
MENDEZ ET AL.: NEXT-BEST STEREO 1

Next-Best Stereo: Extending Next-Best View
Optimisation For Collaborative Sensors

Oscar Mendez1

O.Mendez@surrey.ac.uk

Simon Hadfield1

S.Hadfield@surrey.ac.uk

Nicolas Pugeault2

N.Pugeault@exeter.ac.uk

Richard Bowden1

R.Bowden@surrey.ac.uk

1 Centre for Vision Speech and Signal
Processing
University of Surrey Guildford, UK

2 Department of Computer Science
University of Exeter
Exeter, UK

Abstract

Most 3D reconstruction approaches passively optimise over all data, exhaustively
matching pairs, rather than actively selecting data to process. This is costly both in terms
of time and computer resources, and quickly becomes intractable for large datasets.

This work proposes an approach to intelligently filter large amounts of data for 3D
reconstructions of unknown scenes using monocular cameras. Our contributions are two-
fold: First, we present a novel approach to efficiently optimise the Next-Best View (NBV)
in terms of accuracy and coverage using partial scene geometry. Second, we extend this to
intelligently selecting stereo pairs by jointly optimising the baseline and vergence to find
the NBV’s best stereo pair to perform reconstruction. Both contributions are extremely
efficient, taking 0.8ms and 0.3ms per pose, respectively.

Experimental evaluation shows that the proposed method allows efficient selection
of stereo pairs for reconstruction, such that a dense model can be obtained with only
a small number of images. Once a complete model has been obtained, the remaining
computational budget is used to intelligently refine areas of uncertainty, achieving results
comparable to state-of-the-art batch approaches on the Middlebury dataset, using as little
as 3.8% of the views.

1 Introduction
The 3D reconstruction of scenes and objects from 2D images is an extremely important part of
many tasks, such as robot navigation, scene understanding and surveying. Approaches based
upon Bundle Adjustment (BA) have become popular within the literature with extremely
impressive results that allow dense and high fidelity models to be reconstructed from unordered
image collections [1]. However, such approaches are computationally expensive, which limits
their application. For example, a mobile robot with a single camera can easily overwhelm sys-
tems that attempt exhaustive optimisations over all images. Furthermore, reconstruction needs
to be online (not batch) as navigation may well be dependent upon reconstruction. Therefore,
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online reconstruction algorithms that are capable of selecting data that maximises performance,
while reducing computational time are necessary to perform reconstruction in the real world.

In this paper, we propose an autonomous 3D reconstruction framework that is capable
of creating dense, accurate maps using a fraction of the available images. This is done by
intelligently and efficiently selecting images to act as variable-baseline stereo pairs. In section
3.1 we present a method of reconstructing a scene using a robust dense matching algorithm
based on Deep Learning [24]. In section 3.3 we present a novel method for estimating the
Next-Best View (NBV) to observe the scene from, based on the current reconstruction of
the geometry. Section 3.4 extends this by selecting a stereo pair for the NBV, the Next-Best
Stereo (NBS), that will produce the best reconstruction. Finally, in section 4 we evaluate our
system using the Middlebury dataset.

2 Related Work
Fully autonomous reconstruction of unknown scenes and objects is a challenging problem,
especially for a monocular camera. While there exist numerous online approaches such as
Parallel Tracking and Mapping (PTAM) [16], that uses sparse features, and LSD-SLAM [4],
that uses semi-dense depth maps filtered by gradient, the most accurate systems tend to use
offline optimisation frameworks.

2.1 Multi-View Stereo (MVS)
Offline approaches, commonly referred to as MVS, typically find pairwise stereo correspon-
dences and use large optimisations to estimate dense and accurate reconstructions, such
as work by Snavely et al. [23]. Denser reconstructions were achieved by Furukawa and
Ponce [6] who use sparse feature matching and patch growing, along with photometric and
visibility constraints to produce dense reconstructions. Jancosek et al. [14] extend [6] by
attempting to actively select views in a NBV-like approach to make large datasets feasible
by estimating feasible stereo pairs, but provide no results on partial-image reconstruction.
Hornung et al. [11] use an octree-like hierarchical volumetric reconstruction along with graph
cut minimisation. More recently, Galliani et al. [7] expand the patch-matching idea by [2]
to use more than two views. Seminal work by Seitz et al. [22] established the Middlebury
benchmark to compare MVS approaches by providing a calibrated dataset of camera poses
and ground truth.

