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Abstract. The Visual Object Tracking challenge VOT2016 aims at
comparing short-term single-object visual trackers that do not apply pre-
learned models of object appearance. Results of 70 trackers are presented,
with a large number of trackers being published at major computer vi-
sion conferences and journals in the recent years. The number of tested
state-of-the-art trackers makes the VOT 2016 the largest and most chal-
lenging benchmark on short-term tracking to date. For each participating
tracker, a short description is provided in the Appendix. The VOT2016
goes beyond its predecessors by (i) introducing a new semi-automatic
ground truth bounding box annotation methodology and (ii) extending
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the evaluation system with the no-reset experiment. The dataset, the
evaluation kit as well as the results are publicly available at the chal-
lenge website46 47.

Keywords: Performance evaluation, short-term single-object trackers,
VOT

1 Introduction

Visual tracking remains a highly popular research area of computer vision, with
the number of motion and tracking papers published at high profile conferences
exceeding 40 papers annually. The significant activity in the field over last two
decades is reflected in the abundance of review papers [1–9]. In response to the
high number of publications, several initiatives emerged to establish a common
ground for tracking performance evaluation. The earliest and most influential is
the PETS [10], which is the longest lasting initiative that proposed frameworks
for performance evaluation in relation to surveillance systems applications. Other
frameworks have been presented since with focus on surveillance systems and
event detection, (e.g., CAVIAR48, i-LIDS 49, ETISEO50), change detection [11],
sports analytics (e.g., CVBASE51), faces (e.g. FERET [12] and [13]), long-term
tracking 52 and the multiple target tracking [14, 15]53.

In 2013 the Visual object tracking, VOT, initiative was established to address
performance evaluation for short-term visual object trackers. The initiative aims
at establishing datasets, performance evaluation measures and toolkits as well as
creating a platform for discussing evaluation-related issues. Since its emergence
in 2013, three workshops and challenges have been carried out in conjunction
with the ICCV2013 (VOT2013 [16]), ECCV2014 (VOT2014 [17]) and ICCV2015
(VOT2015 [18]). This paper discusses the VOT2016 challenge, organized in con-
junction with the ECCV2016 Visual object tracking workshop, and the results
obtained. Like VOT2013, VOT2014 and VOT2015, the VOT2016 challenge con-
siders single-camera, single-target, model-free, causal trackers, applied to short-
term tracking. The model-free property means that the only training example is
provided by the bounding box in the first frame. The short-term tracking means
that trackers are assumed not to be capable of performing successful re-detection
after the target is lost and they are therefore reset after such event. The causality
means that the tracker does not use any future frames, or frames prior to re-
initialization, to infer the object position in the current frame. In the following,

46 http://votchallenge.net
47 This version of the results paper includes several corrections of errors discovered

after the submission to VOT workshop and additional comments.
48 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
49 http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
50 http://www-sop.inria.fr/orion/ETISEO
51 http://vision.fe.uni-lj.si/cvbase06/
52 http://www.micc.unifi.it/LTDT2014/
53 https://motchallenge.net
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we overview the most closely related work and point out the contributions of
VOT2016.

1.1 Related work

Several works that focus on performance evaluation in short-term visual object
tracking [16, 17, 19–24] have been published in the last three years. The currently
most widely used methodologies for performance evaluation originate from three
benchmark papers, in particular the Online tracking benchmark (OTB) [21], the
‘Amsterdam Library of Ordinary Videos’ (ALOV) [22] and the ‘Visual object
tracking challenge’ (VOT) [16–18].

Performance measures The OTB- and ALOV-related methodologies, like [21,
22, 24, 25], evaluate a tracker by initializing it on the first frame and letting it
run until the end of the sequence, while the VOT-related methodologies [16–18,
20, 19] reset the tracker once it drifts off the target. Performance is evaluated
in all of these approaches by overlaps between the bounding boxes predicted
from the tracker with the ground truth bounding boxes. The OTB and ALOV
initially considered performance evaluation based on object center estimation
as well, but as shown in [26], the center-based measures are highly brittle and
overlap-based measures should be preferred. The ALOV measures the tracking
performance as the F-measure at 0.5 overlap threshold and a similar measure
was proposed by OTB. Recently, it was demonstrated in [19] that such threshold
is over-restrictive, since an overlap below 0.5 does not clearly indicate a track-
ing failure in practice. The OTB introduced a success plot which represents the
percentage of frames for which the overlap measure exceeds a threshold, with
respect to different thresholds, and developed an ad-hoc performance measure
computed as the area under the curve in this plot. This measure remains one
of the most widely used measures in tracking papers. It was later analytically
proven by [26, 20] that the ad-hoc measure is equivalent to the average over-
lap (AO), which can be computed directly without intermediate success plots,
giving the measure a clear interpretation. An analytical model was recently pro-
posed [19] to study the average overlap measures with and without resets in
terms of tracking accuracy estimator. The analysis showed that the no-reset AO
measures are biased estimators with large variance while the VOT reset-based
average overlap drastically reduces the bias and variance and is not hampered
by the varying sequence lengths in the dataset.

Čehovin et al. [26, 20] provided a highly detailed theoretical and experimen-
tal analysis of a number of the popular performance measures. Based on that
analysis, the VOT2013 [16] selected the average overlap with resets and number
of tracking failures as their main performance criteria, measuring geometric ac-
curacy and robustness respectively. The VOT2013 introduced a ranking-based
methodology that accounted for statistical significance of the results, which was
extended with the tests of practical differences in the VOT2014 [17]. The notion
of practical differences is unique to the VOT challenges and relates to the un-
certainty of the ground truth annotation. The VOT ranking methodology treats
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each sequence as a competition among the trackers. Trackers are ranked on each
sequence and ranks are averaged over all sequences. This is called the sequence-
normalized ranking. An alternative is sequence-pooled ranking [19], which ranks
the average performance on all sequences. Accuracy-robustness ranking plots
were proposed [16] to visualize the results. A drawback of the AR-rank plots
is that they do not show the absolute performance. In VOT2015 [18], the AR-
raw plots from [20, 19] were adopted to show the absolute average performance.
The VOT2013 [16] and VOT2014 [17] selected the winner of the challenge by
averaging the accuracy and robustness ranks, meaning that the accuracy and ro-
bustness were treated as equivalent “competitions”. A high average rank means
that a tracker was well-performing in accuracy as well as robustness relative to
the other trackers. While ranking converts the accuracy and robustness to equal
scales, the averaged rank cannot be interpreted in terms of a concrete tracking
application result. To address this, the VOT2015 [18] introduced a new measure
called the expected average overlap (EAO) that combines the raw values of per-
frame accuracies and failures in a principled manner and has a clear practical
interpretation. The EAO measures the expected no-reset overlap of a tracker run
on a short-term sequence. In principle, this measure reflects the same property
as the AO [21] measure, but, since it is computed from the VOT reset-based
experiment, it does not suffer from the large variance and has a clear definition
of what the short-term sequence means. VOT2014 [17] pointed out that speed is
an important factor in many applications and introduced a speed measure called
the equivalent filter operations (EFO) that partially accounts for the speed of
computer used for tracker analysis.

The VOT2015 [18] noted that state-of-the-art performance is often misin-
terpreted as requiring a tracker to score as number one on a benchmark, often
leading authors to creatively select sequences and experiments and omit related
trackers in scientific papers to reach the apparent top performance. To expose this
misconception, the VOT2015 computed the average performance of the partici-
pating trackers that were published at top recent conferences. This value is called
the VOT2015 state-of-the-art bound and any tracker exceeding this performance
on the VOT2015 benchmark should be considered state-of-the-art according to
the VOT standards.

Datasets. The current trend in computer vision datasets construction ap-
pears to be focused on increasing the number of sequences in the datasets [27, 23,
24, 22, 25], but often much less attention is being paid to the quality of its content
and annotation. For example, some datasets disproportionally mix grayscale and
color sequences and in most datasets the attributes like occlusion and illumina-
tion change are annotated only globally even though they may occur only at a
small number of frames in a video. The dataset size is commonly assumed to
imply quality. In contrast, the VOT2013 [16] argued that large datasets do not
necessarily imply diversity or richness in attributes. Over the last three years, the
VOT has developed a methodology that automatically constructs a moderately
sized dataset from a large pool of sequences. The uniqueness of this methodol-
ogy is that it explicitly optimizes diversity in visual attributes while focusing on
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sequences which are difficult to track. In addition, the sequences in the VOT
datasets are per-frame annotated by visual attributes, which is in stark contrast
to the related datasets that apply global annotation. It was recently shown [19]
that performance measures computed from global attribute annotations are sig-
nificantly biased toward the dominant attributes in the sequences, while the bias
is significantly reduced with per-frame annotation, even in presence of misanno-
tations.

Most closely related works to the work described in this paper are the recent
VOT2013 [16], VOT2014 [17] and VOT2015 [18] challenges. Several novelties
in benchmarking short-term trackers were introduced through these challenges.
They provide a cross-platform evaluation kit with tracker-toolkit communica-
tion protocol, allowing easy integration with third-party trackers, per-frame an-
notated datasets and state-of-the-art performance evaluation methodology for
in-depth tracker analysis from several performance aspects. The results were
published in joint papers ([16], [17], [18]) of which the VOT2015 [18] paper alone
exceeded 120 coauthors. The evaluation kit, the dataset, the tracking outputs
and the code to reproduce all the results are made freely-available from the VOT
initiative homepage54. The advances proposed by VOT have also influenced the
development of related methodologies and benchmark papers like [23–25].

1.2 The VOT2016 challenge

VOT2016 follows VOT2015 challenge and considers the same class of trackers.
The dataset and evaluation toolkit are provided by the VOT2016 organizers.
The evaluation kit records the output bounding boxes from the tracker, and if it
detects tracking failure, re-initializes the tracker. The authors participating in the
challenge were required to integrate their tracker into the VOT2016 evaluation
kit, which automatically performed a standardized experiment. The results were
analyzed by the VOT2016 evaluation methodology. In addition to the VOT
reset-based experiment, the toolkit conducted the main OTB [21] experiment in
which a tracker is initialized in the first frame and left to track until the end of
the sequence without resetting. The performance on this experiment is evaluated
by the average overlap measure [21].

Participants were expected to submit a single set of results per tracker. Par-
ticipants who have investigated several trackers submitted a single result per
tracker. Changes in the parameters did not constitute a different tracker. The
tracker was required to run with fixed parameters on all experiments. The track-
ing method itself was allowed to internally change specific parameters, but these
had to be set automatically by the tracker, e.g., from the image size and the
initial size of the bounding box, and were not to be set by detecting a specific
test sequence and then selecting the parameters that were hand-tuned to this
sequence. The organizers of VOT2016 were allowed to participate in the chal-
lenge, but did not compete for the winner of VOT2016 challenge title. Further

54 http://www.votchallenge.net
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details are available from the challenge homepage55.

The advances of VOT2016 over VOT2013, VOT2014 and VOT2015 are the
following: (i) The ground truth bounding boxes in the VOT2015 dataset have
been re-annotated. Each frame in the VOT2015 dataset has been manually per-
pixel segmented and bounding boxes have been automatically generated from
the segmentation masks. (ii) A new methodology was developed for automatic
placement of a bounding box by optimizing a well defined cost function on manu-
ally per-pixel segmented images. (iii) The evaluation system from VOT2015 [18]
is extended and the bounding box overlap estimation is constrained to image re-
gion. The toolkit now supports the OTB [21] no-reset experiment and their main
performance measures. (iv) The VOT2015 introduced a second sub-challenge
VOT-TIR2015 held under the VOT umbrella which deals with tracking in in-
frared and thermal imagery [28]. Similarly, the VOT2016 is accompanied with
VOT-TIR2016, and the challenge and its results are discussed in a separate
paper submitted to the VOT2016 workshop [29].

The remainder of this paper is structured as follows. In Section 2, the new
dataset is introduced. The methodology is outlined in Section 3, the main results
are discussed in Section 4 and conclusions are drawn in Section 5.

