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Abstract

This paper presents a novel dense motion capture technique
which creates a temporally consistent mesh sequence from
several calibrated and synchronised video sequences of a
dynamic object. A surface patch model based on the topology
of a user-specified reference mesh is employed to track the
surface of the object over time. Multi-view 3D matching
of surface patches using a novel cooperative minimisation
approach provides initial motion estimates which are robust
to large, rapid non-rigid changes of shape. A Laplacian
deformation subsequently regularises the motion of the
whole mesh using the weighted vertex displacements as soft
constraints. An unregistered surface geometry independently
reconstructed at each frame is incorporated as a shape prior
to improve the quality of tracking. The method is evaluated in
a challenging scenario of facial performance capture. Results
demonstrate accurate tracking of fast, complex expressions
over long sequences without use of markers or a pattern.

Keywords: dense motion capture, temporal alignment, surface
tracking, cooperative optimisation

1 Introduction

Over the last decade, there has been an increasing research
effort in spatio-temporal reconstruction of dynamic scenes
using multi-view video acquisition. In particular, dense motion
capture from several video streams has gained an interest for
applications such as capturing full-body performance, face
performance or cloth dynamics. The desired outcome of
motion capture in these applications is a temporally consistent
mesh sequence with a fixed topology which accurately models
deformation of the observed surface over time. This enables
use of real-world data in animation pipelines where it can be
further modified or used as basis for new content.

The standard approach to the acquisition of a temporally
consistent surface model combines 3D shape reconstruction
with motion estimation by 2D optical flow. Initial work was
presented by Vedula et al.[19, 20] where they introduce scene
flow - a 3D vector field describing motion of a surface between
two time frames. Scene flow is calculated by fusion of 2D
flow vectors from individual views for each surface point on
the volumetric model of an object. This concept was later
modified to not rely on the precomputed 3D shape but works
only for moving parts of a scene [21]. Further extensions

focus on incorporating error statistics into the optical flow and
disparity computation [11] or on integration of the scene flow
with the shape reconstruction [24]. These techniques present
an estimation of the scene flow between two frames on a
regular grid across a scene. However, for applications such as
performance capture the goal is to obtain motion of a 3D model
of a subject over a longer period of time.

A possible solution for the tracking of non-rigid surfaces over
relatively long sequences is temporal alignment of a sequence
of unregistered geometries by deforming a template mesh
according to 2D optical flow precomputed in each view. The
motion of mesh vertices between frames is optimised jointly
with respect to constraints given by the optical flows and raw
geometries. The resulting scene flow is usually regularised
by a deformation framework to suppress incorrect constraints.
This type of framework has been demonstrated for a single
camera by Hernadez et al.[9] and in a multi-camera setup by
Zhang et al.[23]. Due to the use of frame-to-frame optical flow
any errors in the tracking are propagated to the estimated 3D
motion which leads to a drift of the mesh. Bradley et al.[3]
address the drift by additional optical flow estimation in the UV
domain of the mesh after the initial deformation. The residual
flow is exploited to correct the final positions of the vertices.
However, the results are not satisfactory in regions undergoing
fast and complex motion.

Another group of methods estimates the scene flow directly
without relying on 2D optical flow or precomputed raw
geometry. These approaches mostly use a variational
formulation of matching image information across views
and over time. Pons et al.[15] alternate between multi-view
stereo and scene flow in the same framework using a global
image-based matching score. The shape of an object and its
3D motion are calculated frame-to-frame in the volumetric
representation. The extension of this work [5] merges multi-
view stereo and scene flow in a single energy functional
and integrates it over a temporal window. Additionally, the
complexity of task is increased by simultaneous optimisation
across the whole mesh model. Several approaches address
calculation of a disparity flow which is a reduced definition
of the scene flow for the binocular case [13, 10, 22]. These
approaches differ in a construction of the energy functional in
the variational framework.

Previous techniques suffer from high computational
complexity because of the integration across the whole
surface or scene. A more tractable and flexible solution is
offered by 3D tracking approaches which estimate the scene



flow using small independent 3D elements attached to the
surface. Carceroni and Kutulakos [4] propose a comprehensive
model for the surface patches which consists of 3D position
and orientation, curvature coefficients, diffuse/specular
reflectance and linear transformation over time. This results
in a complex optimisation scheme with a high number of
parameters. A simpler approach [6] extends the Lucas-Kanade
2D tracking algorithm [1] to the 3D domain which leads to
an alignment of a textured planar surfel with images from
multiple cameras. The surfel has a single texture template
with limited update to minimise the risk of drift. Neumann
and Aloimonos [14] use a multi-resolution subdivision surface
model instead of a collection of separate patches. A change of
the subdivision model between frames is iteratively refined by
shape+motion optimisation of individual surface patches.