However, the computational cost for dense reconstruction of large structures can be
prohibitive, preventing their use online, and lack the ability to chose views dynamically during
data capture. In this work we propose a novel approach capable of actively choosing the best
locations to improve the reconstruction/model or map. More importantly, it is capable of
significantly reducing computational cost by selecting a small number of key views to use.

2.2 Next-Best View (NBV) Estimation
NBV estimates a new pose in order to improve the existing reconstruction, and can be divided
into two main categories: exploration and refinement. Exploratory NBV estimation aims at
generating the most complete model of the (unknown) scene. It is generally based on the
concept of a frontier, for example in the work by Heng et al. [9]. Heng uses a precomputed
lattice and defines frontier locations as edges between cells where structure has been observed,
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and unobserved cells. Frontier pose configurations are then selected based on the information
gain they provide and the cost to reach that configuration. Paull et al. [19] similarly uses
coverage and distance to the goal. Potthast and Sukhatme [20] use a raycasting method
that estimates potential information gain for a pose. These systems rely on depth sensors
to perform the reconstruction and thus make no attempt to reduce the noise in the scene.

In contrast, refinement NBV estimation aims at selecting poses that improve the 3D model
accuracy. For example, Forster et al. [5] use depth uncertainty to estimate the best areas of
the map to explore but are limited to relatively simple scenes. Hoppe et al. [10] create a full
network of poses for an Unmanned Aerial Vehicle (UAV), but assumes prior knowledge of the
environment. Sadat et al. [21] and Mostegel et al. [18] plan optimal paths for a monocular
Visual Odometry (VO) system, but require a set endpoint. Uniquely, we propose a unified
approach that can balance the two competing objectives of exploration and refinement by
probing the current estimate of geometry using raycasting and a voxel based representation.

The approaches most similar to ours are Dunn and Frahm [3], Mauro et al. [17] and
Hornung et al. [12]. Dunn and Frahm use a similar raycasting and eigenvalue technique, but
require a partial input 3D model, and perform an offline batch optimisation method that must
be converted into a mesh at every iteration. Mauro et al. [17] define the NBV as the camera that
maximises a view importance metric of aggregate quality features (Density, Uncertainty and
Saliency), but require an offline reconstruction algorithm. Finally, Hornung et al. [12] build
a similar voxel-based proxy model and selects the views based on maximising the number of
visible low quality voxels. They then refine regions with bad photo-consistency by adding more
views of these areas. However, both [17] and [12] require expensive pointcloud reprojection
that scales with the size of the scene. Our work proposes a novel unified formulation that
is capable of prioritising both exploration and refinement to perform online reconstruction,
while using sparse, fast, calculations for NBV and NBS that scale well with map size.

3 Method
In this section we describe our method for creating a dense, accurate reconstruction of a scene
using the smallest number of views possible. Our incremental approach to reconstruction
relies on using the partial reconstruction at iteration i to intelligently select new images to be
added to the reconstruction at iteration i+1. We show how a 3D reconstruction is triangulated
from two images using a robust dense matching algorithm, and how a map is then created by
discretising this dense pointcloud into an octree structure (Section 3.1). We then describe how
the reconstructed geometry is used in our novel method to estimate the NBVs for a monocular
camera by finding the pose that minimises error in the existing map while also extending it into
unexplored areas (Section 3.3). We then discuss how a NBS pair can be estimated, based on the
geometry and sensor arrangement, to provide the most benefit to reconstruction (Section 3.4).

3.1 Reconstruction of Dense 3D Structure
Before we describe our NBV and NBS formulation, we describe our approach to MVS. We
generate a high-resolution map of the scene by reconstruction from two images in a stereo
arrangement. This is achieved in three steps: dense matching, triangulation and temporal
accumulation. In the first step, a dense pixel match between the two images is estimated using
a deep learning-based approach [24]. This dense matching is done bidirectionally, allowing us
to discard inconsistent correspondences and improve robustness and accuracy. In the second
step, a dense 3D point cloud Z containing points z ∈ Z is reconstructed from classical 3D
reconstruction equations (see, e.g., [8]). In addition, the uncertainty of each reconstructed
point z is also estimated from the triangulation error, and stored as a 3×3 covariance matrix

Citation
Citation
{Paull, Saeedigharahbolagh, Seto, and Li} 2012

Citation
Citation
{Potthast and Sukhatme} 2014

Citation
Citation
{Forster, Pizzoli, and Scaramuzza} 2014

Citation
Citation
{Hoppe, Wendel, Zollmann, Pirker, Irschara, Bischof, Kluckner, and Technology} 2012

