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Abstract

Long term tracking of an object, given only a single in-
stance in an initial frame, remains an open problem. We
propose a visual tracking algorithm, robust to many of the
difficulties which often occur in real-world scenes. Corre-
spondences of edge-based features are used, to overcome
the reliance on the texture of the tracked object and improve
invariance to lighting. Furthermore we address long-term
stability, enabling the tracker to recover from drift and to
provide redetection following object disappearance or oc-
clusion. The two-module principle is similar to the success-
ful state-of-the-art long-term TLD tracker, however our ap-
proach extends to cases of low-textured objects.

Besides reporting our results on the VOT Challenge
dataset, we perform two additional experiments. Firstly,
results on short-term sequences show the performance of
tracking challenging objects which represent failure cases
for competing state-of-the-art approaches. Secondly, long
sequences are tracked, including one of almost 30 000
frames which to our knowledge is the longest tracking se-
quence reported to date. This tests the re-detection and drift
resistance properties of the tracker. All the results are com-
parable to the state-of-the-art on sequences with textured
objects and superior on non-textured objects. The new an-
notated sequences are made publicly available.

1. Introduction
Visual tracking is a field of computer vision which has

been thoroughly studied over the years. Many approaches
have been proposed including tracking via local optimisa-
tion, regression, detection, segmentation, generative models
and online learning. Long-term trackers attempt to model
and adapt to changes in object appearance over time, using
multiple observations to enrich their representations. This
in turn leads to drift due to the difficulty of unsupervised
learning. Recent approaches overcome this through a com-
bination of detection combined with local search and intel-
ligent online update strategies, which can compensate for
drift via redetection. As such, consistency of appearance
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Figure 1: Examples from challenging sequences.

is extremely important, because radical changes can cause
tracking failure or corruption of the model. The notion of
appearance typically relies on texture or other strong visual
attributes. However, there are a whole range of scenarios
where sufficient texture is either absent or highly variable
due to changes in pose or scene illumination.

Figure 1 shows example frames from two challenging
sequences which typically lead to tracking failures. Fig. 1a
and 1b show images from Ross et al. [15] where the ini-
tial target face is so dark that visual features are almost in-
distinguishable to the human eye. However, as shown by
the bounding box, the proposed LT-FLO tracker is capable
of tracking the entire sequence (see supplementary material
for a results video). Even Ross et al. do not track this se-
quence from the start, only beginning at the 300th frame
(shown in 1b) where the visual appearance from lighting
is more consistent with the remainder of the video. Simi-
larly Fig. 1c–1d show a texture-less object (a single piece
of white paper on a light background). Trackers which rely
on texture or appearance fail on this sequence. Again the
bounding box shows LT-FLOs ability to successfully track
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in this scenario. Furthermore, we demonstrate LT-FLO suc-
cessfully tracking a sequence of over 29 000 frames which
to our knowledge is the longest sequence reported to date.

Many recent state-of-the-art trackers are based either on
an extension to the Lucas-Kanade tracker [12] (or connected
group of trackers, e.g. [2]) or on learning texture-related
classifiers for tracking by detection [3, 7, 5]. Almost all ap-
proaches rely upon strong appearance cues, leading to fail-
ure in scenes such as in Fig. 1c.

Cehovin et al. [2] use a coupled-layer approach. The
local layer consists of independently tracked patches, con-
straining the appearance of object components. The global
layer models object colour, shape and motion. Consistency
of local trackers is enforced; however changes in shape are
possible, allowing the LGT (Local-Global Tracker) to track
highly non-rigid objects.

Kalal et al. [9] combine tracking and detection in their
TLD (Tracking-Learning-Detection) algorithm. While the
tracker estimates the frame-to-frame motion, the detector
treats every frame as independent (as in a tracking-by-
detection scenario). Positive and negative examples are
learned according to the (dis-)agreement of these two com-
ponents, improving further detection. Explicit modelling of
failures for both components coupled with independent de-
tection inherently makes this tracker suitable for long-term
tracking, with necessary drift-resistance and redetection af-
ter full occlusions.