2 The VOT2016 dataset

VOT2013 [16] and VOT2014 [17] introduced a semi-automatic sequence selection
methodology to construct a dataset rich in visual attributes but small enough to
keep the time for performing the experiments reasonably low. In VOT2015 [18],
the methodology was extended into a fully automated sequence selection with
the selection process focusing on challenging sequences. The methodology was
applied in VOT2015 [18] to produce a highly challenging VOT2015 dataset.

Results of VOT2015 showed that the dataset was not saturated and the same
sequences were used for VOT2016. The VOT2016 dataset thus contains all 60
sequences from VOT2015, where each sequence is per-frame annotated by the
following visual attributes: (i) occlusion, (ii) illumination change, (iii) motion
change, (iv) size change, (v) camera motion. In case a particular frame did not
correspond to any of the five attributes, we denoted it as (vi) unassigned.

In VOT2015, the rotated bounding boxes have been manually placed in each
frame of the sequence by experts and cross checked by several groups for quality
control. To enforce a consistency, the annotation rules have been specified. Nev-
ertheless, we have noticed that human annotators have difficulty following the
annotation rules, which makes it impossible to guarantee annotation consistency.
For this reason, we have developed a novel approach for dataset annotation. The
new approach takes a pixel-wise segmentation of the tracked object and places
a bounding box by optimizing a well-defined cost function. In the following,
Section 2.1 discusses per-frame segmentation mask construction and the new
bounding box generation approach is presented in Section 2.2.

55 http://www.votchallenge.net/vot2016/participation.html
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2.1 Producing per-frame segmentation masks

The per-frame segmentations were provided for VOT by a research group that
applied an interactive annotation tool designed by VOT56 for manual segmen-
tation mask construction. The tool applies Grabcut [30] object segmentation
on each frame. The color model is initialized from the VOT2015 ground truth
bounding box (first frame) or propagated from the final segmentation in the
previous frame. The user can interactively add foreground or background ex-
amples to improve the segmentation. Examples of the object segmentations are
illustrated in Fig. 1.

2.2 Automatic bounding box computation

The final ground truth bounding box for VOT2016 was automatically computed
on each frame from the corresponding segmentation mask. We have designed
the following cost function and constraints to reflect the requirement that the
bounding box should capture object pixels with minimal amount of background
pixels:

arg min
b
{C(b) = α

∑
x/∈A(b)

[M(x) > 0] +
∑

x∈A(b)

[M(x) == 0]},

subject to
1

Mf

∑
x/∈A(b)

[M(x) > 0] < Θf ,
1

|A(b)|
∑

x∈A(b)

[M(x) == 0] < Θb,
(1)

where b is the vector of bounding box parameters (center, width, height, ro-
tation), A(b) is the corresponding bounding box, M is the segmentation mask
which is non-zero for object pixels, [·] is an operator which returns 1 iff the state-
ment in the operator is true and 0 otherwise, Mf is number of object pixels and
| · | denotes the cardinality. An intuitive interpretation of the cost function is that
we want to find a bounding box which minimizes a weighted sum of the num-
ber of object pixels outside of the bounding box and the number of background
pixels inside the bounding box, with percentage of excluded object pixels and
included background pixels constrained by Θf and Θb, respectively. The cost (1)
was optimized by Interior Point [31] optimization, with three starting points:
(i) the VOT2015 ground truth bounding box, (ii) a minimal axis-align bound-
ing box containing all object pixels and (iii) a minimal rotated bounding box
containing all object pixels. In case a solution satisfying the constraints was not
found, a relaxed unconstrained BFGS Quasi-Newton method [32] was applied.
Such cases occurred at highly articulated objects. The bounding box tightness
is controlled by parameter α. Several values, i.e., α = {1, 4, 7, 10}, were tested
on randomly chosen sequences and the final value α = 4 was selected since its
bounding boxes were visually assessed to be the best-fitting. The constraints

56 https://github.com/vojirt/grabcut annotation tool
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Θf = 0.1 and Θb = 0.4 were set to the values defined in previous VOT chal-
lenges. Examples of the automatically estimated ground truth bounding boxes
are shown in Figure 1.

All bounding boxes were visually verified to avoid poor fits due to poten-
tial segmentation errors. We identified 12% of such cases and reverted to the
VOT2015 ground truth for those. During the challenge, the community identi-
fied four frames where the new ground truth is incorrect and those errors were
not caught by the verification. In these cases, the bounding box within the image
bounds was properly estimated, but extended out of image bounds dispropor-
tionally. These errors will be corrected in the next version of the dataset and we
checked, during result processing, that it did not significantly influence the chal-
lenge results. Table 1 summarizes the comparison of the VOT2016 automatic
ground truth with the VOT2015 in terms of portions of object and background
pixels inside the bounding boxes. The statistics were computed over the whole
dataset excluding the 12% of frames where the segmentation was marked as in-
correct. The VOT2016 ground truth improves in all aspects over the VOT2015. It
is interesting to note that the average overlap between VOT2015 and VOT2016
ground truth is 0.74.

%frames #frames fg-out bg-in Avg. overlap #opt. failures

automatic GT 88% 18875 0.04 0.27 0.74 2597
VOT2015 GT 100% 21455 0.06 0.37 — —

Table 1. The first two columns shows the percentage and number of frames annotated
by the VOT2016 and VOT2015 methodology, respectively. The fg-out and bg-in denote
the average percentage of object pixels outside and percentage of background pixels
inside the GT, respectively. The average overlap with the VOT2015 annotations is
denoted by Avg. overlap, while the #opt. failures denotes the number of frames in
which the algorithm switched from constrained to unconstrained optimization.

2.3 Uncertainty of optimal bounding box fits

The cost function described in Section 2.2 avoids subjectivity of manual bound-
ing box fitting, but does not specify how well constrained the solution is. The
level of constraint strength can be expressed in terms of the average overlap of
bounding boxes in the vicinity of the cost function (1) optimum, where we define
the vicinity as a variation of bounding boxes within a maximum increase of the
cost function around the optimum. The relative maximum increase of the cost
function, i.e., the increase divided by the optimal value, is related to the anno-
tation uncertainty in the per-pixels segmentation masks and can be estimated
by the following rule-of thumb.

Let Sf denote the number of object pixels outside and let Sb denote the
number of background pixels inside the bounding box. According to the central
limit theorem, we can assume that Sf and Sb are normally distributed, i.e.,
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N (µf , σ
2
f ) and N (µb, σ

2
b ), since they are sums of many random variables (per-

pixel labels). In this respect, the value of the cost function C in (1) can be
treated as a random variable as well and it is easy to show the following relation
var(C) = σ2

c = α2σ2
f +σ2

b . The variance of the cost function is implicitly affected

by the per-pixel annotation uncertainty through the variances σ2
f and σ2

b . Assume
that at most xµf and xµb pixels are incorrectly labeled on average. Since nearly
all variation in a Gaussian is captured by three standard deviations, the variances
are σ2

f = (xµf/3)2 and σ2
b = (xµb/3)2. Applying the three-sigma rule to the

variance of the cost C, and using the definition of the foreground and background
variances, gives an estimator of the maximal cost function change ∆c = 3σc =

x
√
α2µ2

f + µ2
b . Our goal is to estimate the maximal relative cost function change

in the vicinity of its optimum Copt, i.e., rmax = ∆c

Copt
. Using the definition of the

maximal change ∆c, the rule of thumb for the maximal relative change is

rmax =
x
√
α2µ2

f + µ2
b

µf + µb
. (2)

3 Performance evaluation methodology

Since VOT2015 [18], three primary measures are used to analyze tracking per-
formance: accuracy (A), robustness (R) and expected average overlap (AEO). In
the following these are briefly overviewed and we refer to [18–20] for further de-
tails. The VOT challenges apply a reset-based methodology. Whenever a tracker
predicts a bounding box with zero overlap with the ground truth, a failure is
detected and the tracker is re-initialized five frames after the failure. Čehovin et
al. [20] identified two highly interpretable weakly correlated performance mea-
sures to analyze tracking behavior in reset-based experiments: (i) accuracy and
(ii) robustness. The accuracy is the average overlap between the predicted and
ground truth bounding boxes during successful tracking periods. On the other
hand, the robustness measures how many times the tracker loses the target
(fails) during tracking. The potential bias due to resets is reduced by ignoring
ten frames after re-initialization in the accuracy measure, which is quite a con-
servative margin [19]. Stochastic trackers are run 15 times on each sequence to
obtain reduce the variance of their results. The per-frame accuracy is obtained
as an average over these runs. Averaging per-frame accuracies gives per-sequence
accuracy, while per-sequence robustness is computed by averaging failure rates
over different runs. The third primary measure, called the expected average over-
lap (EAO), is an estimator of the average overlap a tracker is expected to attain
on a large collection of short-term sequences with the same visual properties as
the given dataset. This measure addresses the problem of increased variance and
bias of AO [21] measure due to variable sequence lengths on practical datasets.
Please see [18] for further details on the average expected overlap measure.

We adopt the VOT2015 ranking methodology that accounts for statistical
significance and practical differences to rank trackers separately with respect
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to the accuracy and robustness ([18, 19]). Apart from accuracy, robustness and
expected overlaps, the tracking speed is also an important property that indicates
practical usefulness of trackers in particular applications. To reduce the influence
of hardware, the VOT2014 [17] introduced a new unit for reporting the tracking
speed called equivalent filter operations (EFO) that reports the tracker speed
in terms of a predefined filtering operation that the tookit automatically carries
out prior to running the experiments. The same tracking speed measure is used
in VOT2016.

In addition to the standard reset-based VOT experiment, the VOT2016
toolkit carried out the OTB [21] no-reset experiment. The tracking performance
on this experiment was evaluated by the primary OTB measure, average overlap
(AO).

4 Analysis and results

4.1 Practical difference estimation

As noted in Section 2.3, the variation in the per-pixel segmentation masks intro-
duces the uncertainty of the optimally fitted ground truth bounding boxes. We
expressed this uncertainty as the average overlap of the optimal bounding box
with the bounding boxes sampled in vicinity of the optimum, which is implic-
itly defined as the maximal allowed cost increase. Assuming that on average, at
most 10% of pixels might be incorrectly assigned in the object mask, the rule
of thumb (2) estimates an increase of cost function by at most 7%. The average
overlap specified in this way was used in the VOT2016 as an estimate of the
per-sequence practical differences.

The following approach was thus applied to estimate the practical difference
thresholds. Thirty uniformly dispersed frames were selected per sequence. For
each frame a set of 3125 ground truth bounding box perturbations were gener-
ated by varying the ground truth regions by ∆b = [∆x, ∆y, ∆w, ∆h, ∆Θ], where
all ∆ are sampled uniformly (5 samples) from ranges ±5% of ground truth width
(height) for ∆x(∆y), ±10% of ground truth width (height) for ∆w(∆h) and ±4◦

for ∆Θ. These ranges were chosen such that the cost function is well explored
near the optimal solution and the amount of bounding box perturbations can be
computed reasonably fast. The examples of bounding boxes generated in this way
are shown in Figure 1. An average overlap was computed between the ground
truth bounding box and the bounding boxes that did not exceed the optimal
cost value by more than 7%. The average of the average overlaps computed in
thirty frames was taken as the estimate of the practical difference threshold for
a given sequence. The boxplots in Figure 1 visualize the distributions of average
overlaps with respect to the sequences.

4.2 Trackers submitted

Together 48 valid entries have been submitted to the VOT2016 challenge. Each
submission included the binaries/source code that was used by the VOT2016
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Fig. 1. Box plots of per-sequence overlap dispersion at 7% cost change (left), and
examples of such bounding boxes (right). The optimal bounding box is depicted in red,
while the 7% cost change bounding boxes are shown in green.

committee for results verification. The VOT2016 committee and associates ad-
ditionally contributed 22 baseline trackers. For these, the default parameters
were selected, or, when not available, were set to reasonable values. Thus in
total 70 trackers were tested in the VOT2016 challenge. In the following we
briefly overview the entries and provide the references to original papers in the
Appendix A where available.

