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Abstract— Visual Odometry (VO) is used in many appli-
cations including robotics and autonomous systems. However,
traditional approaches based on feature matching are compu-
tationally expensive and do not directly address failure cases,
instead relying on heuristic methods to detect failure. In this
work, we propose a deep learning-based VO model to efficiently
estimate 6-DoF poses, as well as a confidence model for these
estimates. We utilise a CNN - RNN hybrid model to learn
feature representations from image sequences. We then employ
a Mixture Density Network (MDN) which estimates camera
motion as a mixture of Gaussians, based on the extracted
spatio-temporal representations. Our model uses pose labels
as a source of supervision, but derives uncertainties in an
unsupervised manner. We evaluate the proposed model on the
KITTI and nuScenes datasets and report extensive quantitative
and qualitative results to analyse the performance of both
pose and uncertainty estimation. Our experiments show that
the proposed model exceeds state-of-the-art performance in
addition to detecting failure cases using the predicted pose
uncertainty.

I. INTRODUCTION

Traditional VO approaches have been studied for decades
and supported real world applications in robotics, computer
vision and autonomous driving. Even though these algo-
rithms perform well in ideal conditions, they are not robust,
perform poorly in low texture environments and are prone
to failure under fast motion [26]. They also do not have
built-in reliability estimation which limits their ability to
recover from failure cases. As traditional VO algorithms
do not provide a reliability measure, systems that depend
upon their output, such as path planning [39], vehicle state
estimation [33] etc., are therefore susceptible to failure which
can lead catastrophic outcomes.

Recent years have seen a move to pose estimation using
learning based approaches [31], [15], [34]. Unlike traditional
VO algorithms, learning-based methods exploit the avail-
ability of large scale datasets to learn from the data itself
[14]. This enables them to be robust to conditions such as
low texture areas and challenging lighting conditions without
requiring accurate camera calibration [4].

Motivated by the recent success of deep learning based
approaches and to address the pose estimation reliability,
in this work we present a novel deep learning based VO
estimation approach that includes uncertainty. We work on
raw images and extract image representations using a Con-
volutional Neural Network (CNN) [14]. We then model the
vehicle motion in the image sequences using an Recurrent
Neural Network (RNN) [11]. Unlike most approaches, which
regress a single pose [19], [31], we employ a Mixture Density
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Fig. 1: An overview of the proposed monocular VO and
uncertainty approach using MDN.

Network (MDN) [2] to regress a mixture model of 6-DoF
poses (see Figure 1). This approach enables us to estimate
pose and uncertainty using the predicted mixture model
characteristics which are means (), standard deviations (o)
and mixture coefficients («).

We evaluate our approach on two challenging public
datasets, namely KITTI [8] and nuScenes [3]. We report
quantitative and qualitative pose estimation and VO relia-
bility results. We show that uncertainty estimates negatively
correlate with pose estimation accuracy. This indicates that
the proposed approach can successfully predict VO reliability
without requiring additional supervision.

The contributions of this paper can be summarised as:

o We propose a learning-based VO estimation approach
that employs a mixture of probability distributions to
enable uncertainty estimation.

o« We demonstrate state-of-the-art performance on the
KITTI and the recently released nuScenes datasets,
which includes challenging scenarios such as night-time
and fast motion.

« We provide extensive analysis for uncertainty estima-
tions and demonstrate how they reflect pose estimation
failures.

The rest of the paper is structured as follows: In Section II
we discuss traditional and learning based approaches to VO.
We then introduce our approach in Section III. In Section IV
we share our experimental setup and report qualitative and
quantitative results. We conclude in Section V by discussing
our findings and possible future work.

II. RELATED WORK

Traditional feature based methods to VO estimation have
been studied for the last two decades [22], [20]. They
estimate the motion of the camera by extracting and matching
a group of hand crafted feature points (e.g. SIFT [17], SURF
[1] or ORB [24]) on consecutive frames. However, these
approaches are prone to failure in scenarios where there are



insufficient features, such as in low texture environments or
poor illumination [26]. To address this issue, Newcombe et
al. [21] proposed a dense direct approach, which estimates
the motion by optimising image pixel intensities. However,
this approach requires extensive computational power. To
mitigate the heavy computational requirements, sparse direct
methods have been introduced. Engel et al. [7] proposed
only using image pixels which have high gradient intensities.
Compared to feature based approaches, direct methods are
more suited to low texture environments but require a good
initialisation and are sensitive to rapid motion and photomet-
ric change.