There have been previous attempts to decrease the re-
liance on object texture, including previous use of edge-
based features. The aperture problem (see Fig. 2) renders
these spatially unstable, as neighbouring pixels along the
direction of the edge are indistinguishable. However, such
features are still valuable: e.g. Smith et al. used lines in
a visual SLAM framework [16]. For tracking, Tsin et al.
[17] fit line segments modelling the object to detected edge-
points. The same approach was used in [4, 6], when search-
ing for a pose of a wireframe-represented, user-specified,
3D object. Our approach uses similar principles, but the ob-
ject model is learned in a completely unsupervised manner.

Most recently, Lebeda et al. [10] proposed an approach
that overcomes the aperture problem by estimating the ge-
ometry from edge-based line correspondences. To cope
with situations involving insufficient point-to-point corre-
spondences, line-to-line correspondences are used. These
are robust to shifts along the edge. The tracker is dubbed
FLOtrack – FeatureLess Object tracker. This article is
partly inspired by their approach.

In this work we employ line correspondences within
a robust motion estimation framework for frame-to-frame
tracking. We also propose an approach to learning the man-
ifold of observed object poses in a probabilistic manner.
This probability is then directly used to reject “impossible”
poses.

As a second major contribution we propose a redetec-
tion strategy that identifies when a failure or object dis-
appearance occurs and uses the online model of appear-
ance, in conjunction with the learnt pose manifold, to re-
locate the object. This gives the tracker long-term stability,
which combined with its inherent drift resistance renders
it suitable for tracking long video sequences with full oc-
clusions. It is the first long-term edge-based tracker. We
dub the tracker LT-FLOtrack (Long-Term FeatureLess Ob-
ject tracker).

Further we introduce several improvements to the op-
erational speed and robustness of the algorithm, giving
a marked performance increase over FLOtrack. Finally, we
make the new long-term sequences publicly available in-
cluding manual ground-truth annotations.1

The LT-FLOtrack algorithm is introduced in section 2. It
consists of two parts shown in sections 3 and 4. Section 5
describes the probability density estimation and section 6
the redetection scheme. Our claims are experimentally val-
idated in section 7 and conclusions are drawn in section 8.

2. Texture-less Tracking
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Figure 2: Establishing line correspondences regardless of
the aperture problem.

The task of the tracker is to find a pose Pt of the object in
frame ft. The tracked object is represented as a set of edge
points (locations of locally maximal gradient). The funda-
mental elements for tracking are tentative correspondences
of lines tangential to isocontours. Fig. 2a shows two points
{a1,b1} identified on the contour of an object and their tan-
gent lines. Attempting to locate the motion of these points
in the next consecutive frame is ill-defined. Fig. 2b shows
that a local search normal to the edge direction incorrectly
identifies correspondences {a2,b2} which are shifted along
the contour, instead of the true correspondence {a∗2,b∗2}.
However, under the assumptions of a small shift between
two consecutive frames and a local linearity of the edges,
these points generate the same corresponding lines. By us-
ing the line intersection c2 and its motion from the inter-
section in the previous frame (c1), transformations can be
calculated using edge features while overcoming the aper-
ture problem.

1http://cvssp.org/data/YTLongTrack/
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Figure 3: Overview of the LT-FLOtrack algorithm.

Fig. 3 shows an overview of the LT-FLOtrack. It con-
sists of two modules performing different tasks. The first
is a short-term tracker, which finds line correspondences
and estimates frame-to-frame transformations (block (i)).
It then updates knowledge about the object in each frame
(block (ii)), including the positions of good edges to track
and observed edge stability (edge quality field). The short-
term tracker is formalised in Alg. 1.

The second module maintains long-term relations. In
cases of low confidence within the short-term tracker, a pro-
cedure to correct the pose is performed (block (iii)). Alter-
natively, if short-term tracking leads to a correct pose esti-
mate, its state is stored (block (iv)) for future corrections.
Block (iv) also includes updates to the observed pose prob-
ability distribution in every frame.