Furukawa and Ponce [7] associate the patches with triangle
fans around vertices of a mesh reconstructed by multi-view
stereo in a reference frame. Thus, fixed reference textures
attached to the patches shrink/stretch together with the
deformed mesh. This allows improved alignment of patch
appearance with multiple images during shape and motion
optimisation between frames. After individual 3D tracking
of patches with the aid of a simple motion expansion the
locations of vertices are regularised by Laplacian smoothing
combined with local mesh rigidity. This method captures
fairly complex motions of patterned surfaces and is able to
recover from errors and moderate occlusions. A rigidity term
in the regularisation has to be relaxed in the tangent plane of
the surface to accommodate extensive stretching and shrinking
of materials such as human skin [8]. However, the approach
fails with insufficient surface texture such as a face without
patterned make-up.

Our work introduces a dense motion capture framework
which overcomes the limitations of previous approaches (such
as Furukawa and Ponce [7]) on weakly textured surfaces
undergoing complex deformation. The inputs are multiple
video sequences captured by synchronised and calibrated
cameras, a sequence of unregistered geometries created
by an arbitrary multi-view stereo method and a reference
mesh providing a guideline for topology of the tracked
full-resolution mesh. The output is a temporally registered
sequence of meshes which accurately captures dynamics of
the observed object.

A surface patch model described in Section 2 is built for
the full-resolution mesh created from the reference mesh
in the initial frame. A set of deformable surface patches
associated with the mesh vertices is used to estimate their
motion between successive frames. A novel approach to 3D
patch matching over time aligns a multi-view texture from the
previous frame with the current images from multiple views.
The patch is forced to stay in the proximity of the provided
raw geometry which limits gradual drift from the actual
surface (Section 3.1). The main contribution is a cooperative
optimisation scheme for the 3D matching of individual patches
(Section 3.2). Their positions are iteratively optimised by

interleaving local random sampling with the propagation of
intermediate solutions among the neighbours. This scheme
significantly increases robustness and accuracy of motion
estimation in the case of rapid complex deformations of the
surface. It also enables tracking of weakly textured surfaces
such as skin. The estimated vertex displacements serve as soft
constraints for a Laplacian deformation which regularises the
motion of the entire mesh (Section 3.3). Effective suppression
of outlying displacements is achieved by an original global
constraint weighting based on the patch matching errors. This
improves the motion regularisation and also retains efficient
linear solution to the Laplacian deformation.

The proposed approach to surface tracking is evaluated
on several datasets of complex facial performance with
different levels of texture variation (dense random pattern,
sparse markers and no make-up). Results demonstrate stable
temporal consistency of the final mesh sequence with low
drift over a long performance even for the face without any
make-up (Section 5).

2 Surface patch model

A model of the observed surface is built according to the
concept presented by Furukawa and Ponce [7]. The surface
is represented as a triangular mesh M = (V,E), where V =
{v1,v2, ...} is a set of 3D positions of the vertices in a defined
world coordinate system (WCS). E = {(i, j), ...} is a set of
undirected edges among the vertices. A set of adjacent vertices
around the vertex i is denoted Ni = {j|(i, j) ∈ E}. Every
vertex has a respective surface patch associated with it which is
shaped according to the adjacent triangle fan with the vertices
inNi. To represent a pose of the patch i independently from the
mesh, each patch has its own local coordinate system (LCS) as
depicted in Figure 1. A transformation between LCS and WCS
is defined by a translation vector pi and a rotation vector ri in
axis-angle representation. The patch pose is initially defined
in a way that the origin of LCS has the position vi of the
respective vertex i. ZL-axis is aligned with a vertex normal
given by the surrounding faces. XL, YL-axes are on the tangent
plane such as YL = ZL ×XW , XL = YL × ZL where XW is
an axis of WCS.