Citation
Citation
{Sadat, Chutskoff, Jungic, Wawerla, and Vaughan} 2014

Citation
Citation
{Mostegel, Wendel, and Bischof} 2014

Citation
Citation
{Dunn} 2009

Citation
Citation
{Mauro, Riemenschneider, Signoroni, Leonardi, and {Van Gool}} 2014

Citation
Citation
{Hornung, Zeng, and Kobbelt} 2008

Citation
Citation
{Mauro, Riemenschneider, Signoroni, Leonardi, and {Van Gool}} 2014

Citation
Citation
{Hornung, Zeng, and Kobbelt} 2008

Citation
Citation
{Mauro, Riemenschneider, Signoroni, Leonardi, and {Van Gool}} 2014

Citation
Citation
{Hornung, Zeng, and Kobbelt} 2008

Citation
Citation
{Weinzaepfel, Revaud, Harchaoui, and Schmid} 2013

Citation
Citation
{Hartley and Zisserman} 2004



4 MENDEZ ET AL.: NEXT-BEST STEREO

Λz = BΛ̄B>. Where B is the Jacobian of the projection function, and Λ̄ are the uncertainties
for each point in the cloud. The matching used in this paper does not provide uncertainties,
therefore, matching errors are assumed to be normally distributed (Λ̄ = I). These two steps
allow the reconstruction of dense 3D point clouds describing the scene structure and uncertain-
ties from the two cameras. The final step, integrates the 3D scene information from subsequent
pairs of views using the covariance matrices, to obtain the final estimate of 3D geometry.
3.2 Octree encoding of scene structure
The triangulated 3D points provide a detailed representation of the scene; however, such a
large point cloud is very inefficient for the purpose of reasoning about scene geometry and too
large for efficient data association. At the same time it forms discrete data embedded in a
continuous space, making it too sparse for meaningful geometric calculations (such as ray
casting). In order to solve these two issues, the space is further discretised using an octree data
structure to which the points are added at leaf nodes.

We use a modified version of OctoMap[13], which uses trees with depth of 16, to keep
track of occupied (Vo), empty (Ve) and unobserved (Vu) voxels. We define the set of all voxels
in the octomap as V = (Vo∪Ve∪Vu). Occupied voxels represent areas with reconstructed
geometry, empty voxels are unoccupied space with no geometry and unobserved voxels
are areas of the scene with no observations indicating membership of (Vo) or (Ve), as such
Vo∩Ve∩Vu = /0. We also define the leaf nodes in the tree as v ∈V . Finally, each leaf node v
has a set of points stored in it, therefore, we define the set of points in v as Pv and the individual
points as p ∈ Pv.

The octree structure is used to allow efficient point matching across different stereo-pairs
of poses. A naive exhaustive match of all points from both point clouds using Mahalanobis
distance would be prohibitive, therefore we make use of the octree. For every new pair
of frames, we obtain a pointcloud Z that must be fused into the octree. Z contains points
z ∈ Z and covariance matrices Λz. If we define p ∈ Pv as an existing point in the voxel with
covariance matrix Σp, we can estimate the update thusly. First, we query the octree to find
the leaf node each point z lands in. If the leaf node is empty, the point and its covariance
matrix Λz are added. Otherwise, we find the top 3 Euclidean nearest-neighbours δ (z,Pv).
We find the Mahalanobis distance for the these 3 neighbours and if the closest Mahalanobis
distance falls within a 95% confidence (χ2 < 7.81) the new point is used to perform a Kalman
update on the neighbour point and its covariance matrix Σ. We define the Kalman gain Kg as
Kg = Σp(Σp +Λz)

−1 and the update is performed as follows:

Σp = (I−Kg)Σp (1)

p = p+Kg(z− p) (2)

3.3 Next-Best View Optimisation
In order to filter out unnecessary information, we need a system that is capable of choosing
what the next position of the two sensors will be, in a way that will increase its scene
knowledge optimally. In this section we propose a novel criterion for NBV optimisation based
on a compromise between the competing objectives of coverage and accuracy. The coverage
objective will drive the system to collect views of previously unobserved parts of the scene
(e.g., due to restrictions on the field of view or occlusion), whereas the accuracy objective will
drive the system to choose the next pose to reduce the point cloud’s uncertainty.
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These two criteria are optimised jointly, making use of the octree structure and the dense
point cloud. The octree allows for quick and efficient calculations on scene geometry, while
the dense cloud (and covariances) allow for more detailed calculations about scene noise and
and viewing angle.