3. Short-term Tracker

Algorithm 1 The Short-term Tracker
1: Q1 ← initialise point quality field
2: for t = 2→ F do
3: pt ← generate edge-points (ft−1)
4: q′t ← find tentative correspondences (ft)
5: S′′ ← estimate transformation by RANSAC (pt, q

′
t)

6: qt ← find tentative correspondences (ft, init by S′′)
7: S′ ← estimate transformation by RANSAC (pt, qt)
8: S ← refine transformation (S′, Qt−1)
9: Qt ← update point quality field (pt, S,Qt−1)

10: end for

To find the pose Pt, the short-term tracker estimates
a (similarity) transformation S, such that Pt = S(Pt−1).
Algorithm 1 describes this short-term part of LT-FLOtrack
(F is the total number of frames processed). Lines 4 to 8

correspond to the block (i) and lines 3 and 9 refer to the
block (ii) of Fig. 3. In each frame, a set of edge-points pt is
generated (line 3). Successfully matched correspondences
(inliers to S) from the last frame (qt−1) are retained and
new edge-points are generated to keep a stable number of
correspondences. As this number has a significant impact
on execution times, it should be as low as possible, while
keeping the results stable. To estimate a suitable number of
correspondences for a given sequence, we propose a data-
driven method, which is described and experimentally jus-
tified in section 3.1. The next step is to determine which
edges are suitable for tracking. These should be invariant
to the brightness changes and evenly distributed on the ob-
ject, e.g. strong edges should be selected when possible and
weaker edges only in regions of low contrast. We use a pro-
cedure, which iteratively searches for strong nearby edges,
from randomly selected positions r along a line normal to
the edge direction [6, 10]. As this uses only the image gra-
dient, it is dubbed an unguided edge search. The selected
edge-points are defined as

pt = arg max
p′t∈r+λ~∇f(r)

|∇ft−1(p′t)| · exp(−λ2/σ2) , (1)

where λ is the distance along gradient direction. The maxi-
mum λ and the scale σ are based on the object size.

When establishing correspondences (line 4), another
edge search is required, however the task is different. In-
stead of locally strong edges, we are looking for edges sim-
ilar to those from the previous frame. As such, a guided
(using information from the previous frame) edge search is
used. This searches for positions with similar gradient an-
gle and local appearance. The search starts at the locations
of edge-points from the previous frame and multiple search
lines are used (normal to the edge in the last frame and offset
by ± π

10 ). The tentative edge-point correspondences (pt, q
′
t)

are then transformed to line-to-line correspondences using
the gradient direction: lt = pt + λ~n;λ ∈ (−∞;∞), where
~n is normal to ~∇f(pt). The same process is done for q′t.

LO-RANSAC [11] uses these to estimate a geometric
transformation S′′ between the two frames (line 5), max-
imising image evidence Et [10]. This is defined as the aver-
age fit of edge-points from the previous frame to the edges
in the current frame. The computation of image evidence is
based on an oriented Chamfer distance [14] as

Et(S
′) =

1

Nt

∑
pt

ept · Λ , (2)

ept =
cos(∆α)/2 + 1/2

1 + d(S′′(pt))
, (3)

where d(·) is Euclidean distance of a point to the nearest
Canny’s edge, ∆α is difference between the gradient an-
gle of a point and its nearest edge (taking rotation induced



Figure 4: Example of an image and its edge quality field.

by S′′ into account), Nt is the number of correspondences
and Λ is a regularisation term penalising large changes be-
tween Pt−1 and Pt. The minimal sample for RANSAC is
a triplet of lines, whose intersections are used to generate
a transformation hypothesis. To get a more precise transfor-
mation with a higher number of inliers, the process is then
repeated, using the transformation estimate as initialisation
(lines 6 and 7). In this second iteration, the new locations of
correspondences qt are computed and converged to nearby
edges. LO-RANSAC is then executed again using the new
line-to-line correspondences.

The estimated transformation S′ is usually more accu-
rate, however it still may be noisy, which would ultimately
result in tracker drift. It is therefore necessary to stabilise
the estimation relative to previous frames. In LT-FLO this
is done by learning the locations of edges, which have pre-
viously predicted a correct transformation. This knowledge
is stored as an edge quality field Qt, giving an estimate of
object structure (stable edges, see Fig. 4 for an example).
We expect the corresponding edges in the new frame to fit
to this model of previously stable edges w.r.t. the estimated
transformation. Therefore we maximise the fit (line 8 of the
Alg. 1):

S = arg max
s

∑
qt

Qt−1(s−1(qt)) (4)

using Nelder-Mead iterative optimisation of the transforma-
tion parameters. In every frame, Qt is updated as follows:

Qt = ω · S(Qt−1) +
⋃
pt

ept , (5)

where ω is a forgetting factor (line 9). The field Q1 is ini-
tialised taking all the edge-points from the first frame as
reliable (line 1).