More recently, deep learning based approaches have dom-
inated computer vision [14]. Inspired by this, the field has
adapted CNNs to extract and match feature points and to
estimate VO [30]. DeTone et al. [5] present a learning-
based approach to detect interest point detectors and de-
scriptors. Sarlin et al. [25] propose a neural network to
learn to match two sets of pre-existing features. End-to-
end VO approaches have also been studied: Mohanty et
al. [19] propose combining two CNNs to extract features
from sequential images. They estimate pose by concatenating
features and passing them through fully connected layers.
To enhance the temporal modelling capabilities, Wang et al.
[31], [32] propose using RNNs to model changes in image
features and achieve competitive results to traditional VO
based approaches.

Most deep learning based VO approaches are trained in a
supervised manner, which requires labelled data. However,
collecting and annotating large amounts of data is a laborious
task. Alternatively, unsupervised learning based approaches
[15], [35], [36], [37] have the ability to exploit vast amounts
of unlabelled data. Zhou et al. [38] use view synthesis and
learning depth and pose estimation together. They use a
photometric error based loss function to train their networks.
However, their approach is not able to recover the global
scale. To solve this issue, Zhan et al. [36] and Li et al.
[15] propose using stereo image pairs to estimate scaled
VO in an unsupervised manner. Li et al. [16] present a
meta-learning algorithm for a better adaptation to unseen
environments. Although unsupervised VO methods achieve
promising results and allow the models to be trained on a
large variety of unlabelled data, their current performance is
lower than supervised methods.

More recently Yang et al. [34] proposed a hybrid approach,
which combines unsupervised deep learning and classical
direct VO estimation methods. They estimate depth, pose
and photometric uncertainty from images. They then feed
these outputs to a direct VO estimation method [7] to obtain
the final trajectories.

Uncertainty estimation has been studied for similar tasks,
such as camera localisation. Kendall et al. [13] model
camera localisation uncertainty by utilising dropout at test
time. However this approach can be considered as model
uncertainty estimation [4], whereas in this work we approach
uncertainty estimation as a sensor reliability metric, which
can ultimately be used for sensor fusion.

Inspired by the recent success of deep learning based VO
models, in this work we propose a novel architecture where
we utilise MDNSs [2] to regress the 6-DoF poses as a mixture
of distributions, which allows the network to learn multiple
modes from the data.

III. METHODOLOGY

In this section, we introduce the proposed end-to-end
approach for estimating visual odometry and its confi-
dence/uncertainty. Our model takes in a sequence of images,
V = {ly,...,Ir}, with (T' 4 1) number of frames, and pre-
dicts a mixture of distributions, G, with M components, that
are most likely to produce the ground truth relative poses,
Y = {y0,1): - Yr—1,7)}- We use Gaussian distributions,
N, as mixture components to model relative poses. Thus,
we can notate our mixture model G as:

G ={aqNi(p' o), .,

We break the proposed architecture into three main mod-
ules, namely Visual Feature Extraction, Temporal Modelling
and Mixture Density Estimation. In the visual feature ex-
traction module, we extract features from consecutive image
pairs using a CNN. We then pass the extracted features
to the temporal modelling layer, which utilises an RNN to
model the changes in visual features over time. Finally, the
RNN outputs are fed into the mixture density estimation
module, which estimates the relative poses for each frame
with respect to its predecessor. An overview of the proposed
approach can be seen in Figure 2. In the rest of this section
we describe each component in detail.

aéwj\/t(MM; O_M)}tZI:T (l)

A. Visual Feature Extractor

Traditional VO approaches start by extracting geometric
features from image sequences. By matching the feature
points between image pairs, these models estimate the cam-
era motion. Following the same concept, learning based
approaches [19], [31], propose learning representations of
distinctive image features using CNNs.

We develop our CNN backbone structure similar to
Flownet [6]. It is designed to learn the features that are most
suitable to represent image motion in the context of optical
flow, which is obviously a related task to VO estimation. The
network consists of 9 convolutional layers with a receptive
filter size of 7z7 for the first layer, 5a5 for the next two and
3x3 for the rest. We utilise batch normalisation [12], Leaky
ReLU [18] and Dropout [28] after each convolutional layer.