The NBV is calculated as follows: Given a Configuration Space (CS) of sensor poses, the
cost of each pose can be estimated by casting a set Sr of random rays from the camera centre
through the image plane. In practice, we use around 500 rays. Each ray will continue until it
hits either an occupied (Vo) or unobserved (Vu) voxel, ignoring empty (Ve) voxels. When a ray
r ∈ Sr intersects with an occupied voxel v ∈Vo, we can estimate a cost for each point p ∈ Pv
as

φ(r, p) = e−||λpep×r|| , (3)

where λp and ep are the largest eigenvalue and eigenvector, respectively, of the covariance Σp.
Consequently, the cost of a voxel is defined as the average point cost

ψ(r,v) =
1
|Pv| ∑

p∈Pv

φ(r, p) . (4)

Finally, the NBV cost of a particular pose x is defined as

Cx =
1
|Sr| ∑

r∈Sr

{
ψ(r,v) if v ∈Vo

γ ∈ [0,1] else v ∈Vu .
(5)

In this equation, γ is a parameter that can encourage or discourage exploration. A γ of 1 will
always give the highest cost to unobserved voxels, preferring to reduce the uncertainty of
observed voxels, while 0 will give them the lowest, preferring to get more observations.

Finally, argminx(Cx) finds the pose that will provide the most benefit to the existing map.

3.4 Next-Best Stereo Optimisation
When there are multiple collaborating sensors available, we can extend NBV to also optimise
the stereo arrangement of the sensors. This can be achieved by selecting another view, with
respect to the NBV, to create the best possible stereo pair. Therefore, we now demonstrate
how the stereo arrangement of sensors can be optimised such that it is advantageous for both
dense matching and 3D reconstruction. Actively selecting stereo pairs allows sensors to be
positioned to allow an optimal vergence and baseline, respective to the observed parts of the
scene.

This implies several requirements: First, the baseline of the cameras must be scaled
depending on the distance to the observed geometry. This is necessary since the baseline is
proportional to the depth error. Second, the vergence angle should be minimised to allow the
dense matching to be performed with the least amount of error possible. Finally, the distance
between the vergence point and the nearest geometry should be minimised, to ensure that the
sensors are trained on actual scene geometry and not empty space. Therefore, if L and R are
the 6-Degrees of Freedom (DoF) poses of the sensors, the rays rL and rR are vectors from
each camera centre, through the principal point and represent the viewing direction of each
camera. The intersection (I) of these two rays can be calculated as a triangulation similar to
the one used in section 3.3. Finally, G is the centre of the occupied octree voxel v ∈Vo that is
closest to the intersection point I.
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3.4.1 Baseline (B) Vergence Angle (β ) optimisation

Optimising the baseline can be done by enforcing the following constraints:

dLI = dRI = αdB (6)

Where dLI and dRI are the distances to I (from left and right cameras respectively). dB is the
baseline and α is the desired ratio between the baseline and the intersection point. These
constraints can be enforced by finding the pose that minimises equation 7.

CB =
|dLI−αdB|

αdB
+
|dRI−αdB|

αdB
+
|dLI−dRI |

dB
(7)

This enforces a triangular structure defined by alpha (α), where the ratio defines the expected
angle of vergence, β , which can be shown to be

β = acos
(

1− 1
2α2

)
. (8)

3.4.2 View Triangulation Optimisation

In 3D, the rays rL and rR rarely have an exact point of intersection, instead the triangulation
finds the point that is closest to both rays. This implies that there will be a distance between
the actual principal point and the reprojection of I, called the reprojection error. While it
is possible to measure this error, it is a relatively expensive operation. Instead, the cost is
calculated as the angle between the rays rL and rLI

CT = acos
(
|rL · rLI |
‖rL‖‖rLI‖

)
+acos

(
|rR · rRI |
‖rR‖‖rRI‖

)
(9)

3.4.3 Rotational Optimisation

Since we are computing dense, per-pixel, matches we cannot assume that the process is
rotationally invariant. In order to increase the performance of any matching algorithm, we
penalise large differences in the orientation of the image. That is, we penalise roll. If we
assume the gravity vector vg = [0,0,1], the roll is then penalised as the difference in the angle
between the gravity vector transformed into each camera’s coordinate frame

CR = acos
(
(RLvg)

>RRvg

)
(10)

where, RL and RR are the rotation matrices of each sensor.