Eight trackers were based on convolutional neural networks architecture
for target localization, MLDF (A.19), SiamFC-R (A.23), SiamFC-A (A.25),
TCNN (A.44), DNT (A.41), SO-DLT (A.8), MDNet-N (A.46) and SSAT (A.12),
where MDNet-N (A.46) and SSAT (A.12) were extensions of the VOT2015 win-
ner MDNet [33]. Thirteen trackers were variations of correlation filters, SRDCF (A.58),
SWCF (A.3), FCF (A.7), GCF (A.36), ART-DSST (A.45), DSST2014 (A.50),
SMACF (A.14), STC (A.66), DFST (A.39), KCF2014 (A.53), SAMF2014 (A.54),
OEST (A.31) and sKCF (A.40). Seven trackers combined correlation filter out-
puts with color, Staple (A.28), Staple+ (A.22), MvCFT (A.15), NSAMF (A.21),
SSKCF (A.27), ACT (A.56) and ColorKCF (A.29), and six trackers applied CNN
features in the correlation filters, deepMKCF (A.16), HCF (A.60), DDC (A.17),
DeepSRDCF (A.57), C-COT (A.26), RFD-CF2 (A.47). Two trackers were based
on structured SVM, Struck2011 (A.55) and EBT (A.2) which applied region
proposals as well. Three trackers were based on purely on color, DAT (A.5),
SRBT (A.34) and ASMS (A.49) and one tracker was based on fusion of ba-
sic features LoFT-Lite (A.38). One tracker was based on subspace learning,
IVT (A.64), one tracker was based on boosting, MIL (A.68), one tracker was
based on complex cells approach, CCCT (A.20), one on distributed fields, DFT (A.59),
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one tracker was based on Gaussian process regressors, TGPR (A.67), and one
tracker was the basic normalized cross correlation tracker NCC (A.61). Nine-
teen submissions can be categorized as part-based trackers, DPCF (A.1), LT-
FLO (A.43), SHCT (A.24), GGTv2 (A.18), MatFlow (A.10), Matrioska (A.11),
CDTT (A.13), BST (A.30), TRIC-track (A.32), DPT (A.35), SMPR (A.48),
CMT (A.70), HT (A.65), LGT (A.62), ANT (A.63), FoT (A.51), FCT (A.37),
FT (A.69), and BDF (A.9). Several submissions were based on combination
of base trackers, PKLTF (A.4), MAD (A.6), CTF (A.33), SCT (A.42) and
HMMTxD (A.52).

4.3 Results

The results are summarized in sequence-pooled and attribute-normalized AR-
raw plots in Figure 2. The sequence-pooled AR-rank plot is obtained by con-
catenating the results from all sequences and creating a single rank list, while
the attribute-normalized AR-rank plot is created by ranking the trackers over
each attribute and averaging the rank lists. The AR-raw plots were constructed
in similar fashion. The expected average overlap curves and expected average
overlap scores are shown in Figure 3. The raw values for the sequence-pooled
results and the average overlap scores are also given in Table 2.

The top ten trackers come from various classes. The TCNN (A.44), SSAT (A.12),
MLDF (A.19) and DNT (A.41) are derived from CNNs, the C-COT (A.26),
DDC (A.17), Staple (A.28) and Staple+ (A.22) are variations of correlation
filters with more or less complex features, the EBT (A.2) is structured SVM
edge-feature tracker, while the SRBT (A.34) is a color-based saliency detection
tracker. The following five trackers appear either very robust or very accurate:
C-COT (A.26), TCNN (A.44), SSAT (A.12), MLDF (A.19) and EBT (A.2).
The C-COT (A.26) is a new correlation filter which uses a large variety of state-
of-the-art features, i.e., HOG [34], color-names [35] and the vgg-m-2048 CNN
features pretrained on Imagenet 57. The TCNN (A.44) samples target locations
and scores them by several CNNs, which are organized into a tree structure
for efficiency and are evolved/pruned during tracking. SSAT (A.12) is based
on MDNet [33], applies segmentation and scale regression, followed by occlu-
sion detection to prevent training from corrupt samples. The MLDF (A.19)
applies a pre-trained VGG network [36] which is followed by another, adap-
tive, network with Euclidean loss to regress to target position. According to
the EAO measure, the top performing tracker was C-COT (A.26) [37], closely
followed by the TCNN (A.44). Detailed analysis of the AR-raw plots shows
that the TCNN (A.44) produced slightly greater average overlap (0.55) than C-
COT (A.26) (0.54), but failed slightly more often (by six failures). The best
overlap was achieved by SSAT (A.12) (0.58), which might be attributed to
the combination of segmentation and scale regression this tracker applies. The
smallest number of failures achieved the MLDF (A.19), which outperformed C-
COT (A.26) by a single failure, but obtained a much smaller overlap (0.49).

57 http://www.vlfeat.org/matconvnet/
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Under the VOT strict ranking protocol, the SSAT (A.12) is ranked number one
in accuracy, meaning the overlap was clearly higher than for any other tracker.
The second-best ranked tracker in accuracy is Staple+ (A.22) and several track-
ers share third rank SHCT (A.24), deepMKCF (A.16), FCF (A.7), meaning that
the null hypothesis of difference between these trackers in accuracy could not
be rejected. In terms of robustness, trackers MDNet-N (A.46), C-COT (A.26),
MLDF (A.19) and EBT (A.2) share the first place, which means that the null
hypothesis of difference in their robustness could not be rejected. The second
and third ranks in robustness are occupied by TCNN (A.44) and SSAT (A.12),
respectively.

MvCFT ACT∗ ANT∗ ART DSST ASMS∗ BDF

BST C-COT∗ CCCT CDTT CMT∗ CTF

DAT DDC deepMKCF DeepSRDCF∗ DFST DFT∗

DNT DPT DPTG DSST2014∗ EBT FCF

FCT FoT∗ FRT∗ GCF GGTv2 HCF∗

HMMTxD∗ HoughTrack∗ IVT∗ KCF2014∗ KCF SMXPC LGT∗
LoFT-Lite LT FLO MAD MatFlow Matrioska MDNet N

MIL∗ MLDF NCC∗ NSAMF OEST PKLTF

RFD CF2 SAMF2014∗ SCT SHCT SiamFC-A SiamFC-R

sKCF SMACF SMPR SO-DLT SRBT SRDCF∗

SSAT SSKCF Staple STAPLE+ STC∗ STRUCK2011∗
SWCF TCNN∗ TGPR∗ TRIC-track

Fig. 2. The AR-rank plots and AR-raw plots generated by sequence pooling (left) and
attribute normalization (right).

It is worth pointing out some EAO results appear to contradict AR-raw
measures at a first glance. For example, the Staple obtains a higher EAO measure
than Staple+, even though the Staple achieves a slightly better average accuracy
and in fact improves on Staple by two failures, indicating a greater robustness.
The reason is that the failures early on in the sequences globally contribute more
to penalty than the failures that occur at the end of the sequence (see [18] for
definition of EAO). For example, if a tracker fails once and is re-initialized in
the sequence, it generates two sub-sequences for computing the overlap measure
at sequence length N . The first sub-sequence ends with the failure and will
contribute to any sequence length N since zero overlaps are added after the
failure. But the second sub-sequence ends with the sequence end and zeros cannot
be added after that point. Thus the second sub-sequence only contributes to the
overlap computations for sequence lengths N smaller than its length. This means
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Fig. 3. Expected average overlap curve (left) and expected average overlap graph
(right) with trackers ranked from right to left. The right-most tracker is the top-
performing according to the VOT2016 expected average overlap values. See Figure 2
for legend. The dashed horizontal line denotes the average performance of fifteen state-
of-the-art trackers published in 2015 and 2016 at major computer vision venues. These
trackers are denoted by gray circle in the bottom part of the graph.

that re-inits very close to the sequence end (tens of frames) do not affect the
EAO.

Note that the trackers that are usually used as baselines, i.e., MIL (A.68),
and IVT (A.64) are positioned at the lower part of the AR-plots and the EAO
ranks, which indicates that majority of submitted trackers are considered state-
of-the-art. In fact, fifteen tested trackers have been recently (in 2015 and 2016)
published at major computer vision conferences and journals. These trackers
are indicated in Figure 3, along with the average state-of-the-art performance
computed from the average performance of these trackers, which constitutes a
very strict VOT2016 state-of-the-art bound. Approximately 22% of submitted
trackers exceed this bound.

Tracker EAO A R Arank Rrank AO EFO Impl.

1. C-COT∗ 0.331 0.539 0.238 12.000 1.000 0.469 0.507 D M

2. TCNN∗ 0.325 0.554 0.268 4.000 2.000 0.485 1.049 S M

3. SSAT 0.321 0.577 0.291 1.000 3.000 0.515 0.475 S M

4. MLDF 0.311 0.490 0.233 36.000 1.000 0.428 1.483 D M

5. Staple 0.295 0.544 0.378 5.000 10.000 0.388 11.144 D C

6. DDC 0.293 0.541 0.345 7.000 6.000 0.391 0.198 D M

7. EBT 0.291 0.465 0.252 43.000 1.000 0.370 3.011 D C

8. SRBT 0.290 0.496 0.350 26.000 10.000 0.333 3.688 D M

9. STAPLE+ 0.286 0.557 0.368 2.000 9.000 0.392 44.765 D M

10. DNT 0.278 0.515 0.329 21.000 4.000 0.427 1.127 S M

11. SSKCF 0.277 0.547 0.373 5.000 10.000 0.391 29.153 D C

12. SiamFC-R 0.277 0.549 0.382 5.000 10.000 0.421 5.444 D C

13. DeepSRDCF∗ 0.276 0.528 0.326 16.000 5.000 0.427 0.380 S C

14. SHCT 0.266 0.547 0.396 3.000 9.000 0.392 0.711 D M

15. MDNet N 0.257 0.541 0.337 10.000 1.000 0.457 0.534 S M
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Tracker EAO A R Arank Rrank AO EFO Impl.