Given an image sequence, V, our model starts by con-
catenating consecutive image pairs (I;_1, I;) and extracting
features, f; as:

fr = CNN([Lt—1, I¢]) 2

where [.] is a concatenation operation over the image
colour channels. Extracted image features {f1,..., fr} are
then passed to the next module, which learns to model the
temporal changes in the latent space.



]
]

RelLU
Dropout
[ Batch Norm |

_A

Image 0

B

Image 1

[Resized (360x180) |
[Batch Norm |

[
[

[
[

]
]

RelLU
Dropout
[ Batch Norm |

[Resized (360x180)|
. [
[Batch Norm |

=)
5]
g
X
3
@
o
b=
©
N
@
4]
4

[ Batch Norm |
[ Rev_|
[ Dropout |

13
5
23
|2
S|x
<
o

Image n

RelLU
Dropout

MDN

RelLU
Dropout
Dropout |

<

o

z

[

Fully Connected Layer

Dropout
oz
=}
z

Fig. 2: Architecture of the proposed VO and uncertainty estimation framework, consisting of visual feature extractor, temporal
modelling and mixture model based pose and uncertainty regression.

B. Temporal Modelling

We track the changes of distinguishable patterns on the
image plane to estimate the camera motion [26]. Unlike
commonly used hand-crafted features [27], [10], [17], [1],
[23], in this work we utilise learnt image representations,
and model their changes over time using RNNs.

Given image features, {fi..., fr}, RNN produces outputs
r¢, for each frame I; as:

re, hy = RNN(ftaht—l) 3)

where h; is the hidden states of the RNN units after
producing r;, and hg is a zero vector.

We employ Long Short-Term Memory (LSTM) units
[11] as our RNN structure, which has been shown to be
successful in modelling long-term dependencies. We utilise a
bi-directional LSTM, to enhance the representation by using
a small temporal window of past frames.

The LSTM outputs, {r1,...,7r}, are then passed to the
next module, which estimates the mixture of relative pose
distributions, conditioned on these features.

C. Mixture Density Estimation

Unlike other deep learning based VO methods [19], [31],
which directly regresses a 6-DOF pose given an image
sequence, our approach estimates a mixture model over the
6-DoF pose by using an MDN.

The MDN module takes temporally modelled features
{r1,...,r7} and outputs the parameters of a mixture density
model with M components for each time step ¢, namely
means {ji1, ..., iias }¢, standard deviations {o71, ...,/ }* and
mixture coefficients {1, ..., apr }. We use a fully connected
layer to predict these parameters from LSTM outputs.

Given a set of temporally modelled features, {r1,...,77},
we model the conditional probability of pose change,
Y(¢—1,¢)» at time ¢ as:

M
P (Y—1,|re) = Z @ (1) & (Ye—1,0)|7) 4)
i=1

where M is the number of mixture units, «; () is the
mixture coefficient which represent the probability of the
pose, y(t—1,t), being in the it" component given 7. The con-
ditional density, ¢ (y(t_17t)|rt), of the pose y(;_1,1), for the
it" component, can be expressed as a Gaussian distribution:

Ny e—1,e)—mi(re)ll?
1 _ Y ,t)

_ r) = e 20;(r¢)
¢(y(t 1,t)| t) 7% (Tt)\/%

where u; (r¢) and o; (r;) show the mean and standard
deviation of the i*" mixture.

We can calculate the likelihood of a pose estimate, y, with
K variables, i.e. K = 6 for 6 degree of freedom pose, given
r¢, as the product of the likelihood of each variable as:

} S

K
Ly = H P (Ye—1,0[k]|re) (6)
k=1

where [k] is an indexing operation to access k*" variable
of the pose.

The average likelihood for a sequence with 7' time steps,
L, is then calculated by summation over the time axis ¢ as:

1 T
EZT;Q (7

We train our network to maximise the likelihood. Hence,
we use the negative log likelihood as our error signal:

E = —log(L) (8)

We use ground truth relative poses,
Y = {yw0,1); - ¥r-1,1)}> to train our network. During
inference, we derive the relative poses and uncertainties
using the mean and standard deviations of the mixture
components, respectively. We recover absolute pose, Vr, by
accumulating the relative poses over time as:

Yr =Ya-1,1)-Y1,2¥0,1) )



where y(,_;, is the 4z4 homogeneous transformation
matrix representation of pose change y;_1 ).