To allow us to refer to the short-term tracker in a compact
form, we will adopt the following notation. The complete
state of the tracker will be referred to as ϕt−1 and includes
information about the object pose Pt−1, edge-points pt2 and
the edge quality field Qt−1. The short-term tracker can then
be seen as a series of recursive calls to a tracking function:

Pt = Tϕt−1
(ft, Pt−1) . (6)
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Figure 5: Dependence of the number of correspondences
and inliers on number of generated points. The red line in
the right image shows standard deviation in bins of size 20.
In this particular case (beginning of the DUDEK sequence),
we can expect stable behaviour with about 350 correspon-
dences, thus it is enough to generate 500 new points.

3.1. On the Number of Generated Edge-points

To estimate a sufficient number of correspondences for
a successful tracking of a given sequence, we employ an
approach that accounts for the object’s size and complex-
ity. The number of final correspondences after the edge
search is usually lower than the number of generated edge-
points. Furthermore, this dependency is strongly non-linear
and saturates (see Fig. 5). Thus we find the saturation level
in the first frame by initialising with a high number of ran-
dom points. Then we set the number of generated points
proportional to the saturation level. This is adjusted accord-
ing to the observed scale changes.

4. Long-term Module
Using line-correspondences for short-term tracking

works well for short sequences. Nevertheless, for longer
sequences it suffers from error accumulation (drift) and is
not robust to severe occlusions.

The long-term module of LT-FLO continuously checks
the image evidence score Et, as this is a good indicator of
the quality of the estimated transformation. When Et de-
creases suddenly, this indicates a problem (the confidence
in the current solution is low). On such an occasion, the
short-term tracker may experience difficulties and may need
correction (block (iii) of Fig. 3). The desired property of
the (local) correction is that it can, given the last known
pose of the tracked object, estimate its new pose regard-
less of any drift in the short-term tracker. Furthermore, it
should identify a disappearance of the object (either because
of a tracker failure or a full occlusion) and start a global cor-
rection, i.e. a redetection.

We propose a correction procedure, which fulfils these
requirements and works both on a local level and in a rede-
tection scenario. The long-term module has several states
of the short-term tracker stored – a set Φ (initialised as
Φ = {ϕ1}). When a tracking failure is detected, the short-

2Points pt are computed from ft−1.



term tracker is initialised using each of the stored states
at the last known valid pose. A process analogous to the
standard short-term tracking function Tϕt−1

is performed,
yielding several hypotheses – the current one and multiple
correcting hypotheses. Each hypothesis is assigned a score:

Γ(Tϕu
) =

√
|It(Sϕu

)|
Nt

·Et(Sϕu
) ·
∑
qt

Qu(S−1
ϕu

(qt)) , (7)

where u is the frame number of ϕu. Sϕ is the estimate of
the transformation given by tracking from a state ϕu, and
I(Sϕu

) are the inliers: a subset of correspondences (pt, qt)
consistent with Sϕu . The hypothesis with the highest score
is then selected and used for correction:

ϕ∗ = arg max
ϕ∈Φ∪ϕt

Γ (Tϕ(ft, Pt−1)) , (8)

S = Sϕ∗ , ϕt−1 = ϕ∗ . (9)

If the best correcting hypothesis estimated is an object
pose similar to the current one, it is a signal that the orig-
inal estimated pose was correct and the current state is not
replaced as it is expected to be better adapted to the current
object appearance. In the extreme case, when the agreement
of the estimated poses is (almost) exact, the current state is
stored for use in future corrections (block (iv) of Fig. 3):

Φnew = Φ ∪ ϕt−1 . (10)

Thresholds for these decisions are calculated from the ob-
ject size. At the start of the LT-FLO algorithm, the pool of
correcting states is initialised with the state from the first
frame.

The corrections may consume a significant portion of the
execution time. As the time complexity is O(F · |Φ|), it is
not feasible to keep all observed states. Therefore we need
a method to maximise the diversity of the learned states and
cover as much variation in object appearance as possible in
a fixed space and time (in our experiments, |Φ|max = 5).
We therefore place a limit on the cardinality of Φ and when
we reach it, we replace the state used least often in recent
corrections as this is a good indicator of state’s usefulness
in the future:

Φnew = Φ \ arg min
ϕ∈Φ

Υ(ϕ) , (11)

where Υ(ϕ) is the number of occasions in the past when ϕ
was selected according to the Eq. (8).