The patch is covered with a grid of 3D sample points Gi

which is centred around the vertex i (Figure 1). The sample
points are placed on the neighbouring faces along O rings with
growing radius from the central vertex. The corner samples of
individual rings on the edges are spaced with a fixed distance
do in 3D space. The value of do is chosen in a way that
sample rings of any patch do not project further than 1 pixel
apart in every view. This ensures correct sampling of image
information without aliasing. The number of sample points
increases with ring index o (central sample has o = 1). The
ring o has o − 2 uniformly spaced points between the corner
samples on every face. The sample grid can extend beyond
Ni but it still follows the planes of triangle fan. The locations
of samples are stored in barycentric coordinates with respect
to the triangles they lie in. The benefits of this representation



are that the sample grid automatically changes shape with a
modification of Ni and actual 3D positions Gi can be easily
recomputed. The points Gi are expressed in LCS, so a change
of pi and ri leads to the movement of the entire sample grid in
a rigid manner. A visibility set Ci of the patch i contains views
where the central vertex i is not occluded by other parts of mesh
M and the vertex normal (ZL-axis) points towards the cameras.
The angle between the normal and flipped viewing direction of
the camera is limited to 70◦ to avoid sampling artefacts when
projecting a sample grid which is nearly perpendicular to an
image plane.

Figure 1: The patch related to the vertex i with the pose pi, ri.
The sampling grid Gi has size O = 5 and spacing do. Its shape
is given by 3D positions of the adjacent vertices from Ni.

Each patch has a multi-view texture Bc
i attached to it which

models its current appearance in individual views c. Bc
i is

obtained from images at the frame t given the current shape
of mesh M . The sample grid Gi is converted to WCS using
the transformation matrix Ti formed from pi, ri. Afterwards,
a vector of pixel values is sampled from each view c using the
sample grid: Bc

i (t) = Ict (TiGi). Operation Ict () encapsulates
the projection of 3D points using intrinsic parameters of the
camera c and the sampling of an image at the frame t. Grey-
scale pixel values are bi-linearly interpolated for the projected
sample points. The use of colour information does not bring
significant benefit. The texture is obtained only from the views
which are included in Ci for the frame t.

In the context of surface tracking the variables related to mesh
vertices or corresponding patches such as vi change over time.
Thus, it is denoted as a function of time vi(t) when required.
For brevity of notation, note that vi = vi(t) where t is the
current frame.

3 Surface tracking

Estimation of surface motion between successive frames
is solved by a combination of cooperative matching of
independent surface patches and global Laplacian deformation
of the mesh.

3.1 3D matching of surface patch

Finding a correspondence for the patch i between the frames
t − 1 and t is posed as a two-fold problem: the alignment of
multi-view texture from the frame t − 1 with the images from
individual views at the frame t and the placement of a patch in
close proximity to the raw unregistered geometry for the frame
t. This problem is formulated as a joint optimisation task where
the patch sample grid is rigidly translated in 3D space to satisfy
both criteria in an optimal way.

Equation 1 defines an error function Ei which is minimised
by altering the position pi of the patch i. Initial value of pi

coincides with the position vi(t − 1) of the respective vertex
in the previous frame. The rotation vector ri forming the
transformation Ti together with pi has a fixed value according
to the shape of M in t− 1. ri could be optimised together with
pi, but there is a little gain in terms of precision and a risk of
obtaining suboptimal solution increases.

Ei(pi) =

(
1

|Ci|
∑
c∈Ci

NCC(Ict (TiGi), B
c
i (t− 1))

)
(1)

+ wgρ(‖pi − gi‖, σg)

The first term in Equation 1 represents the error in multi-
view alignment of patch texture Bc

i (t − 1) with the current
images from the cameras in Ci. The vectors of pixel values
Ict (TiGi) are obtained by projecting the sample grid Gi shifted
by Ti to each view c. The values sampled at the frame t are
compared to the texture template Bc

i (t − 1) using normalised
cross-correlation (note that NCC = 1− (NCC + 1)/2 is the
inverted value which represents an error). The sum of matching
errors is normalised by the size of visibility set.

The second term in Equation 1 forces the patch origin pi to
stay nearby the point gi which is the closest point on the
unregistered geometry. A view from Ci which the patch faces
the most is selected according to the patch normal. gi is an
intersection of the ray between pi and optical centre of the
selected camera with the raw geometry. The distance between
pi and gi is penalised by Tukey bi-weight error norm ρ defined
in Equation 2 [23]. The penalty is uniform beyond a distance
σg which makes Ei less affected by large outliers in the raw
geometry.