IV. EXPERIMENTS

We evaluate our approach on the KITTI [8] and nuScenes
[3] datasets and report quantitative and qualitative experiment
results.

KITTI is one of the most popular autonomous driving
datasets. It provides rectified camera images and ground truth
motion of the vehicle. The driving scenarios include fast
motions and sharp turns, presenting a challenging benchmark
for egomotion estimation.

nuScenes is a recently released large-scale autonomous
driving dataset which contains significant environmental vari-
ation. Compared to the KITTI dataset, nuScenes contains
more varied sequences, including night time driving and
rainy weather. We believe these challenging driving scenarios
and environmental conditions present a good baseline for
evaluating the necessity of VO uncertainty estimation.

A. Implementation Details

Our network is implemented using the PyTorch framework
and trained on an NVIDIA TITAN X GPU. The training of
the network takes approximately 40 epochs to converge. We
used the Adam optimiser with parameters (31 = 0.9, 82 =
0.999). We utilise a plateau learning rate scheduler with a
starting learning rate of 103, patience of 8 and decay factor
of 0.7. We also use dropout with a rate of 0.1 on CNN layers
and a 0.2 drop rate on LSTM layers to prevent over-fitting.
We use pre-trained Flownet weights [6] to initialise CNN
backbone. For the rest of the parameters we used Xavier
initialisation. We use the evo python package [9] to measure
the performance of our approach, using relative pose error
(RPE).

B. Experiments on the KITTI Dataset

In our first set of experiments, we compared the proposed
approach against the state-of-the-art on the KITTI dataset.
We only considered the left colour camera as input to our
network. For training, we used sequences 00, 01, 02, 04, 08,
09 and tested our model using sequences 03, 05, 06, 07, 10.

We compare our approach with monocular ORB-SLAM
[20] and DeepVO [31]. We ran ORB-SLAM without loop
closure, to make it more comparable to the proposed ap-
proach in the context of VO. Unlike the proposed approach,
monocular ORB-SLAM estimates the trajectory up to a scale
thus we aligned its trajectory with ground truth using [29].
We used the PyTorch implementation of DeepVO'.

As can be seen in Table I, the proposed approach (MDN-
VO) outperforms both DeepVO and ORB-SLAM approaches
in overall mean RMSE score. ORB-SLAM mostly suffers on
manoeuvres that include sharp turns, as the algorithm relies
on maintaining sufficient 3D-to-2D feature matches to obtain
scaled poses between consecutive frames.

Overall, DeepVO performs better than ORB-SLAM but
the proposed approach (MDN-VO) yields the best results.

Uhttps://github.com/ChiWeiHsiao/DeepVO-pytorch/

We believe this is due to modelling the target pose changes
with a mixture model. A network trained by least squares
approximates the conditional averages of the target data.
However, simply modelling the mean is insufficient for
multimodal distributions [2]. Thus, using a mixture model
enables our model to learn multiple modes from the training
data, overcoming the limitations of direct regression.

We also share aligned trajectories for the test sequences 5
and 10 in Figure 3. As can be seen, ORB-SLAM performs
drastically worse than learning based approaches in sequence
5. We believe this is caused by the inconsistencies in esti-
mated local scales due to the lack of global loop closure.
As the proposed approach learns to estimate scale during
training as a prior, we do not suffer from this issue.
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Fig. 3: Estimated Trajectories on the KITTI Dataset.

C. Experiments on the nuScenes Dataset

Next, we used the nuScenes dataset to evaluate our ap-
proach and examine its effectiveness in difficult conditions.
As the nuScenes dataset does not have a defined VO bench-
mark protocol, we define our own data split which includes
scenarios from the challenging environmental conditions,
such as direct sunlight, lack of illumination etc, in both
training and validation sets.

