 0.153 0.359
IVT 0.306 0.323 0.344 0.325 0.281 0.197 0.202 0.330 0.274 0.291 0.238 0.358
CPF 0.271 0.372 0.335 0.384 0.371 0.250 0.307 0.341 0.400 0.303 0.151 0.355
TM-V 0.291 0.323 0.320 0.325 0.308 0.362 0.347 0.340 0.429 0.312 0.214 0.352
Frag 0.269 0.332 0.289 0.360 0.366 0.253 0.281 0.300 0.319 0.325 0.149 0.352
RS-V 0.302 0.342 0.314 0.350 0.364 0.305 0.299 0.318 0.368 0.359 0.221 0.346
ORIA 0.321 0.346 0.317 0.327 0.256 0.193 0.221 0.362 0.302 0.275 0.180 0.333
SemiT 0.273 0.303 0.285 0.313 0.337 0.296 0.300 0.297 0.319 0.317 0.330 0.332
KMS 0.333 0.317 0.312 0.333 0.328 0.326 0.321 0.287 0.400 0.321 0.211 0.326
BSBT 0.278 0.319 0.266 0.322 0.295 0.289 0.289 0.313 0.401 0.275 0.229 0.322
PD-V 0.296 0.293 0.263 0.316 0.347 0.276 0.264 0.255 0.231 0.260 0.165 0.308
CT 0.295 0.297 0.302 0.321 0.345 0.269 0.298 0.282 0.359 0.273 0.120 0.306
VR-V 0.212 0.256 0.234 0.273 0.301 0.232 0.214 0.223 0.217 0.264 0.125 0.268
SMS 0.214 0.237 0.259 0.268 0.233 0.221 0.248 0.191 0.298 0.183 0.151 0.229
MS-V 0.225 0.215 0.212 0.200 0.166 0.234 0.230 0.203 0.305 0.212 0.121 0.212

as the CVPR tracker benchmark.2 This reports results of a
different (mostly disjoint with VOT) set of trackers and a more
extensive dataset (although with a significant overlap). The
dataset contains sequences with longer durations and larger,
even full, occlusions. The results can be seen in Table X.
Following common practice, we report area under curve
(AUC) of the success plots on the OPE (one-pass evaluation)
test, for all the sequences and broken down by the scene
attributes.

The longer sequences with stronger occlusion allow the
long-term module of LT-FLO to prove its value. It placed
third (i.e. in the top 10 %) in the overall leader-board. Unsur-
prisingly, the results on sequences with occlusions (the OCC
column of Table X) are even better. On the other hand, in
sequences with out-of-plane rotations (OPR) the performance
is not as good.

VIII. CONCLUSION

In this paper, a novel long-term, edge-based tracking algo-
rithm is presented. A two module approach is used, where
the short-term tracker finds the frame-to-frame transforma-
tions, using correspondences of lines tangent to edges. This
works for textured, low-textured and even transparent objects.
The long-term module facilitates learning of the changing
appearance of the tracked object, recovery from failures and
redetection after full occlusions. Strict learning rules make it

2IV: Illumination Variation, OPR: Out-of-Plane Rotation, SV: Scale Vari-
ation, OCC: Occlusion, DEF: Deformation, MB: Motion Blur, FM: Fast
Motion, IPR: In-Plane Rotation, OV: Out-of-View, BC: Background Clutter,
LR: Low Resolution.

very robust to drift. This, in conjunction with a guided rede-
tection framework, renders LT-FLOtrack capable of tracking
extremely long sequences robustly.

LT-FLOtrack covers several challenging cases, where tra-
ditional trackers often fail. However, it does not attain the
highest score on every sequence. As the experiments show,
there are several failure cases. These limitations stem from the
data not following the assumptions of the method. Typically,
performance is degraded for highly non-rigid or articulated ob-
jects (e.g. in the PANDA sequence), as non-rigid objects break
the definition of virtual corners (that distant edges are rigidly
attached in 3D). LT-FLO can cover these only partially, using
its multiple models. The same reasoning also applies to cases
of strong out-of-plane rotation. Finally, edge-distorting com-
pression artefacts can cause the edge-correspondence search
to fail.
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Jiřı́ Matas is a full professor at the Center for
Machine Perception, Czech Technical University in
Prague. He holds a PhD degree from the University
of Surrey, UK (1995). He has published more than
300 papers in refereed journals and conferences. His
publications have approximately 10000 citations in
the ISI Thomson-Reuters SCI and about 22000 in
Google Scholar. His h-index is 40 (SCI) and 52
(Scholar) respectively. He received the best paper
prize at BMVC in 2002 and 2005 and at ACCV
in 2007. J. Matas has served in various roles at

major international conferences (e.g. ICCV, CVPR, ICPR, NIPS, ECCV),
co-chairing ECCV 2004 and CVPR 2007. He is on the editorial board of
IJCV and was the Associate Editor-in-Chief of IEEE TPAMI. His research
interests include object recognition, image retrieval, tracking, sequential
pattern recognition, invariant feature detection, and Hough Transform and
RANSAC-type optimization.

Richard Bowden received a BSc and MSc from the
Universities of London and Leeds and a PhD from
Brunel University which was awarded the Sullivan
Doctoral Thesis Prize. He is Professor of computer
vision and machine learning at the University of
Surrey leading the Cognitive Vision Group within
the Centre for Vision, Speech and Signal Processing
and was awarded a Royal Society Leverhulme Trust
Senior Research Fellowship. His research centres
on the use of computer vision to locate, track, and
understand humans. He is an associate editor for the

journals Image and Vision computing and IEEE TPAMI.