ρ(x, σg) = 3
x2

σ2
g

− 3
x4

σ4
g

+
x6

σ6
g

, |x| ≤ σg (2)

ρ(x, σg) = 1, |x| > σg

This term effectively restricts the search space for the patch
position. The key benefit is a limitation of the patch drift which
otherwise leads to gradual degradation of the surface shape
over time.

Both terms are linearly combined with the weighting
coefficient wg . A matching error ei = Ei(pi) cannot be
evaluated for a particular value of pi if Ci = ∅, TiGi projects
outside the image in any view from Ci or gi cannot be
computed because of missing data in the raw geometry.



3.2 Cooperative optimisation of patch 3D matching

The error function Ei has a complex behaviour in its parameter
space. Therefore, minimisation of the patch i is likely to reach a
suboptimal minimum if gradient descent or some other type of
local search is employed (e.g. [7]). To tackle this problem we
have extended the PatchMatch correspondence algorithm [2]
to the domain of surface tracking. The concept of cooperative
matching of individual image elements can be adapted for 3D
surface patches. The essential assumption is that neighbouring
patches on the surface move in a similar way. Thus, the patches
can share intermediate outcomes of their own minimisations
and increase the possibility of convergence to their individual
global minima.

The optimisation for all patches across the mesh is performed
iteratively and in cooperation. At first, initial values of
matching errors ei are calculated at the vertex positions vi(t−
1) using the image information from the frame t. The patches
are then traversed one by one in h iterations and their positions
pi are modified from vi(t − 1) to decrease ei. A new solution
for pi is computed in two subsequent stages at every iteration.

Propagation stage: The patch i tries to adopt the current
motion estimates from the patches in Ni which have already
been processed in the current iteration. A candidate for pi is
calculated by adding a displacement vector pj − vj(t − 1)
from the neighbour j to the original position vi(t − 1).
If the candidate has lower error than the current estimate
pi, it is taken as a new solution. Thus, the neighbouring
patches are encouraged to have similar motion but the
assumption is not enforced explicitly. This is different to
global spatial smoothness used in previous non-rigid surface
tracking schemes where the single optimisation is performed
simultaneously across the whole surface. An advantage of
the propagation is the ability to correctly recover motion
discontinuities between different regions of the surface such as
surface folds.

Random sampling stage: A local search for minima is
performed in the area around the current solution. New
candidate positions are generated by random perturbation of
pi: pi + qmaxα

au. u is a random 3D vector sampled from
uniform distribution in the range (−1, 1) which is scaled by
the current search range size. The size of range exponentially
decreases by ratio α (α ∈ (0, 1); α = 0.5 in our experiments)
with increasing integer exponent a. For each value of a a
fixed number of candidate vectors (5 in our case) is generated
which results in a cloud of samples with increasing density
towards its centre at pi. The range of random sampling is
limited by the maximal bound qmax and the increase of a from
0 is stopped when qmaxα

a < qmin. Ei is evaluated for each
candidate and the one with the lowest error updates pi.

The change of pi from vi(t − 1) by both stages throughout
all iterations is limited by a bounding box around vi(t − 1)
with a half size qlim. This explicitly avoids motion estimates
with magnitudes beyond possible motion between two frames.
The matching of a patch is unsuccessful if Ei cannot be

evaluated at vi(t− 1) and at any candidate position suggested
during the minimisation. The order in which the patches are
processed by the propagation and random sampling stage is
given by two rules. The next patch is selected according to:
1. the highest number of already processed neighbours in the
current iteration, 2. the most promising neighbour in terms
of the current error. This ordering increases the impact of the
propagation stage.

Interleaving the propagation and random sampling stage
allows a patch to find a minimum of its own error function
incrementally. The solution of each local search is challenged
by the motion estimates from the adjacent patches which
can lead to further improvement. This approach has better
ability to avoid the convergence to local minima on Ei than
independent gradient descent used in previous patch-based
techniques. This greatly increases robustness to rapid non-rigid
shape changes such as mouth opening. Iterative processing
does not significantly increase computational load because the
patches converge to nearly final solutions in a few iterations.
The likelihood of reaching optimal outcome across the whole
mesh improves with its density. Larger number of patches
are more likely to converge to their optimal solutions and this
information is propagated across the surface.