In Figure 4, we share the estimated trajectories in three dif-
ferent weather/lighting conditions, namely daylight, rain and



TABLE I: Quantitative Results on the KITTI Dataset

Sequence ORB-SLAM DeepVO MDN-VO (ours)
q RMSE Max Mean + std | RMSE Max Mean + std | RMSE Max  Mean + std
03 0.03 0.20 0.03 £+ 0.02 0.08 0.23  0.08 £ 0.04 0.12 041  0.11 £ 0.06
05 0.25 0.67 0.20 £ 0.15 0.24 0.57 0.21 £0.12 0.16 0.36  0.15 £ 0.08
06 0.34 0.65 0.30 = 0.17 0.16 031 0.14 + 0.08 0.20 045 0.18 £ 0.09
07 0.17 035 0.13 £0.09 0.14 035 0.12 £ 0.07 0.08 0.51  0.07 £+ 0.05
10 0.30 095 0.23 +£0.20 0.21 047  0.19 + 0.08 0.14 0.32  0.13 £+ 0.06
mean 0.22 0.56 0.18 £0.13 0.17 0.39 0.15 + 0.08 0.14 041  0.13 £ 0.07
10 20 20
—= & E—— -—- GT
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Fig. 4: Estimated trajectories (top) and a sample frame (bottom) from the corresponding nuScenes sequences.

TABLE II: Quantitative Results on the nuScenes Test Sequences

Condition ORB-SLAM DeepVO MDN-VO (ours)
RMSE Max Mean + std | RMSE Max Mean & std | RMSE Max  Mean =+ std
Daylight 0.40 3.28 0.12 £ 0.38 0.09 0.54  0.06 + 0.07 0.07 0.53  0.04 + 0.05
Rain 0.76 10.19 0.14 £+ 0.74 0.07 0.39 0.05 &+ 0.05 0.06 043  0.04 + 0.05
Night - - - 0.12 0.74  0.09 + 0.09 0.11 0.73  0.07 + 0.08

night time. The estimated trajectories and the ground truth
can be seen in the top row, while we display sample frames
from the corresponding sequences in the bottom row. As can
be seen, the proposed method (MDN-VO) successfully pro-
duces trajectories for all sequences. However, ORB-SLAM
failed to initialise in the night time scenarios, hence we
could not report ORB-SLAM’s qualitative (See Figure 4c)
and quantitative (See Table II) results for these scenarios.
Compared to ORB-SLAM and DeepVO, our method (MDN-
VO) achieves more accurate trajectory estimates, even in
challenging conditions such as rain and night scenes. Qual-
itative results are reflected in our quantitative experiments,
where we use the Relative Pose Error (RPE) as our error
metric and report performance of each method with respect
to different weather conditions. As can be seen in Table II,
the proposed approach surpasses the performance of both
ORB-SLAM and DeepVO models.

We investigate uncertainty estimation of the proposed
method in detail on a sample sequence, namely scene-0768.
We plot the estimated trajectory against ground truth in

Figure 5a. As can be seen, the error between the estimated
trajectory and ground truth increases towards the end of
the trajectory. To investigate if this result is captured by
the uncertainty estimation, we visualise the relative pose
estimations and the ground truth between consecutive frames
along with the corresponding uncertainty estimations. We
plot X, y and yaw angles separately in Figure 5b, Figure 5c,
Figure 5d, respectively, to give the reader more insight. As
can be seen, the error between ground truth and our model’s
pose estimations are bounded by the uncertainty intervals
(30). While the error in y estimate increases, the uncertainty
estimate also increases. This shows that the failure on the
y estimate is captured by the model and is reflected to the
y uncertainty estimates (See Figure 5c). These results show
that failure cases can be captured by the proposed model’s
uncertainty estimation.

V. CONCLUSIONS AND FUTURE WORK

This paper presented an end-to-end deep learning based
VO and uncertainty estimation method. We utilised a CNN-
RNN hybrid architecture combined with an MDN. We
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Fig. 5: Uncertainty estimation on a test sample from
nuScenes dataset (scene-0768).

evaluated our approach on two public autonomous driving
datasets, namely KITTI and nuScenes. Our experiments
demonstrate that our method can successfully estimate VO
and uncertainty. Furthermore, our model achieves promising
results under challenging conditions, such as rain and night
scenes, where traditional VO approaches would fail. As
future work, we plan to extend our work to utilise multiple
cameras and fuse their estimations based on the estimated
uncertainties.
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