16. FCF 0.251 0.554 0.457 3.000 13.000 0.419 1.929 D M

17. SRDCF∗ 0.247 0.535 0.419 13.000 9.000 0.397 1.990 S C

18. RFD CF2 0.241 0.477 0.373 37.000 6.000 0.352 0.896 D M

19. GGTv2 0.238 0.515 0.471 20.000 21.000 0.433 0.357 S M

20. DPT 0.236 0.492 0.489 33.000 21.000 0.334 4.111 D M

21. SiamFC-A 0.235 0.532 0.461 13.000 13.000 0.399 9.213 D C

22. deepMKCF 0.232 0.543 0.422 3.000 6.000 0.409 1.237 S M

23. HMMTxD∗ 0.231 0.519 0.531 13.000 33.000 0.369 3.619 D C

24. NSAMF 0.227 0.502 0.438 24.000 10.000 0.354 9.677 D C

25. SMACF 0.226 0.503 0.443 22.000 21.000 0.347 91.460 D C

26. CCCT 0.223 0.442 0.461 54.000 21.000 0.308 9.828 D M

27. SO-DLT 0.221 0.516 0.499 18.000 14.000 0.372 0.576 S M

28. HCF∗ 0.220 0.450 0.396 44.000 6.000 0.374 1.057 D C

29. GCF 0.218 0.520 0.485 18.000 13.000 0.348 5.904 D M

30. KCF SMXPC 0.218 0.535 0.499 10.000 10.000 0.367 5.786 D M

31. DAT 0.217 0.468 0.480 43.000 21.000 0.309 18.983 D M

32. ASMS∗ 0.212 0.503 0.522 22.000 29.000 0.330 82.577 D C

33. ANT∗ 0.204 0.483 0.513 35.000 21.000 0.303 7.171 D M

34. MAD 0.202 0.497 0.503 28.000 21.000 0.328 8.954 D C

35. BST 0.200 0.376 0.447 68.000 10.000 0.235 13.608 S C

36. TRIC-track 0.200 0.443 0.583 51.000 34.000 0.269 0.335 S M

37. KCF2014∗ 0.192 0.489 0.569 33.000 21.000 0.301 21.788 D M

38. OEST 0.188 0.510 0.601 24.000 33.000 0.370 0.170 D M

39. SCT 0.188 0.462 0.545 46.000 21.000 0.283 11.131 D M

40. SAMF2014∗ 0.186 0.507 0.587 22.000 21.000 0.350 4.099 D M

41. SWCF 0.185 0.500 0.662 24.000 34.000 0.293 7.722 D M

42. MvCFT 0.182 0.491 0.606 33.000 21.000 0.308 5.194 D M

43. DSST2014∗ 0.181 0.533 0.704 11.000 35.000 0.325 12.747 D M

44. TGPR∗ 0.181 0.460 0.629 47.000 45.000 0.270 0.318 D M

45. DPTG 0.179 0.492 0.615 31.000 33.000 0.306 2.669 D M

46. ACT∗ 0.173 0.446 0.662 51.000 35.000 0.281 9.840 S C

47. LGT∗ 0.168 0.420 0.605 56.000 34.000 0.271 3.775 S M

48. ART DSST 0.167 0.515 0.732 20.000 39.000 0.306 8.451 D M

49. MIL∗ 0.165 0.407 0.727 62.000 48.000 0.201 7.678 S C

50. CDTT 0.164 0.409 0.583 58.000 21.000 0.263 13.398 D M

51. MatFlow 0.155 0.408 0.694 60.000 45.000 0.231 59.640 D C

52. sKCF 0.153 0.485 0.816 35.000 53.000 0.301 91.061 D C

53. DFST 0.151 0.483 0.778 40.000 42.000 0.315 3.374 D M

54. HoughTrack∗ 0.150 0.409 0.771 60.000 51.000 0.198 1.181 S C

55. PKLTF 0.150 0.437 0.671 51.000 45.000 0.278 33.048 D C

56. SMPR 0.147 0.455 0.778 48.000 49.000 0.266 8.282 D M

57. FoT∗ 0.142 0.377 0.820 65.000 53.000 0.165 105.714 D C

58. STRUCK2011∗ 0.142 0.458 0.942 46.000 56.000 0.242 14.584 D C

59. FCT 0.141 0.395 0.788 63.000 51.000 0.199 - D M

60. DFT∗ 0.139 0.464 1.002 43.000 61.000 0.209 3.330 D C

61. BDF 0.136 0.375 0.792 69.000 45.000 0.180 138.124 D C

62. LT FLO 0.126 0.444 1.164 45.000 63.000 0.207 1.830 S M
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Tracker EAO A R Arank Rrank AO EFO Impl.

63. IVT∗ 0.115 0.419 1.109 56.000 61.000 0.181 14.880 D M

64. Matrioska 0.115 0.430 1.114 56.000 63.000 0.238 25.766 D C

65. STC∗ 0.110 0.380 1.007 65.000 60.000 0.152 22.744 D M

66. FRT∗ 0.104 0.405 1.216 61.000 65.000 0.179 3.867 D C

67. CTF 0.092 0.497 1.561 29.000 67.000 0.187 3.777 D M

68. LoFT-Lite 0.092 0.329 1.282 70.000 66.000 0.118 2.174 D M

69. CMT∗ 0.083 0.393 1.701 64.000 69.000 0.150 16.196 S P

70. NCC∗ 0.080 0.490 2.102 33.000 70.000 0.174 226.891 D C

Table 2. The table shows expected average overlap (EAO), accuracy and robustness
raw values (A,R) and ranks (Arank,Arank), the no-reset average overlap AO [21], the
speed (in EFO units) and implementation details (M is Matlab, C is C or C++, P is
Python). Trackers marked with * have been verified by the VOT2015 committee. A
dash ”-” indicates the EFO measurements were invalid.

The number of failures with respect to the visual attributes are shown in Figure 4.
On camera motion attribute, the tracker that fails least often is the EBT A.2, on
illumination change the top position is shared by RFD CF2 A.47 and SRBT A.34, on
motion change the top position is shared by EBT A.2 and MLDF A.19, on occlusion the
top position is shared by MDNet N A.46 and C-COT A.26, on the size change attribute,
the tracker MLDF A.19 produces the least failures, while on the unassigned attribute,
the TCNN A.44 fails the least often. The overall accuracy and robustness averaged
over the attributes is shown in Figure 2. The attribute-normalized AR plots are similar
to the pooled plots, but the top trackers (TCNN A.44, SSAT A.12, MDNet N A.46
and C-COT A.26) are pulled close together, which is evident from the ranking plots.

We have evaluated the difficulty level of each attribute by computing the median
of robustness and accuracy over each attribute. According to the results in Table 3,
the most challenging attributes in terms of failures are occlusion, motion change and
illumination change, followed by scale change and camera motion.

cam. mot. ill. ch. mot. ch. occl. scal. ch.

Accuracy 0.49 0.53 0.44 0.41 0.42

Robustness 0.71 0.81 1.02 1.11 0.61
Table 3. Tracking difficulty with respect to the following visual attributes: camera
motion (cam. mot.), illumination change (ill. ch.), motion change (mot. ch.), occlusion
(occl.) and size change (scal. ch.) .

In addition to the baseline reset-based VOT experiment, the VOT2016 toolkit also
performed the OTB [21] no-reset (OPE) experiment. Figure 5 shows the OPE plots,
while the AO overall measure is given in Table 2. According to the AO measure, the
three top performing trackers are SSAT (A.12), TCNN (A.44) and C-COT (A.26),
which is similar to the EAO ranking, with the main difference that SSAT and C-COT
exchange places. The reason for this switch can be deduced from the AR plots (Figure 2)
which show that the C-COT is more robust than the other two trackers, while the SSAT
is more accurate. Since the AO measure does not apply resets, it does not enhance the
differences among the trackers on difficult sequences, where one tracker might fail more
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MvCFT ACT∗ ANT∗ ART DSST ASMS∗ BDF

BST C-COT∗ CCCT CDTT CMT∗ CTF

DAT DDC deepMKCF DeepSRDCF∗ DFST DFT∗

DNT DPT DPTG DSST2014∗ EBT FCF

FCT FoT∗ FRT∗ GCF GGTv2 HCF∗

HMMTxD∗ HoughTrack∗ IVT∗ KCF2014∗ KCF SMXPC LGT∗
LoFT-Lite LT FLO MAD MatFlow Matrioska MDNet N

MIL∗ MLDF NCC∗ NSAMF OEST PKLTF

RFD CF2 SAMF2014∗ SCT SHCT SiamFC-A SiamFC-R

sKCF SMACF SMPR SO-DLT SRBT SRDCF∗

SSAT SSKCF Staple STAPLE+ STC∗ STRUCK2011∗
SWCF TCNN∗ TGPR∗ TRIC-track

Fig. 4. The expected average overlap with respect to the visual attributes (left). Ex-
pected average overlap scores w.r.t. the tracking speed in EFO units (right). The dashed
vertical line denotes the estimated real-time performance threshold of 20 EFO units.
See Figure 2 for legend.

often than the other, whereas the EAO is affected by these. Thus among the trackers
with similar accuracy and robustness, the EAO prefers trackers with higher robustness,
while the AO prefers more accurate trackers. To establish a visual relation among the
EAO and AO rankings, each tracker is shown in a 2D plot in terms of the EAO and
AO measures in Figure 5. Broadly speaking, the measures are correlated and EAO is
usually lower than EO, but the local ordering with these measures is different, which
is due to the different treatment of failures.

Apart from tracking accuracy, robustness and EAO measure, the tracking speed
is also crucial in many realistic tracking applications. We therefore visualize the EAO
score with respect to the tracking speed measured in EFO units in Figure 4. To put
EFO units into perspective, a C++ implementation of a NCC tracker provided in the
toolkit runs with average 140 frames per second on a laptop with an Intel Core i5-2557M
processor, which equals to approximately 200 EFO units. All trackers that scored top
EAO performed below realtime, while the top EFO was achieved by NCC (A.61),
BDF (A.9) and FoT (A.51). Among the trackers within the VOT2016 realtime bound,
the top two trackers in terms of EAO score were Staple+ (A.22) and SSKCF (A.27).
The former is modification of the Staple (A.28), while the latter is modification of the
Sumshift [38] tracker. Both approaches combine a correlation filter output with color
histogram backprojection. According to the AR-raw plot in Figure 2, the SSKCF (A.27)
tracks with a decent average overlap during successful tracking periods (∼ 0.55) and
produces decently long tracks. For example, the probability of SSKCF still tracking
the target after S = 100 frames is approximately 0.69. The Staple+ (A.22) tracks
with a similar overlap (∼ 0.56) and tracks the target after 100 frames with probability
0.70. In the detailed analysis of the results we have found some discrepancies between
the reported EFO units and the trackers speed in seconds for the Matlab trackers.
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Fig. 5. The OPE no-reset plots (left) and the EAO-AO scatter plot (right).

The toolkit was not ignoring the Matlab start time, which can significantly vary across
different trackers. This was particularly obvious in case of SiamFC trackers, which runs
orders higher than realtime (albeit on GPU), and Staple, which is realtime, but are
incorrectly among the non-realtime trackers in Figure 4.

5 Conclusion

This paper reviewed the VOT2016 challenge and its results. The challenge contains an
annotated dataset of sixty sequences in which targets are denoted by rotated bounding
boxes to aid a precise analysis of the tracking results. All the sequences are the same
as in the VOT2015 challenge and the per-frame visual attributes are the same as well.
A new methodology was developed to automatically place the bounding boxes in each
frame by optimizing a well-defined cost function. In addition, a rule-of-thumb approach
was developed to estimate the uniqueness of the automatically placed bounding boxes
under the expected bound on the per-pixel annotation error. A set of 70 trackers
have been evaluated. A large percentage of trackers submitted have been published at
recent conferences and top journals, including ICCV, CVPR, TIP and TPAMI, and
some trackers have not yet been published (available at arXiv). For example, fifteen
trackers alone have been published at major computer vision venues in 2015 and 2016
so far.

The results of VOT2016 indicate that the top performing tracker of the challenge
according to the EAO score is the C-COT (A.26) tracker [37]. This is a correlation-
filter-based tracker that applies a number of state-of-the-art features. The tracker per-
formed very well in accuracy as well as robustness and trade-off between the two is
reflected in the EAO. The C-COT (A.26) tracker is closely followed by TCNN (A.44)
and SSAT (A.12) which are close in terms of accuracy, robustness and the EAO. These
trackers come from a different class, they are pure CNN trackers based on the winning
tracker of VOT2015, the MDNet [33]. It is impossible to conclusively decide whether
the improvements of C-COT (A.26) over other top-performing trackers come from the
features or the approach. Nevertheless, results of top trackers conclusively show that
features play a significant role in the final performance. All trackers that scored the
top EAO perform below real-time. Among the realtime trackers, the top performing
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trackers were Staple+ (A.22) and SSKCF (A.27) that implement a simple combination
of the correlation filter output and histogram backprojection.

The main goal of VOT is establishing a community-based common platform for dis-
cussion of tracking performance evaluation and contributing to the tracking community
with verified annotated datasets, performance measures and evaluation toolkits. The
VOT2016 was a fourth attempt toward this, following the very successful VOT2013,
VOT2014 and VOT2015. The VOT2016 also introduced a second sub-challenge VOT-
TIR2016 that concerns tracking in thermal and infrared imagery. The results of that
sub-challenge are described in a separate paper [29] that was presented at the VOT2016
workshop. Our future work will be focused on revising the evaluation kit, dataset, per-
formance measures, and possibly launching other sub-challenges focused to narrow
application domains, depending on the feedbacks and interest expressed from the com-
munity.
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A Submitted trackers

In this appendix we provide a short summary of all trackers that were considered in
the VOT2016 challenge.