3.3 Weighted Laplacian deformation

The cooperative 3D matching of patches produces a raw motion
field described by 3D displacement vectors d′i = pi −
vi(t − 1). A Laplacian deformation framework [18] is
employed to regularise this field because of outliers and its non-
ideal continuity. The mesh deformation tries to preserve the
shape of the mesh M(t − 1) subject to the weighted motion
constraints d′i. The outcome is a new set of displacement
vectors di which define the final vi(t) for the current frame:
di = vi(t) − vi(t − 1). In contrast to Furukawa and Ponce
[7], the motion of the surface with respect to the previous
frame is regularised instead of a surface smoothing combined
with approximate preservation of the shape from a reference
frame. Also, the constraints are explicitly weighted according
to their matching errors rather than repeatedly filtered between
regularisations if they are outliers. This leads to a simpler
formulation of the regularisation and more efficient solution.

The Laplacian deformation of the mesh is posed as a single
optimisation problem across all vertices in contrast to the per-
patch 3D matching. Equation 3 formulates the functional
which is minimised with respect to the displacements di. The
problem is solved separately for each coordinate, so d[x]
denotes a vector containing x coordinates of all di (similarly
for y, z).

argmin
d[x]

s‖L̃d[x]‖2 + ‖W (d[x]− d′[x])‖2 (3)

The functional consists of the smoothing and constraint terms
which are weighted against each other by a smoothness
coefficient s. The smoothing term regularises the motion
field across the mesh using a discrete Laplacian operator. The
matrix L̃ stacks up in rows the weights of Laplacian operators



computed using M(t − 1) for each vertex [12]. In fact, L̃
represents a linear combination of bi-Laplacian and Laplacian
operator: L̃ = ((1 − k)L2 + kL). This is used to model
bending and stretching properties of the surface by changing
coefficient k.

The constraint term incorporates raw displacements d′i in
the form of soft constraints which have varying influence
expressed by a weight matrix W . The weight wi of a particular
displacement d′i is entered in a corresponding place on the
diagonal of W as

√
wi. The constraint weight is derived from

the matching error ei associated with d′i which reflects well
the quality of motion estimate according to our experiments.
The mapping between ei and wi described in Equation 4 is a
declining linear ramp with a half-width δe centred around a
error threshold te.

wi = 0, (ei − te) > δe (4)
wi = 1, (ei − te) < −δe

wi = − 1

2δe
(ei − te) +

1

2
, |ei − te| ≤ δe

The number of constraints can be generally smaller than the
overall number of vertices (e.g.a failure of patch matching due
to full occlusion). For the vertices without motion estimate
d′i the corresponding positions in W and d′[x] contain zero
entries. Their final displacements are then derived purely from
the motion of the whole mesh.

Minimisation of the functional in Equation 3 leads to an over-
determined linear system defined in Equation 5. Solving this
system in least-squares manner for each coordinate separately
provides an optimal motion field between frames.[√

sL̃
W

]
d[x] =

[
0

Wd′[x]

]
(5)

4 Sequential processing

The proposed surface tracking is used to sequentially compute
the motion of the observed surface represented by the mesh M
starting from initial frame tr. The inputs are multi-view video
sequences and full calibration data of respective cameras. A
sequence of temporally unregistered meshes can be generated
by an arbitrary multi-view stereo technique [17]. However,
the raw geometries should accurately model the instantaneous
shape of the object because they constrain tracking of the
mesh with desired topology. The topology is defined by
a user-specified coarse reference mesh M ′ which is a good
approximation of the surface shape at the initial frame tr. M ′

is then uniformly subdivided multiple times to achieve the
required mesh density (each face is split into 4 new faces).
After each subdivision the mesh vertices are conformed to the
raw geometry to refine the mesh shape. The subdivided full-
resolution mesh M is deformed to match the dynamics of the
observed object over time.

The surface patch model is built for M at the frame tr as
described in Section 2. The following steps are then repeated
for each pair of successive frames t− 1, t starting from tr + 1.

1. The correspondences are found at the frame t for all
patches associated with M using the cooperative 3D
matching (Sections 3.1, 3.2).

2. The patch displacements drive the Laplacian deformation
of M (Section 3.3).

3. The patch poses are updated according to a new shape of
M for the frame t. pi is set to a new value of vi and
ri is changed to align the ZL-axis with a new normal at
the vertex i and roughly preserve the previous direction of
XL, YL-axes.