5. Probability of Object Pose
For many sequences, the object-and-camera system does

not use the entire parameter space of object poses. Instead,
only a significantly smaller subspace is occupied. An exam-
ple would be the appearance of a car, followed from the rear.

X-Y coordinates Scale-Rotation
(log-polar coordinates)

Figure 6: Examples of probability distribution Ψ (scale rela-
tive to the initial size). Top row: tracking a car (visible steps
in the upper left image indicate how narrow Ψ is). Bottom
row: tracking the PAGE sequence.

In such a scenario, there is almost no rotation and scale is
correlated with y-coordinate (related to the actual distance
between the cars). See Fig. 6.

This property of the sequences can be exploited to ob-
tain a prior on the object pose Pt. The distribution Ψ of the
object pose is modelled as a multivariate Gaussian distribu-
tion (log-normal for the scale component). This models the
distribution well despite the fact that the true distribution is
often not unimodal). We learn the distribution’s parameters
online, from observed object poses, according to [1]. In the
t-th frame, the covariance is updated as:

ΣtΨ;i,j=
Σt−1

Ψ;i,j(t− 1) +
(
xti − x̄

t−1
i

)(
xtj − x̄

t−1
j

)
t−1
t

t
,

(12)
where xti denotes the i-th component of a variable x in the
t-th frame and similarly ΣtΨ;i,j is the (i, j)-th element of
its covariance matrix in the t-th frame; x̄ is the mean (the
update of which is trivial).

Given this probability distribution Ψ, we can make as-
sumptions about the object’s pose. For example, false “cor-
rections” with extremely low probability can be rejected.
This adds the following constraint to the optimisation in (8):

s. t. Ψ(Tϕ(ft, Pt−1)) > θΨ . (13)

E.g. a rectangular object may look very similar when ro-
tated, but low probability of the pose helps us identify such
a situation as incorrect.

6. Failure and Redetection
The first step of the redetection procedure is to identify

object disappearances and/or tracking failure. The proposed



approach to the failure discovery is based on the following
observation. In the correction stage of LT-FLO (block (iii)
of Fig. 3), the points from a stored state are applied to the
current frame, to search for correspondences. When they
are moved to an area of weak or noisy gradient, the direction
of the gradient at a particular pixel is not in accordance with
its neighbourhood, i.e. the following does not hold:

cos [atan2(gx(pt), gy(pt))− atan2(ḡx(pt), ḡy(pt))] > 0 ,
(14)

where gx, gy are components of the image gradient ~∇f and
ḡ indicates average over the 3× 3 neighbourhood of pt. We
say the tracker failed, when there is an unusually high num-
ber of such points across all the corrections. The threshold
is set here using the 99-th percentile of the fitted normal
distribution for that sequence.

Object disappearance and tracking failures are also de-
tected, based on geometric properties of the object pose.
Specifically, when the tracked rectangle is too small (object
considered too distant to track) or too large, when a large
portion of tracked rectangle is outside the image (object out
of scene) or when there are no inliers to the estimated trans-
formation.

Once the tracker detects that the object is lost, a redetec-
tion occurs. Firstly, a local correction is performed (Sec-
tion 4). This is followed by a global redetection, employ-
ing the stored states Φ. Instead of initialisation by Pt−1,
the global redetection is initialised at several random poses
Prand , sampled from the observed object pose distribu-
tion Ψ:

ϕ∗ = arg max
ϕ∈Φ∪ϕt−1

Γ (Tϕ(ft, Prand)) ; Prand ∼ Ψ . (15)

After a failure, this global redetection is performed in every
frame, until a good pose is found. Using the pose distribu-
tion to guide the search space is more efficient than a dense
sampling of the whole parameter space. To improve the
ability to generalise to possible, but previously unseen or
rare poses, the search space is extended by multiplying the
covariance matrix ΣΨ by a constant factor for each frame
where redetection is performed.