A.1 Deformable Part-based Tracking by Coupled Global and Local
Correlation Filters (DPCF)

O. Akin, E. Erdem, A. Erdem, K. Mikolajczyk
oakin25@gmail.com, {erkut, aykut}@cs.hacettepe.edu.tr,
k.mikolajczyk@imperial.ac.uk

DPCF is a deformable part-based correlation filter tracking approach which de-
pends on coupled interactions between a global filter and several part filters. Specif-
ically, local filters provide an initial estimate, which is then used by the global filter
as a reference to determine the final result. Then, the global filter provides a feedback
to the part filters regarding their updates and the related deformation parameters. In
this way, DPCF handles not only partial occlusion but also scale changes. The reader
is referred to [39] for details.
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A.2 Edge Box Tracker (EBT)

G. Zhu, F. Porikli, H. Li
{gao.zhu, fatih.porikli, hongdong.li}@anu.edu.au

EBT tracker is not limited to a local search window and has ability to probe
efficiently the entire frame. It generates a small number of ‘high-quality’ proposals
by a novel instance-specific objectness measure and evaluates them against the object
model that can be adopted from an existing tracking-by-detection approach as a core
tracker. During the tracking process, it updates the object model concentrating on hard
false-positives supplied by the proposals, which help suppressing distractors caused by
difficult background clutters, and learns how to re-rank proposals according to the
object model. Since the number of hypotheses the core tracker evaluates is reduced
significantly, richer object descriptors and stronger detectors can be used. More details
can be found in [40].

A.3 Spatial Windowing for Correlation Filter Based Visual
Tracking (SWCF)

E. Gundogdu, A. Alatan
egundogdu@aselsan.com.tr, alatan@eee.metu.edu.tr

SWCF tracker estimates a spatial window for the object observation such that the
correlation output of the correlation filter and the windowed observation (i.e. element-
wise multiplication of the window and the observation) is improved. Concretely, the
window is estimated by reducing a cost function, which penalizes the dissimilarity of
the correlation of the recent observation and the filter to the desired peaky shaped
signal, with an efficient gradient descent optimization. Then, the estimated window is
shifted by pre-calculating the translational motion and circularly shifting the window.
Finally, the current observation is multiplied element-wise with the aligned window,
and utilized in the localization. The reader is referred to [41] for details.

A.4 Point-based Kanade Lukas Tomasi colour-Filter (PKLTF)

R. Martin-Nieto, A. Garcia-Martin, J. M. Martinez
{rafael.martinn, alvaro.garcia, josem.martinez}@uam.es

PKLTF [42] is a single-object long-term tracker that supports high appearance
changes in the target, occlusions, and is also capable of recovering a target lost during
the tracking process. PKLTF consists of two phases: The first one uses the Kanade
Lukas Tomasi approach (KLT) [43] to choose the object features (using colour and
motion coherence), while the second phase is based on mean shift gradient descent [44]
to place the bounding box into the position of the object. The object model is based
on the RGB colour and the luminance gradient and it consists of a histogram including
the quantized values of the colour components, and an edge binary flag. The interested
reader is referred to [42] for details.

A.5 Distractor Aware Tracker (DAT)

H. Possegger, T. Mauthner, H. Bischof
{possegger, mauthner, bischof}@icg.tugraz.at
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The Distractor Aware Tracker is an appearance-based tracking-by-detection ap-
proach. A discriminative model using colour histograms is implemented to distinguish
the object from its surrounding region. Additionally, a distractor-aware model term
suppresses visually distracting regions whenever they appear within the field-of-view,
thus reducing tracker drift. The reader is referred to [45] for details.

A.6 Median Absolute Deviation Tracker (MAD)

S. Becker, S. Krah, W. Hübner, M. Arens
{stefan.becker, sebastian.krah, wolfgang.huebner,
michael.arens}@iosb.fraunhofer.de

The key idea of the MAD tracker [46] is to combine several independent and het-
erogeneous tracking approaches and to robustly identify an outlier subset based on
the Median Absolute Deviation (MAD) measure. The MAD fusion strategy is very
generic and it only requires frame-based target bounding boxes as input and thus can
work with arbitrary tracking algorithms. The overall median bounding box is calcu-
lated from all trackers and the deviation or distance of a sub-tracker to the median
bounding box is calculated using the Jaccard-Index. Further, the MAD fusion strategy
can also be applied for combining several instances of the same tracker to form a more
robust swarm for tracking a single target. For this experiments the MAD tracker is
set-up with a swarm of KCF [47] trackers in combination with the DSST [48] scale
estimation scheme. The reader is referred to [46] for details.

A.7 Fully-functional correlation filtering-based tracker (FCF)

M. Zhang, J. Xing, J. Gao, W. Hu
{mengdan.zhang, jlxing, jin.gao, wmhu}@nlpr.ia.ac.cn

FCF is a fully functional correlation filtering-based tracking algorithm which is
able to simultaneously model correlations from a joint scale-displacement space, an
orientation space, and the time domain. FCF tracker firstly performs scale-displacement
correlation using a novel block-circulant structure to estimate objects position and size
in one go. Then, by transferring the target representation from the Cartesian coordinate
system to the Log-Polar coordinate system, the circulant structure is well preserved and
the object rotation can be evaluated in the same correlation filtering based framework.
In the update phase, temporal correlation analysis is introduced together with inference
mechanisms which are based on an extended high-order Markov chain.

A.8 Structure Output Deep Learning Tracker (SO-DLT)

N. Wang, S. Li, A. Gupta, D. Yeung
winsty@gmail.com, sliay@cse.ust.hk, abhinavg@cs.cmu.edu,
dyyeung@cse.ust.hk

SO-LDT proposes a structured output CNN which transfers generic object features
for online tracking. First, a CNN is trained to distinguish objects from non-objects.
The output of the CNN is a pixel-wise map to indicate the probability that each pixel
in the input image belongs to the bounding box of an object. Besides, SO-LDT uses
two CNNs which use different model update strategies. By making a simple forward
pass through the CNN, the probability map for each of the image patches is obtained.
The final estimation is then determined by searching for a proper bounding box. If it
is necessary, the CNNs are also updated. The reader is referred to [49] for more details.
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A.9 Best Displacement Flow (BDF)

M. Maresca, A. Petrosino
mariomaresca@hotmail.it, petrosino@uniparthenope.it

Best Displacement Flow (BDF) is a short-term tracking algorithm based on the
same idea of Flock of Trackers [50] in which a set of local tracker responses are robustly
combined to track the object. Firstly, BDF performs a clustering to identify the best
displacement vector which is used to update the object’s bounding box. Secondly,
BDF performs a procedure named Consensus-Based Reinitialization used to reinitialize
candidates which were previously classified as outliers. Interested readers are referred
to [51] for details.

A.10 Matrioska Best Displacement Flow (MatFlow)

M. Maresca, A. Petrosino
mariomaresca@hotmail.it, petrosino@uniparthenope.it

MatFlow enhances the performance of the first version of Matrioska [52] with re-
sponse given by the short-term tracker BDF (see A.9). By default, MatFlow uses the
trajectory given by Matrioska. In the case of a low confidence score estimated by Ma-
trioska, the algorithm corrects the trajectory with the response given by BDF. The
Matrioska’s confidence score is based on the number of keypoints found inside the
object in the initialization. If the object has not a good amount of keypoints (i.e. Ma-
trioska is likely to fail), the algorithm will use the trajectory given by BDF that is not
sensitive to low textured objects.

A.11 Matrioska

M. Maresca, A. Petrosino
mariomaresca@hotmail.it, petrosino@uniparthenope.it

Matrioska [52] decomposes tracking into two separate modules: detection and learn-
ing. The detection module can use multiple key point-based methods (ORB, FREAK,
BRISK, SURF, etc.) inside a fall-back model, to correctly localize the object frame by
frame exploiting the strengths of each method. The learning module updates the object
model, with a growing and pruning approach, to account for changes in its appearance
and extracts negative samples to further improve the detector performance.

A.12 Scale-and-State Aware Tracker (SSAT)

Y. Qi, L. Qin, S. Zhang, Q. Huang
qykshr@gmail.com, qinlei@ict.ac.cn, s.zhang@hit.edu.cn, qmhuang@ucas.ac.cn

SSAT is an extended version of the MDNet tracker [33]. First, a segmentation
technique into MDNet is introduced. It works with the scale regression model of MDNet
to more accurately estimate the tightest bounding box of the target. Second, a state
model is used to infer whether the target is occluded. When the target is occluded,
training examples from that frame are not extracted which are used to update the
tracker.
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A.13 Clustered decision tree based tracker (CDTT)

J. Xiao, R. Stolkin, A. Leonardis
Shine636363@sina.com, {R.Stolkin, a.leonardis}@cs.bham.ac.uk

CDTT tracker is a modified version of the tracker presented in [53]. The tracker
first propagates a set of samples, using the top layer features, to find candidate target
regions with different feature modalities. The candidate regions generated by each
feature modality are adaptively fused to give an overall target estimation in the global
layer. When an ‘ambiguous’ situation is detected (i.e. inconsistent locations of predicted
bounding boxes from different feature modalities), the algorithm will progress to the
local part layer for more accurate tracking. Clustered decision trees are used to match
target parts to local image regions, which initially attempts to match a part using a
single feature (first level on the tree), and then progresses to additional features (deeper
levels of the tree). The reader is referred to [53] for details.

A.14 Scale and Motion Adaptive Correlation Filter
Tracker (SMACF)

M. Mueller, B. Ghanem
{matthias.mueller.2, Bernard.Ghanem}@kaust.edu.sa

The tracker is based on [47]. Colourname features are added for better representa-
tion of the target. Depending on the target size, the cell size for extracting features is
changed adaptively to provide sufficient resolution of the object being tracked. A first
order motion model is used to improve robustness to camera motion. Searching over a
number of different scales allows for more accurate bounding boxes and better local-
ization in consecutive frames. For robustness, scales are weighted using a zero-mean
Gaussian distribution centred around the current scale. This ensures that the scale is
only changed if it results in a significantly better response.

A.15 A multi-view model for visual tracking via correlation
Filters (MvCFT)

Z. He, X. Li, N. Fan
zyhe@hitsz.edu.cn, hitlixin@126.com, nanafanhit@gmail.com

The multi-view correlation filter tracker (MvCF tracker) fuses several features and
selects the more discriminative features to enhance the robustness. Besides, the corre-
lation filter framework provides fast training and efficient target locating. The combi-
nation of the multiple views is conducted by the Kullback-Leibler (KL) divergences. In
addition, a simple but effective scale-variation detection mechanism is provided, which
strengthens the stability of scale variation tracking.

A.16 Deep multi-kernelized correlation filter (deepMKCF)

J. Feng, F. Zhao, M. Tang
{jiayi.feng, fei.zhao, tangm}@nlpr.ia.ac.cn

deepMKCF tracker is the MKCF [54] with deep features extracted by using VGG-
Net [36]. deepMKCF tracker combines the multiple kernel learning and correlation
filter techniques and it explores diverse features simultaneously to improve tracking
performance. In addition, an optimal search technique is also applied to estimate object
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scales. The multi-kernel training process of deepMKCF is tailored accordingly to ensure
tracking efficiency with deep features. In addition, the net is fine-tuned with a batch
of image patches extracted from the initial frame to make VGG-NET-19 more suitable
for tracking tasks.

A.17 Discriminative Deep Correlation Tracking (DDC)

J. Gao, T. Zhang, C. Xu, B. Liu
gaojunyu2015@ia.ac.cn, tzzhang10@gmail.com, csxu@nlpr.ia.ac.cn,
liubin@dress-plus.com

The Discriminative Deep Correlation (DDC) tracker is based on the correlation
filter framework. The tracker uses foreground and background image patches and it
has the following advantages: (i) It effectively exploit image patches from foreground
and background to make full use of their discriminative context information, (ii) deep
features are used to gain more robust target object representations, and (iii) an effective
scale adaptive scheme and a long-short term model update scheme are utilised.

A.18 Geometric Structure Hyper-Graph based Tracker Version
2 (GGTv2)

T. Hu, D. Du, L. Wen, W. Li, H. Qi, S. Lyu
{yihouxiang, cvdaviddo, lywen.cv.workbox, wbli.app, honggangqi.cas,
heizi.lyu}@gmail.com

GGTv2 is an improvement of GGT [55] by combining the scale adaptive kernel
correlation filter [56] and the geometric structure hyper-graph searching framework
to complete the object tracking task. The target object is represented by a geometric
structure hyper-graph that encodes the local appearance of the target with higher-order
geometric structure correlations among target parts and a bounding box template that
represents the global appearance of the target. The tracker use HSV colour histogram
and LBP texture to calculate the appearance similarity between associations in the
hyper-graph. The templates of correlation filter is calculated by HOG and colour name
according to [56].