4. The visibility of patches is re-evaluated with respect to the
new M .

5. The sample grids of patches are recomputed to reflect
a shape change of related triangle fans. Note that new
positions Gi are expressed in the updated LCS. Although
every patch is treated as a rigid element during 3D
matching in a particular frame, the modification of sample
grid over time improves matching the patch texture to the
images in the case of non-rigid deformation of the surface.

6. The multi-view patch textures Bc
i are sampled from the

images at t using the updated Gi and Ci. The update of
patch textures in every frame brings additional flexibility
in terms of modelling surface appearance on top of the
deformation of sampling grid. The patch can adapt to
small geometrical details varying extensively over time or
illumination changes. These types of appearance changes
cannot be modelled by a fixed texture template initialised
in a reference frame even if the patches deforms correctly
with the underlying surface.

After processing the whole sequence the result is a temporally
consistent mesh sequence with the topology of M .

5 Results

Evaluation of the proposed method is conducted in the case
of facial performance capture. The long-term dense motion
capture of a face presents a number of challenges: rapid
movements, complex non-rigid deformations and weak skin
texture. Three similar performances containing various
exaggerated emotions are used for testing purposes. They
differ in level of difficulty in terms of surface texturedness:
face painted with a random pattern (denoted as Pattern;
310 frames), face painted with a set of markers (Markers;
367 frames) and face with a plain skin (Plain; 310 frames).
An actor was captured by 4 HD cameras arranged into two
vertical stereo pairs on each side of the face. The cameras were
synchronised and fully calibrated with respect to WCS. Image
sequences with resolution 1920 × 1080 pixels were recorded
in HD-SDI uncompressed 4 : 2 : 2 format at 25fps. The actor
was illuminated by uniform white light.

The temporally unregistered sequence of meshes is
reconstructed by a stereo technique based on graph cut
[16]. Both stereo pairs provide a sequence of depth maps for
each side of the face. The depth maps are fused per frame



(a)

(b)

Figure 2: Snapshots from the temporally consistent mesh sequences created using the proposed method for the datasets Pattern
(a), Markers (b). Rendered with a uniform material (top row), with a fixed UV texture attached in the initial frame (bottom row).



into single mesh with ∼ 21000 triangles. The facial shape
is reconstructed up to skin folds and medium-sized wrinkles
for all 3 types of data (shown in the supplementary video1).
The surface jitters a bit over time and the magnitude of
bumpiness increases from the well-textured surface (Pattern)
to the least textured one (Plain). Outliers occasionally appear
in problematic regions with view-dependent appearance such
as eyes or inside of the mouth. However, this does not pose
a problem for the surface tracking algorithm. The reference
mesh M ′ was constructed manually for the first frame of
each sequence with a topology designed according to the
painted markers in the dataset Markers (328 triangles). M ′ is
subdivided 3 times and conformed to a raw geometry to obtain
the full-resolution mesh M (5248 triangles).

The following parameter sets are used as a baseline
configuration of the algorithm in our experiments. All datasets
share a subset of parameters: O = 11, do = 0.2mm,σg =
10mm,h = 5, gmin = 0.1mm, k = 0.6, qlim = 5mm. The
dataset-specific parameters are for Pattern: wg = 0.5, qmax =
2.5mm, s = 0.1, te = 0.05, δe = 0.01; for Markers:
wg = 1.0, qmax = 1mm, s = 0.5, te = 0.15, δe = 0.05 and
for Plain: wg = 1.0, qmax = 1mm, s = 1.0, te = 0.15, δe =
0.05. Computational time for a single frame is 1-2 minutes on
2.5 GHz processor using single-threaded C++ code (excluding
reconstruction of the raw geometry).

5.1 Evaluation for different surface texturedness

The proposed surface tracking approach is evaluated in
the context of surface texturedness on the datasets Pattern,
Markers and Plain with varying amount of make-up. The
key observation is that the surface of a face can be accurately
tracked even without any additional make-up and the results
are comparable to those with the aid of markers or a random
pattern. Snapshots from the resulting temporally consistent
mesh sequences are presented for Pattern in Figure 2(a), for
Markers in Figure 2(b) and for Plain in Figure 3(a). The
neutral expression at the beginning of every row is from the
initial frame and the following expressions are in temporal
order from the left to the right. We refer the reader to the
supplementary video for playback over time and additional
visualisations.