7. Experimental Evaluation
7.1. VOT Challenge Results

Firstly, we report the performance of our proposed
tracker on the standard VOT2013 dataset. The results are
tabulated in Tab. 1 and 2. LT-FLOtrack performs equally
well on both coloured and grayscale sequences, thus we re-
port only results of experiments 2 and 3. The performance
of LT-FLOtrack is very good on sequences where a rigid ob-
ject is tracked (CAP, JUICE). On the other hand, sequences
with highly non-rigid objects (DIVING, HAND) score lower,
as well as cases of strong out-of-plane rotation (CAR).

bicycle bolt car cup david diving
accuracy 0.57 0.47 0.44 0.79 0.63 0.37
robustness 1.60 4.87 1.33 0.00 0.33 1.67
speed (fps) 4.10 2.99 3.43 9.09 5.70 2.72

face gymnastics hand iceskater juice jump
accuracy 0.72 0.50 0.45 0.43 0.78 0.52
robustness 0.07 1.20 4.67 1.80 0.07 0.20
speed (fps) 5.32 2.45 4.38 2.26 6.87 3.61

singer sunshade torus woman
accuracy 0.60 0.63 0.55 0.49
robustness 0.20 1.47 1.87 5.53
speed (fps) 0.76 5.73 4.62 3.18

Table 1: Results of the region noise experiment.

bicycle bolt car cup david diving
accuracy 0.58 0.48 0.44 0.87 0.64 0.38
robustness 1.73 5.27 2.00 0.00 0.07 1.53
speed (fps) 4.52 3.16 2.37 8.65 6.54 3.06

face gymnastics hand iceskater juice jump
accuracy 0.82 0.53 0.45 0.39 0.89 0.52
robustness 0.00 1.33 4.93 2.47 0.00 0.27
speed (fps) 5.46 2.95 3.89 2.51 6.74 3.55

singer sunshade torus woman
accuracy 0.60 0.68 0.58 0.51
robustness 0.53 1.40 2.27 6.33
speed (fps) 0.67 5.33 4.19 3.10

Table 2: Results of the grayscale experiment.

7.2. Short-term Tracking

The performance of the LT-FLOtrack algorithm was next
evaluated in a short-term tracking scenario, against a num-
ber of competitive SOTA approaches – FLO [10], TLD [9],
LGT [2] and FoT [13] using the datasets from [10]. Proper-
ties of the sequences are summarised in Table 3 and the first
frames are shown in Fig. 7 and 9.

The speeds are shown in Table 4. It should be noted
that while the trackers are generally implemented as a com-
piled (C/C++) core with Matlab front-end, the FoT tracker
is written completely in C++.

Figure 8 shows the results. Performance is measured us-
ing position error (distance of the tracked area centre from
its ground truth position) and scale error (logarithm of ratio

Name Resolution Frames
DUDEK 720×480 1 145
DOG 320×240 1 353
MUG 640×480 737
PAGE 640×480 539

Name Resolution Frames
CARCHASE 290×217 9 928
PANDA 312×233 3 000
VOLKSW. 640×480 8 576
LIVERRUNN 320×240 29 700
NISSANN 640×480 3 800

Table 3: Experimental video sequences (left: short-term
tracking, right: long-term tracking). Sequences marked
by N are new and the authors are not aware of their usage
in any previous publication. These are available online with
ground truth.



Figure 7: Short-term tracking dataset of [10]. From top and
left: DUDEK [8], DOG [3], MUG and PAGE.

Sequence DUDEK DOG MUG PAGE

LT-FLO 3.3 6.3 4.8 3.1
FLO 0.2 0.3 0.4 0.3
TLD 2.0 4.3 2.6 2.7
LGT 2.1 3.4 2.8 2.5
FoT 131.7 405.5 230.6 212.4

Table 4: Speed comparison of different trackers (in FPS).

of the estimated object size to its ground truth size). The
values were averaged over 20 executions.