A.19 Multi-Level Deep Feature Tracker (MLDF)

L. Wang, H. Lu, Yi. Wang, C. Sun
{wlj,wyfan523,waynecool}@mail.dlut.edu.cn, lhchuan@dlut.edu.cn

MLDF tracker is based on deep convolutional neural networks (CNNs). The pro-
posed MLDF tracker draws inspiration from [57] by combining low, mid and high-level
features from the pre trained VGG networks [36]. A Multi-Level Network (MLN) is de-
signed to take these features as input and online trained to predict the centre location
of the target. By jointly considering multi-level deep features, the MLN is capable to
distinguish the target from background objects of different categories. While the MLN
is used for location prediction, a Scale Prediction Network (SPN) [58] is applied to
handle scale variations.
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A.20 Colour-aware Complex Cell Tracker (CCCT)

D. Chen, Z. Yuan
dapengchenxjtu@foxmail.com, yuan.ze.jian@xjtu.edu.cn

The proposed tracker is a variant of CCT proposed in [59]. CCT tracker applies in-
tensity histogram, oriented gradient histogram and colour name features to construct
four types of complex cell descriptors. A score normalization strategy is adopted to
weight different visual cues as well as different types of complex cell. Besides, occlusion
inference and stability analysis are performed over each cell to increase the robustness
of tracking. For more details, the reader is referred to [59].

A.21 A New Scale Adaptive and Multiple Feature based on kernel
correlation filter tracker (NSAMF)

Y. Li, J. Zhu
{liyang89, jkzhu}@zju.edu.cn

NSAMF is an improved version of the previous method SAMF [56]. To further
exploit color information, NSAMF employs color probability map, instead of color
name, as color based feature to achieve more robust tracking results. In addition,
multi-models based on different features are integrated to vote the final position of the
tracked target.

A.22 An improved STAPLE tracker with multiple feature
integration (Staple+)

Z. Xu, Y. Li, J. Zhu
xuzhan2012@whu.edu.cn, {liyang89, jkzhu}@zju.edu.cn

An improved version of STAPLE tracker [60] by integrating multiple features is
presented. Besides extracting HOG feature from merely gray-scale image as they do
in [60], we also extract HOG feature from color probability map, which can exploit
color information better. The final response map is thus a fusion of different features.

A.23 SiameseFC-ResNet (SiamFC-R)

L. Bertinetto, J. F. Henriques, J. Valmadre, P. H. S. Torr, A. Vedaldi
{luca, joao, jvlmdr}@robots.ox.ac.uk,
philip.torr@eng.ox.ac.uk, vedaldi@robots.ox.ac.uk

SiamFC-R is similar to SiamFC-A A.25, except that it uses a ResNet architecture
instead of AlexNet for the embedding function. The parameters for this network were
initialised by pre-training for the ILSVRC image classification problem, and then fine-
tuned for the similarity learning problem in a second offline phase.

A.24 Structure Hyper-graph based Correlation Filter
Tracker (SHCT)

L. Wen, D. Du, S. Li, C.-M. Chang, S. Lyu, Q. Huang
{lywen.cv.workbox, cvdaviddo, shengkunliluo, mingching, heizi.lyu}@gmail.com, qmhuang@jdl.ac.cn
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SHCT tracker constructs a structure hyper-graph model [61] to extract the motion
coherence of target parts. The tracker also computes a part confidence map based on
the extracted dense subgraphs on the constructed structure hyper-graph, which indi-
cates the confidence score of the part belonging to the target. SHCT uses HSV colour
histogram and LBP feature to calculate the appearance similarity between associations
in the hyper-graph. Finally, the tracker combines the response maps of correlation fil-
ter and structure hyper-graph in a linear way to find the optimal target state (i.e.,
target scale and location). The templates of correlation filter are calculated by HOG
and colour name according to [56]. The appearance models of correlation filter and
structure hyper-graph are updated to ensure the tracking performance.

A.25 SiameseFC-AlexNet (SiamFC-A)

L. Bertinetto, J. F. Henriques, J. Valmadre, P. H. S. Torr, A. Vedaldi
{luca, joao, jvlmdr}@robots.ox.ac.uk,
philip.torr@eng.ox.ac.uk, vedaldi@robots.ox.ac.uk

SiamFC-A [62] applies a fully-convolutional Siamese network [63] trained to locate
an exemplar image within a larger search image. The architecture is fully convolu-
tional with respect to the search image: dense and efficient sliding-window evaluation
is achieved with a bilinear layer that computes the cross-correlation of two inputs. The
deep convnet (namely, a AlexNet [64]) is first trained offline on the large ILSVRC15 [65]
video dataset to address a general similarity learning problem, and then this function
is evaluated during testing by a simplistic tracker. SiamAN incorporates elementary
temporal constraints: the object search is done within a region of approximately four
times its previous size, and a cosine window is added to the score map to penalize large
displacements. SiamAN also processes several scaled versions of the search image, any
change in scale is penalised and damping is applied to the scale factor.

A.26 Continuous Convolution Operator Tracker (C-COT)

M. Danelljan, A. Robinson, F. Shahbaz Khan, M. Felsberg
{martin.danelljan, andreas.robinson, fahad.khan, michael.felsberg}@liu.se

C-COT learns a discriminative continuous convolution operator as its tracking
model. C-COT poses the learning problem in the continuous spatial domain. This
enables a natural and efficient fusion of multi-resolution feature maps, e.g. when us-
ing several convolutional layers from a pre-trained CNN. The continuous formulation
also enables highly accurate localization by sub-pixel refinement. The reader is referred
to [37] for details.

A.27 SumShift Tracker with Kernelized Correlation Filter (SSKCF)

J.-Y. Lee, S. Choi, J.-C. Jeong, J.-W. Kim, J.-I. Cho
{jylee, sunglok, channij80, giraffe, jicho}@etri.re.kr

SumShiftKCF tracker is an extension of the SumShift tracker [38] by the kernelized
correlation filter tracker (KCF) [47]. The SumShiftKCF tracker computes the object
likelihood with the weighted sum of the histogram back-projection weights and the
correlation response of KCF. Target is then located by the Sum-Shift iteration [38].
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A.28 Sum of Template And Pixel-wise LEarners (Staple)

L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, P. H. S. Torr
{luca, jvlmdr}@robots.ox.ac.uk, stuart.golodetz@ndcn.ox.ac.uk,
{ondrej.miksik, philip.torr}@eng.ox.ac.uk

Staple is a tracker that combines two image patch representations that are sen-
sitive to complementary factors to learn a model that is inherently robust to both
colour changes and deformations. To maintain real-time speed, two independent ridge-
regression problems are solved, exploiting the inherent structure of each representation.
Staple combines the scores of two models in a dense translation search, enabling greater
accuracy. A critical property of the two models is that their scores are similar in mag-
nitude and indicative of their reliability, so that the prediction is dominated by the
more confident. For more details, we refer the reader to [60].

A.29 Kalman filter ensemble-based tracker (ColorKCF)

P. Senna, I. Drummond, G. Bastos
{pedrosennapsc, isadrummond, sousa}@unifei.edu.br

The colourKCF method fuses the result of two out-of-the box trackers, a mean-
shift tracker that uses colour histogram (ASMS) [66] and the kernelized correlation
filter (KCF) [47] by using a Kalman filter. The tracker works in prediction and correc-
tion cycles. First, a simple motion model predicts the target next position, then, the
trackers results are fused with the predicted position and the motion model is updated
in the correction process. The fused result is the SMACF output which is used as last
position of the tracker in the next frame. The Kalman filter needs a measure to define
how reliable each result is during the fusion process. For this, the tracker uses the result
confidence and the motion penalization which is proportional to the distance between
the tracker result and the predict result. As confidence measure, the Bhattacharyya
coefficient between the model and the target histogram is used in case of ASMS tracker,
while the correlation result is applied in case of KCF tracker. The initial name of this
tracker when submitted to the challenge was ColorKCF.

A.30 Best Structured Tracker (BST)

F. Battistone, A. Petrosino, V. Santopietro
{battistone.francesco, vinsantopietro}@gmail.com, petrosino@uniparthenope.it

BST is based on the idea of Flock of Trackers [67]: a set of local trackers tracks a
little patch of the original target and then the tracker combines their information in
order to estimate the resulting bounding box. Each local tracker separately analyzes
the features extracted from a set of samples and then classifies them using a structured
Support Vector Machine as Struck [67]. Once having predicted local target candidates,
an outlier detection process is computed by analyzing the displacements of local track-
ers. Trackers that have been labeled as outliers are reinitialized. At the end of this
process, the new bounding box is calculated using the Convex Hull technique.

A.31 Online Evaluation-based Self-Correction Tracker (OEST)

Z. Cai, P. C. Yuen, A. J. Ma, X. Lan
{cszxcai, pcyuen, andyjhma, xylan}@comp.hkbu.edu.hk
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Online Evaluation-based Self-Correction Tracker aims at improving the tracking
performance based on any existing tracker. OEST consists of three steps. Firstly, the
long-term correlation tracker (LCT) [68] is employed to determine the bounding box
of the target at the current frame. Secondly, an online tracking performance estimator
is deployed to evaluate whether the output bounding box provided by the base tracker
can correctly locate the target by analyzing the previous tracking results. Comparing
existing performance estimators, the time-reverse method [69] achieves the best eval-
uation performance. Thirdly, if the online tracking performance estimator determines
that the base tracker fails to track the target, a re-detection algorithm is performed to
correct the output of the tracker. An online SVM detector as in [70] is employed in this
re-detection step. Tracker outputs with high confidence determined by the performance
estimator are used to update the detector.

A.32 Tracking by Regression with Incrementally Learned
Cascades (TRIC-track)

X. Wang, M. Valstar, B. Martinez, M. H. Khan, T. Pridmore
{psxxw, Michel.Valstar, brais.martinez, psxmhk,
tony.pridmore}@nottingham.ac.uk

TRIC-track is a part-based tracker which directly predicts the displacements be-
tween the centres of sampled image patches and the target part location using regres-
sors. TRIC-track adopts the Supervised Descent Method (SDM) [71] to perform the
cascaded regression for displacement prediction, estimating the target location with in-
creasingly accurate predictions. To adapt to variations in target appearance and shape
over time, TRIC-track takes inspiration from the incremental learning of cascaded
regression of [72] applying a sequential incremental update. Shape constraints are,
however, implicitly encoded by allowing patches sampled around neighbouring parts
to vote for a given parts location. TRIC-track also possesses a multiple temporal scale
motion model [73] which enables it to fully exert the trackers advantage by providing
accurate initial prediction of the target part location every frame. For more details,
the interested reader is referred to [74].

A.33 Correlation-based Tracker Level Fusion (CTF)

M. k. Rapuru, S. Kakanuru, D. Mishra, G. R K S. Subrahmanyam
madankumar.r@gmail.com, kakanurusumithra05@gmail.com,
{deepak.mishra, gorthisubrahmanyam}@iist.ac.in

The Correlation based Tracker level Fusion (CTF) method combines two state-of-
the-art trackers, which have complementary nature in handling tracking challenges and
also in the methodology of tracking. CTF considers the outputs of both trackers Track-
ing Learning Detection (TLD) [75] tracker and Kernelized Correlation Filters (KCF)
tracker [47], and selects the best patch by measuring the correlation correspondence
with the stored object model sample patches. An integration of frame level detection
strategy of TLD with systematic model update strategy of KCF are used to increase
the robustness. Since KCF tracker exploits the circulant structure in the training and
testing data, a high frame rate with less overhead is achieved. CTF method can handle
scale changes, occlusions and tracking resumption with the virtue of TLD, whereas
KCF fails in handling these challenges. The proposed methodology is not limited to
integrating just TLD and KCF, it is a generic model where any best tracker can be
combined with TLD to leverage the best performance.
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A.34 Salient Region Based Tracker (SRBT)

H. Lee, D. Kim
{lhmin, dkim}@postech.ac.kr

Salient Region Based Tracker separates the exact object region contained in the
bounding box - called the salient region - from the background region. It uses the
colour model and appearance model to estimate the location and size of the target.
During an initialization step, the salient region is set to the ground truth region and is
updated for each frame. While estimating the target location and updating the model,
only the pixels inside the salient region can participate as contributors. An additional
image template as appearance model is used to catch like edges and shape. The colour
histogram model is adopted from DAT [45] excluding the distractor-awareness concept.