Figure 2(a) demonstrates correct capture of facial shape and
its change over time for Pattern. The shape details such
as wrinkles on the forehead are recovered with temporal
consistency. The method is able to handle extensive surface
deformations such as puffing out the cheeks or fast moving
regions such as forehead and chin during a surprise. A very
small drift can be observed over time in spite of a variety of
rapid large motions. The unregistered mesh sequence contains
finer details than the temporally consistent mesh sequence
which can be noticed in the video. Some amount of detail
is filtered out together with outliers during the weighting of
deformation constraints. Also, continuous update of multi-

1Supplementary video is available under:
http://kahlan.eps.surrey.ac.uk/Personal/MartinKlaudiny/cvmp2011/index.html

view patch textures smooths surface detail to some extent.

The dataset Markers represents more difficult input, but
the quality of temporal consistency is not compromised as
shown in Figure 2(b). Accurate motion estimates from the
strong features such as markers are successfully propagated
to the skin regions among them. The dataset Plain poses the
most challenging case which is not successfully addressed
by the previous dense motion capture techniques. The
strength of cooperative 3D patch matching manifests itself
especially in this case where it enables to maintain temporal
consistency over a long sequence of complex expression
changes (Figure 3(a)). There is no significant drift of the
mesh throughout the entire performance in spite of weak skin
texture. However, a few local distortions appear in the eyes
and inner lips because their appearance changes drastically
over time. The drawback is a smoother shape of the mesh
which can be observed for both markers and plain skin. This is
caused by the stronger regularisation necessary to handle the
lower quality of raw motion estimates in plain skin areas.

5.2 Comparison with independent gradient descent

To compare the proposed technique with previous patch-based
techniques we implemented 3D patch tracking presented by
Furukawa and Ponce [7] and combined it with our search space
reduction by raw geometry and regularisation scheme. There
are several main differences from the proposed approach in
terms of the estimation of temporal correspondence. Firstly,
motion of individual patches is independently optimised
using a gradient descent. Secondly, the minimisation of error
functionEi per patch is more complex and runs in two phases -
normal components of a patch pose (pi, ri) are minimised first
and all components are refined together afterwards. Thirdly,
the multi-view patch texture is initialised in the reference
frame and stays fixed throughout the sequence. The results
with independent gradient descent (IGD) are presented for
Pattern in Figure 4(a), Markers in Figure 4(b) and Plain in
Figure 3(b). The snapshots are taken at the same time instances
as for the results by the proposed technique. Also, the same
sets of parameters are used with IGD for individual datasets as
with our method.

Direct comparison of the temporal consistency in the individual
performances shows that IGD achieves plausible result only
for Pattern (as reported in [7]). However, some local drift and
distortion of the mesh occur during the most rapid emotions
such as surprise (Figure 4(a)). The cooperative random
sampling used in our method handles this situation correctly.
The difference in performance between the methods is even
more apparent for Markers and Plain. IGD does not cope
well with tracking weakly textured patches and the mesh
gradually degrades due to large drifts in both performances
(Figures 4(b), 3(b)). In the video it can be seen that IGD fails
during faster motions or large deformations of the skin and is
not able to recover from the resulting mesh distortions. This
showcases the robustness of cooperative patch 3D matching in
such situations. Also, the update of patch multi-view texture



(a)

(b)

Figure 3: Snapshots from the temporally consistent mesh sequence created using the proposed method (a) and the independent
gradient descent (b) for the dataset Plain.



in every frame brings benefits over the fixed texture template
if the raw geometry prior is used. The adaptive texture is able
to model extensive changes of skin appearance, thus allowing
better patch matching throughout the entire performance.
A potential drift over time due to the per-frame update of
texture is limited by the constraint on a shape of the surface.
A disadvantage is the mentioned partial smoothing of details
which leads to a smoother facial model for Pattern than in the
results presented in [7].

6 Conclusion

We have presented the novel dense motion capture method
combining temporal 3D matching of deformable surface
patches with the weighted Laplacian mesh deformation.
The results in the scenario of facial performance capture
demonstrate accurate tracking of large, rapid non-rigid
surface deformations over long sequences. In comparison
to the previous patch-based methods, the proposed approach
significantly improves robustness in the case of rapid non-rigid
motions and for surfaces with weak textures. This allows
accurate motion capture of the face without the aid of markers
or pattern which has not been successfully achieved by the
state-of-the-art methods.
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Figure 4: Snapshots from the temporally consistent mesh sequences created using the independent gradient descent for the dataset
Pattern (a) and the dataset Markers (b).