It is apparent that the LT-FLO is at least as good as
FLOtrack (DOG, PAGE, while significantly outperforming
the other trackers), or better (DUDEK, MUG). In particular,
higher robustness to out-of-plane rotation improves perfor-
mance beyond frame 800 of the DUDEK sequence, where
FLO experiences drift. LT-FLO as well as FLO and TLD
recover successfully from the occlusion in frame 200, while
the other trackers do not (however TLD takes longer to do
so). In the MUG scene, the trackers sometimes lock onto
the background, however the number of such situations is
reduced in LT-FLO, resulting in significant reduction of the
mean position error. Compared to the other trackers, on the
MUG sequence, FoT works well (comparable to LT-FLO)
while TLD sometimes gets lost and often underestimates
the size of the object. LGT cannot track the sequence, due
to a lack of texture information.

7.3. Long-term Tracking

For the evaluation of long-term tracking, different se-
quences are necessary. Not only should they be longer,
but more importantly they must include full occlusions,
background clutter and scale and illumination changes [9].
A common source of such data are traffic scenes such as
car chases, when a vehicle is followed by another (possibly
aerial) vehicle. The majority of sequences in this evaluation
are therefore of this type. These sequences explore redetec-
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Figure 8: Results of short-term tracking evaluation. From
top to bottom: DUDEK, DOG, MUG and PAGE.

tion capability and predisposition to drift. Their properties
are tabulated in Table 3 and the first frames are shown in
Figure 9.

In a long-term tracking scenario, it is necessary to check
whether the detection/tracking is precise (when the overlap
with the ground truth bounding box is higher than 50 %)
as well as to check for successful detection of object dis-
appearance. Kalal et al. [9] applied the precision/recall/F-
measure comparison. To check sensitivity of trackers to
the initialisation, we run the experiments multiple times
with the bounding box in the first frame shifted by 5 % in
both horizontal and vertical direction and also scaled up and
down by 5 % (averaging the results over all 7 possibilities).
We also introduce the concept of partial occlusion into the
evaluation process. When the object is not fully visible, but
not fully occluded, the tracker can receive a score for either
overlap of bounding boxes or for reporting disappearance.

We compare our tracker with TLD [9], the first explic-
itly long-term tracker. The results can be found in Table 5.
The trackers were initialised by a tight bounding box. It
should be noted that the experiments of TLD on their own
dataset have significantly different results if their own ini-



Figure 9: Long-term tracking dataset. From top and left:
CARCHASE [9], PANDA [9], VOLKSWAGEN [9], LIVER-
RUNN and NISSANN.

tialisation is used (better on the CARCHASE and PANDA
sequences and worse on the VOLKSWAGEN sequence, re-
lating to F-measures of 0.45, 0.49 and 0.57 respectively).
This indicates high sensitivity to the initialisation. Experi-
ments were carried out with the short-term trackers as well,
but results of these are not tabulated as they lost tracking at
or before the first full occlusion (e.g. frame 440 for LIVER-
RUN or 1860 for NISSAN).

Name LT-FLO TLD
CARCHASE .40 (3.2) .16 (11.3)
PANDA .19 (4.1) .23 (12.0)
VOLKSW. .48 (3.0) .63 ( 5.4)
LIVERRUN .52 (6.1) .34 ( 4.0)
NISSAN .74 (4.1) .65 ( 4.4)
mean .49 (4.9) .36 ( 6.0)

Table 5: Results of long-term tracking. Tabulated values: F-
measure (FPS). The mean is weighted by number of frames.

The results show that LT-FLO is capable of long-term
tracking with competitive performance. In three out of
five of the tested sequences it performed significantly bet-
ter than TLD and comparably on one sequence. Also the
average performance is better than TLD. The worst results
of LT-FLO were acquired on the PANDA sequence. This
highlights sensitivity to highly non-rigid objects with out of
plane rotation.

8. Conclusion
In this paper, a novel long-term, edge-based track-

ing algorithm is presented. A two module approach is
used, where the short-term tracker finds the frame-to-frame
transformations, using correspondences of lines tangent to
edges. The long-term module facilitates learning of the
changing appearance of the tracked object, recovery from

failures and redetection after full occlusions. Strict learn-
ing rules make it very robust to drift. This, in conjunction
with a guided redetection framework, renders LT-FLOtrack
capable of tracking extremely long sequences robustly.

LT-FLOtrack covers several challenging cases, where
traditional trackers often fail. However, it does not attain the
highest score on every sequence. Typically, performance is
degraded for highly non-rigid or articulated objects (e.g. in
the PANDA sequence), and by strong out of plane rotations,
or edge-distorting compression artefacts.
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