A.35 Deformable part correlation filter tracker (DPT)

A. Lukežič, L. Čehovin, M. Kristan
{alan.lukezic, luka.cehovin, matej.kristan}@fri.uni-lj.si

DPT is a part-based correlation filter composed of a coarse and mid-level target rep-
resentations. Coarse representation is responsible for approximate target localization
and uses HOG as well as colour features. The mid-level representation is a deformable
parts correlation filter with fully-connected parts topology and applies a novel formu-
lation that threats geometric and visual properties within a single convex optimization
function. The mid level as well as coarse level representations are based on the kernel-
ized correlation filter from [47]. The reader is referred to [76] for details.

A.36 Guided correlation filter (GCF)

A. Lukežič, L. Čehovin, M. Kristan
{alan.lukezic, luka.cehovin, matej.kristan}@fri.uni-lj.si

GCF (guided correlation filter) is a correlation filter based tracker that uses colour
segmentation [77] (implementation from [78]) to improve the robustness of the corre-
lation filter learning process. The segmentation mask is combined with the correlation
filter to reduce the impact of the background and the circular correlations effects,
which are the most problematic when tracking rotated or non-axis aligned objects.
The tracker uses HOG [79] features for target localization and the DSST [48] approach
for scale estimation.

A.37 Optical flow clustering tracker (FCT)

A. Varfolomieiev
a.varfolomieiev@kpi.ua

FCT is based on the same idea as the best displacement tracker (BDF) [51]. It uses
pyramidal Lucas-Kanade optical flow algorithm to track individual points of an object
at several pyramid levels. The results of the point tracking are clustered in the same
way as in the BDF [51] to estimate the best object displacement. The initial point
locations are generated by the FAST detector [80]. The tracker estimates a scale and
an in-plane rotation of the object. These procedures are similar to the scale calculation
of the median flow tracker [81], except that the clustering is used instead of median. In
case of rotation calculation angles between the respective point pairs are clustered. In
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contrast to BDF, the FCT does not use consensus-based reinitialization. The current
implementation of FCT calculates the optical flow only in the objects region, which is
four times larger than the initial bounding box of the object, and thus speeds up the
tracker with respect to its previous version [18].

A.38 Likelihood of Features Tracking-Lite (LoFT-Lite)

M. Poostchi, K. Palaniappan, F. Bunyak, G. Seetharaman, R. Pelapur, K. Gao, S.
Yao, N. Al-Shakarji
mpoostchi@mail.missouri.edu, {pal, bunyak}@missouri.edu, guna@ieee.org
{rvpnc4, kg954, syyh4, nmahyd}@missouri.edu,

LoFT (Likelihood of Features Tracking)-Lite [82] is an appearance based single ob-
ject tracker optimized for aerial video. Target objects are characterized using low level
image feature descriptors including intensity, color, shape and edge attributes based
on histograms of intensity, color-name space, gradient magnitude and gradient orien-
tation. The feature likelihood maps are computed using fast integral histograms [83]
within a sliding window framework that compares histogram descriptors. Intensity and
gradient magnitude normalized cross-correlations likelihood maps are also used to in-
corporate spatial structure information. An informative subset of six features from the
collection of eleven features is used that are the most discriminative based on an offline
feature subset selection method [84]. LoFT performs feature fusion using a foreground-
background model by comparing the current target appearance with the model in-
side the search region [85]. LOFT-Lite also incorporates an adaptive orientation-based
Kalman prediction update to restrict the search region which reduces sensitivity to
abrupt motion changes and decreases computational cost [86].

A.39 Dynamic Feature Selection Tracker (DFST)

G. Roffo, S. Melzi
{giorgio.roffo, simone.melzi}@univr.it

DFST proposes an optimized visual tracking algorithm based on the real-time se-
lection of locally and temporally discriminative features. A feature selection mechanism
is embedded in the Adaptive colour Names [87] (CN) tracking system that adaptively
selects the top-ranked discriminative features for tracking. DFST provides a signifi-
cant gain in accuracy and precision allowing the use of a dynamic set of features that
results in an increased system flexibility. DFST is based on the unsupervised method
Inf-FS [88, 89], which ranks features according with their ‘redundancy’ without using
class labels. By using a fast online algorithm for learning dictionaries [90] the size of
the box is adapted during the processing. At each update, multiple examples at differ-
ent positions and scales around the target are used. A further improvement of the CN
system is given by making micro-shifts at the predicted position according to the best
template matching. The interested reader is referred to [89] for details.

A.40 Scalable Kernel Correlation Filter with Sparse Feature
Integration (sKCF)

A. Soĺıs Montero, J. Lang, R. Laganière
asolismo@uottawa.ca, {jlang, laganier}@eecs.uottawa.ca
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sKCF [91] extends Kernalized Correlation Filter (KCF) framework by introducing
an adjustable Gaussian window function and keypoint-based model for scale estimation
to deal with the fixed size limitation in the Kernelized Correlation Filter along with
some performace enhancements. In the submission, we introduce a model learning
strategy to the original sKCF [91] which updates the model only for highly similar
KCF responses of the tracked region as to the model. This potentially limits model
drift due to temporary disturbances or occlusions. The original sKCF always updates
the model in each frame.

A.41 Dual Deep Network Tracker (DNT)

Z. Chi, H. Lu, L. Wang, C. Sun
{zhizhenchi, wlj, waynecool}@mail.dlut.edu.cn, lhchuan@dlut.edu.cn

DNT proposes a dual network for visual tracking. First, the hierarchical features
in two different layers of a deep model pre-trained are exploited for object recognition.
Features in higher layers encode more semantic contexts while those in lower layers
are more effective to discriminative appearance. To highlight geometric contours of the
target, the hierarchical feature maps are integrated with an edge detector as the coarse
prior maps. To measure the similarities between the network activation and target
appearance, a dual network with a supervised loss function is trained. This dual network
is updated online in a unique manner based on the observation that the tracking
target in consecutive frames should share more similar feature representations than
those in the surrounding background. Using prior maps as guidance, the independent
component analysis with reference algorithm is used to extract the exact boundary of
a target object, and online tracking is conducted by maximizing the posterior estimate
on the feature maps with stochastic and periodic update.

A.42 Structuralist Cognitive model for visual Tracking (SCT)

J. Choi, H. J. Chang, J. Jeong, Y. Demiris, J. Y. Choi
jwchoi.pil@gmail.com, hj.chang@imperial.ac.uk, jy.jeong@snu.ac.kr,
y.demiris@imperial.ac.uk, jychoi@snu.ac.kr

SCT [92] is composed of two separate stages: disintegration and integration. In
the disintegration stage, the target is divided into a number of small cognitive struc-
tural units, which are memorized separately. Each unit includes a specific colour or
a distinguishable target shape, and is trained by elementary trackers with different
types of kernel. In the integration stage, an adequate combination of the structural
units is created and memorized to express the targets appearance. When encounter-
ing a target with changing appearance in diverse environments, SCT tracker utilizes
all the responses from the cognitive units memorized in the disintegration stage and
then recognizes the target through the best combination of cognitive units, referring to
the memorized combinations. With respect to the elementary trackers, an attentional
feature-based correlation filter (AtCF) is used. The AtCF focuses on the attentional
features discriminated from the background. Each AtCF consists of an attentional
weight estimator and a kernelized correlation filter (KCF) [47]. In the disintegration
stage, multiple AtCFs are updated using various features and kernel types. The inte-
gration stage combines the responses of AtCFs by ordering the AtCFs following their
performance.
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A.43 Long Term Featureless Object Tracker (LT-FLO)

K. Lebeda, S. Hadfield, J. Matas, R. Bowden
{k.lebeda, s.hadfield}@surrey.ac.uk, matas@cmp.felk.cvut.cz,
r.bowden@surrey.ac.uk

The tracker is based on and extends previous work of the authors on tracking of
texture-less objects [93]. It significantly decreases reliance on texture by using edge-
points instead of point features. LT-FLO uses correspondences of lines tangent to the
edges and candidates for a correspondence are all local maxima of gradient magnitude.
An estimate of the frame-to-frame transformation similarity is obtained via RANSAC.
When the confidence is high, the current state is learnt for future corrections. On
the other hand, when a low confidence is achieved, the tracker corrects its position
estimate restarting the tracking from previously stored states. LT-FLO tracker also
has a mechanism to detect disappearance of the object, based on the stability of the
gradient in the area of projected edge-points. The interested reader is referred to [94,
95] for details.

A.44 Tree-structured Convolutional Neural Network
Tracker (TCNN)

H. Nam, M. Baek, B. Han
{namhs09, mooyeol, bhhan}@postech.ac.kr

TCNN [96] maintains multiple target appearance models based on CNNs in a tree
structure to preserve model consistency and handle appearance multi-modality effec-
tively. TCNN tracker consists of two main components, state estimation and model
update. When a new frame is given, candidate samples around the target state esti-
mated in the previous frame are drawn, and the likelihood of each sample based on
the weighted average of the scores from multiple CNNs is computed. The weight of
each CNN is determined by the reliability of the path along which the CNN has been
updated in the tree structure. The target state in the current frame is estimated by
finding the candidate with the maximum likelihood. After tracking a predefined num-
ber of frames, a new CNN is derived from an existing one, which has the highest weight
among the contributing CNNs to target state estimation.

A.45 Adaptive Regression Target Discriminative Scale Space
Tracking (ART-DSST)

L. Zhang, J. Van de Weijer, M. Mozerov, F. Khan
{lichao, joost, mikhail}@cvc.uab.es, fahad.khan@liu.se

Correlation based tracking optimizes the filter coefficients such that the resulting
filter response is an isotropic Gaussian. However, for rectangular shapes the overlap
error diminishes anisotropically: faster along the short axes than the long axes of the
rectangle. To exploit this observation, ART-DSST proposes the usage of an anisotropic
Gaussian regression target which adapts to the shape of the bounding box. The method
is general because it can be applied to all regression based trackers.

A.46 Multi-Domain Convolutional Neural Network
Tracker (MDNet-N)

H. Nam, M. Baek, B. Han
{namhs09, mooyeol, bhhan}@postech.ac.kr
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This algorithm is a variation of MDNet [33], which does not pre-train CNNs with
other tracking datasets. The network is initialised using the ImageNet [97]. The new
classification layer and the fully connected layers within the shared layers are then
fine-tuned online during tracking to adapt to the new domain. The online update is
conducted to model long-term and short-term appearance variations of a target for
robustness and adaptiveness, respectively, and an effective and efficient hard negative
mining technique is incorporated in the learning procedure. This experiment result
shows that the online tracking framework scheme of MDNet is still effective without
multi-domain training.

A.47 CF2 with Response Information Failure Detection (RFD-CF2)

R. Walsh, H. Medeiros
{ryan.w.walsh, henry.medeiros}@marquette.edu,

RFD-CF2 is a modified version of the Correlation Filters with Convolutional Fea-
tures tracker (CF2) extended with a failure detection module [98]. Hard occlusions
and blurring of the target are detected by extracting features out of the response map.
The tracker uses this information to scale the trackers search space and minimize bad
updates from occurring.

A.48 Scalable Multiple Part Regressors tracker (SMPR)

A. Memarmoghadam, P. Moallem
{a.memarmoghadam, p moallem}@eng.ui.ac.ir

SMPR framework applies both global and local correlation filter-based part re-
gressors in object modeling. To follow target appearance changes, importance weights
are dynamically assigned to each model part via solving a multi linear ridge regres-
sion optimization problem. During model update, a helpful scale estimation technique
based on weighted relative movement of pair-wise inlier parts is applied. Without loss
of generality, conventional CN tracker [87] is utilized as a sample CFT baseline to ex-
peditiously track each target object part by feeding color-induced attributes into fast
CSK tracker [99]. Similar to CN approach [87], low dimensional colour names together
with greyscale features are employed to represent each part of the object model.

A.49 Scale Adaptive Mean Shift (ASMS)

Submitted by VOT Committee

The mean-shift tracker optimize the Hellinger distance between template histogram
and target candidate in the image. This optimization is done by a gradient descend.
The ASMS [100] method address the problem of scale adaptation and present a novel
theoretically justified scale estimation mechanism which relies solely on the mean-shift
procedure for the Hellinger distance. The ASMS also introduces two improvements of
the mean-shift tracker that make the scale estimation more robust in the presence of
background clutter - a histogram colour weighting and a forward-backward consistency
check.
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A.50 Discriminative Scale Space Tracker (DSST2014)

Authors implementation. Submitted by VOT Committee
The Discriminative Scale Space Tracker (DSST) [48] extends the Minimum Output

Sum of Squared Errors (MOSSE) tracker [101] with robust scale estimation. The DSST
additionally learns a one-dimensional discriminative scale filter, that is used to estimate
the target size. For the translation filter, the intensity features employed in the MOSSE
tracker is combined with a pixel-dense representation of HOG-features.

A.51 Flock of Trackers (FoT)

Submitted by VOT Committee
The Flock of Trackers (FoT) [67] is a tracking framework where the object motion

is estimated from the displacements or, more generally, transformation estimates of a
number of local trackers covering the object. Each local tracker is attached to a certain
area specified in the object coordinate frame. The local trackers are not robust and
assume that the tracked area is visible in all images and that it undergoes a simple
motion, e.g. translation. The Flock of Trackers object motion estimate is robust if it is
from local tracker motions by a combination which is insensitive to failures.

A.52 HMMTxD

Submitted by VOT Committee
The HMMTxD [102] method fuses observations from complementary out-of-the

box trackers and a detector by utilizing a hidden Markov model whose latent states
correspond to a binary vector expressing the failure of individual trackers. The Markov
model is trained in an unsupervised way, relying on an online learned detector to pro-
vide a source of tracker-independent information for a modified Baum-Welch algorithm
that updates the model w.r.t. the partially annotated data.

A.53 Kernelized Correlation Filter tracker (KCF2014)

Modified version of the authors implementation. Submitted by VOT Committee
This tracker is basically a Kernelized Correlation Filter [47] operating on simple

HOG features. The KCF tracker is equivalent to a Kernel Ridge Regression trained
with thousands of sample patches around the object at different translations. The im-
provements over the previous version are multi-scale support, sub-cell peak estimation
and replacing the model update by linear interpolation with a more robust update
scheme.

A.54 A kernel correlation filter tracker with Scale Adaptive and
Feature Integration (SAMF2014)

Authors implementation. Submitted by VOT Committee
SAMF tracker is based on the idea of correlation filter-based trackers with aim to

improve the overall tracking capability. To tackle the problem of the fixed template
size in kernel correlation filter tracker, an effective scale adaptive scheme is proposed.
Moreover, features like HOG and colour naming are integrated together to further
boost the overall tracking performance.
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A.55 STRUCK (Struck2011)

Submitted by VOT Committee
Struck [103] is a framework for adaptive visual object tracking based on structured

output prediction. The method uses a kernelized structured output support vector
machine (SVM), which is learned online to provide adaptive tracking.

A.56 Adaptive Color Tracker (ACT)

Authors implementation. Submitted by VOT Committee
The Adaptive Color Tracker (ACT) [104] extends the CSK tracker [99] with colour

information. ACT tracker contains three improvements to CSK tracker: (i) A tempo-
rally consistent scheme for updating the tracking model is applied instead of training
the classifier separately on single samples, (ii) colour attributes are applied for image
representation, and (iii) ACT employs a dynamically adaptive scheme for selecting the
most important combinations of colours for tracking.

A.57 Spatially Regularized Discriminative Correlation Filter with
Deep Features (DeepSRDCF)

Authors implementation. Submitted by VOT Committee
The DeepSRDCF incorporates deep convolutional features in the SRDCF frame-

work proposed in [105]. Instead of the commonly used hand-crafted features, the Deep-
SRDCF employs convolutional features from a pre-trained network. A Principal Com-
ponent Analysis is used to reduce the feature dimensionality of the extracted activa-
tions. The reader is referred to [105] for details.

A.58 Spatially Regularized Discriminative Correlation Filter
Tracker (SRDCF)

Authors implementation. Submitted by VOT Committee
Standard Discriminative Correlation Filter (DCF) based trackers such as [48, 87,

47] suffer from the inherent periodic assumption when using circular correlation. The
resulting periodic boundary effects leads to inaccurate training samples and a restricted
search region.

The SRDCF mitigates the problems arising from assumptions of periodicity in
learning correlation filters by introducing a spatial regularization function that penal-
izes filter coefficients residing outside the target region. This allows the size of the
training and detection samples to be increased without affecting the effective filter
size. By selecting the spatial regularization function to have a sparse Discrete Fourier
Spectrum, the filter is efficiently optimized directly in the Fourier domain. Instead of
solving for an approximate filter, as in previous DCF based trackers (e.g. [48, 87, 47]),
the SRDCF employs an iterative optimization based on Gauss-Seidel that converges to
the exact filter. The detection step employs a sub-grid maximization of the correlation
scores to achieve more precise location estimates. In addition to the HOG features used
in [105], the submitted variant of SRDCF also employs Colour Names and greyscale
features. These features are averaged over the 4× 4 HOG cells and then concatenated,
giving a 42 dimensional feature vector at each cell. For more details, the reader is
referred to [105].
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A.59 Distribution fields Tracking (DFT)

Implementation from authors website. Submitted by VOT Committee

The tacker introduces a method for building an image descriptor using distribution
fields (DFs), a representation that allows smoothing the objective function without
destroying information about pixel values. DFs enjoy a large basin of attraction around
the global optimum compared to related descriptors. DFs also allow the representation
of uncertainty about the tracked object. This helps in disregarding outliers during
tracking (like occlusions or small missalignments) without modeling them explicitly.

A.60 Hierarchical Convolutional Features for Visual
Tracking (HCF)

Submitted by VOT Committee

HCF tracker [106] is a kernelized correlation filter applied to VGG convnet features.
The tracker exploits boths spatial details and semantics. While the last convolutional
layers encode the semantic information of targets, earlier convolutional layers retain
more fine-grained spatial details providing more precise localization. The reader is
referred to [106] for details.

A.61 Normalized Cross-Correlation (NCC)

Submitted by VOT Committee

The NCC tracker is a VOT2016 baseline tracker and follows the very basic idea of
tracking by searching for the best match between a static grayscale template and the
image using normalized cross-correlation.

A.62 Local-Global Tracking tracker (LGT)

Submitted by VOT Committee

The core element of LGT is a coupled-layer visual model that combines the tar-
get global and local appearance by interlacing two layers. By this coupled constraint
paradigm between the adaptation of the global and the local layer, a more robust track-
ing through significant appearance changes is achieved. The reader is referred to [107]
for details.

A.63 Anchor Template Tracker (ANT)

Submitted by VOT Committee

The ANT tracker is a conceptual increment to the idea of multi-layer appearance
representation that is first described in [107]. The tracker addresses the problem of
self-supervised estimation of a large number of parameters by introducing controlled
graduation in estimation of the free parameters. The appearance of the object is de-
composed into several sub-models, each describing the target at a different level of
detail. The sub models interact during target localization and, depending on the vi-
sual uncertainty, serve for cross-sub-model supervised updating. The reader is referred
to [108] for details.
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A.64 Incremental Learning for Robust Visual Tracking (IVT)

Submitted by VOT Committee

The idea of the IVT tracker [109] is to incrementally learn a low-dimensional sub-
space representation, adapting on-line to changes in the appearance of the target. The
model update, based on incremental algorithms for principal component analysis, in-
cludes two features: a method for correctly updating the sample mean, and a forgetting
factor to ensure less modelling power is expended fitting older observations.

A.65 HoughTrack (HT)

Submitted by VOT Committee

HoughTrack is a tracking-by-detection approach based on the Generalized Hough-
Transform. The idea of Hough-Forests is extended to the online domain and the center
vote based detection and back-projection is coupled with a rough segmentation based
on graph-cuts. This is in contrast to standard online learning approaches, where typi-
cally bounding-box representations with fixed aspect ratios are employed. The original
authors claim that HoughTrack provides a more accurate foreground/background sep-
aration and that it can handle highly non-rigid and articulated objects. The reader
is referred to [110] for details and to http://lrs.icg.tugraz.at/research/houghtrack/for
code.

A.66 Spatio-temporal context tracker (STC)

Submitted by VOT Committee

The STC [111] is a correlation filter based tracker, which uses image intensity fea-
tures. It formulates the spatio temporal relationships between the object of interest and
its locally dense contexts in a Bayesian framework, which models the statistical corre-
lation between features from the target and its surrounding regions. For fast learning
and detection the Fast Fourier Transform (FFT) is adopted.

A.67 Transfer Learning Based Visual Tracking with Gaussian
Processes Regression (TGPR)

Submitted by VOT Committee

The TGPR tracker [112] models the probability of target appearance using Gaus-
sian Process Regression. The observation model is learned in a semi-supervised fashion
using both labeled samples from previous frames and the unlabeled samples that are
tracking candidates extracted from current frame.

A.68 Multiple Instance Learning tracker (MIL)

Submitted by VOT Committee

MIL tracker [113] uses a tracking-by-detection approach, more specifically Multi-
ple Instance Learning instead of traditional supervised learning methods and shows
improved robustness to inaccuracies of the tracker and to incorrectly labelled training
samples.
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A.69 Robust Fragments based Tracking using the Integral
Histogram - FragTrack (FT)

Submitted by VOT Committee
FragTrack represents the model of the object by multiple image fragments or

patches. The patches are arbitrary and are not based on an object model. Every patch
votes on the possible positions and scales of the object in the current frame, by com-
paring its histogram with the corresponding image patch histogram. A robust statistic
is minimized in order to combine the vote maps of the multiple patches. The algorithm
overcomes several difficulties which cannot be handled by traditional histogram-based
algorithms like partial occlusions or pose change.

A.70 Consensus Based Matching and Tracking (CMT)

Submitted by VOT Committee
The CMT tracker is a keypoint-based method in a combined matching-and-tracking

framework. To localise the object in every frame, each key point casts votes for the
object center. A consensus-based scheme is applied for outlier detection in the voting
behaviour. By transforming votes based on the current key point constellation, changes
of the object in scale and rotation are considered. The use of fast keypoint detectors and
binary descriptors allows the current implementation to run in real-time. The reader
is referred to [114] for details.
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108. Čehovin, L., Leonardis, A., Kristan, M.: Robust visual tracking using template
anchors. In: WACV, IEEE (Mar 2016)



The Visual Object Tracking VOT2016 challenge results 45

109. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual
tracking. International Journal of Computer Vision 77(1-3) (2008) 125–141

110. Godec, M., Roth, P.M., Bischof, H.: Hough-based tracking of non-rigid objects.
Comp. Vis. Image Understanding 117(10) (2013) 1245–1256

111. Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.H.: Fast visual tracking via
dense spatio-temporal context learning. In: European Conference on Computer
Vision. (2014) 127–141

112. Gao, J., Ling, H., Hu, W., Xing, J.: Transfer learning based visual tracking with
gaussian processes regression. In: European Conference on Computer Vision.
(2014) 188–203

113. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online mul-
tiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8) (2011)
1619–1632

114. Nebehay, G., Pflugfelder, R.: Clustering of static-adaptive correspondences for
deformable object tracking. In: Computer Vision and Pattern Recognition. (2015)