3.4.4 Optimising vergence on scene structure

So far, the costs defined will arrange the cameras to perform an accurate stereo triangulation
of anything on or near the plane that contains the vector rLI× rRI . However, this has not yet
been coupled with the existing geometry, which should be done in order to avoid situations
where the sensors have a vergence point that is behind or in front of the geometry. This is done
by minimising the angle between the rays from both cameras to intersection I and the closest
point of known geometry G

CG = acos
(
|rLI · rLG|
‖rLI‖‖rLG‖

)
+acos

(
|rRI · rRG|
‖rRI‖‖rRG‖

)
(11)
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Where, G is the nearest occupied voxel and rLG and rRG are rays from the camera centres to
this point.

3.4.5 Stereo poses optimisation

The final cost function can then be defined as

C=CB+CT +CR+CG (12)

This cost can be efficiently computed for thousands of candidate pairs in the CS, and the
optimum configuration can then be selected as the pair that minimises this cost.

4 Evaluation
In this section, we aim to demonstrate that our algorithm can automatically select the
best views and sensor configuration in order to provide a dense, accurate and complete
pointcloud using a significantly reduced number of observations. We evaluate our approach by
applying it to the standard Multi-View Geometry reconstruction dataset from Middlebury
[22]. Firstly, we compare our approach against other NBV approaches using the Middlebury
benchmark, showing that we can outperform the state-of-the-art using less frames. Secondly,
we demonstrate how our two main parameters α and γ encourage different behaviours and
can therefore be tailored to different applications. Lastly, we present a qualitative analysis of
our approach where we visualise our pointclouds against a reference model computed by a
state-of-the-art reconstruction [6] using all views.

The Middlebury dataset consists of 2 figurines, dino and temple, imaged in a dome-like pat-
tern. For each figurine there are 3 modalities of the images: full (∼300 images), ring (∼50 im-
ages) and sparse ring (∼15 images). In terms of NBV selection, the full datasets are more chal-
lenging because they present more possible stereo pairs (O(3002)). In order to perform a valid
evaluation of our approach, it is necessary to measure the performance as the number of used
stereo pairs increases. We use the same error metrics as those used in the Middlebury bench-
mark by Seitz et al. [22]. Seitz measures the distance between each point in the reconstructed
pointcloud and the reference pointcloud. They then estimate an error distance d such that a cer-
tain percentage of the points are within d. The coverage is similarly estimated by measuring dis-
tance from the reference to the reconstructed cloud. Several thresholds are selected, and the per-
centage of points in the reference cloud that contain a neighbour within that distance is reported.
We use these metrics to explore our parameter space and see the effects of α and γ . The Mid-
dlebury dataset has no publicly available ground truth, therefore, we create a reference model
to aid in parameter exploration. This reference model is created from all the images in each
dataset using the state-of-the-art MVS reconstruction algorithm from Furukawa and Ponce [6].

4.1 Parameter Exploration
The parameter, α , controls two competing objectives: the baseline and vergence. A low α

value enforces a wider baseline, which gives us low depth error. A high α value enforces a
more acute vergence angle, allowing better matching. We expect there to be a value that allows
a good compromise between both competing objectives. To demonstrate this, we show the
results on dino, since the low texture generally makes it more challenging. We first disable the
γ parameter, and then let our approach select 40 pairs of frames. We then calculate the average
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Figure 1: Average Error (Top) and Max Coverage (Bottom) with increasing values of α .
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Figure 2: Average Error (Left) and Average Coverage (Right) with different values of γ .

error and the maximum achieved coverage for the entire sequence, with 5 different error
thresholds. Figure 1 shows error and coverage curves for different values of α . It can be seen
that very low values of α have very low coverage since the wide vergence angles make dense
matching difficult. On the other hand, very large values start to suffer from increasing depth
error due to the relatively narrow baseline. Choosing values of α ∈ [5,7], corresponding to a
vergence angle of around 9◦ degrees, achieves high coverage while minimising the average
error. It is important to note that these results are not dependent on the absolute values of depth,
baseline or vergence. Rather, they scale with the scene to provide good stereo configurations.
More importantly, α can be tailored to other matching approaches. High accuracy, sparse
feature matching can have low values of alpha that allow good depth estimation. Denser,
per-pixel methods can use high alphas to encourage easier matching.

In order to explore the effects of γ , we select a value of α = 7. This is done because γ

only applies to the NBV so we choose a narrow baseline to reduce the effects of mismatching.
Furthermore, we are interested in a dense matching approach and the small increase in error is
justified by the larger coverage and easier matching.

Gamma (γ) provides the ability to either encourage or discourage exploration. As shown in
equation 5, γ controls how favourable it is for the camera to look at unobserved voxels (v ∈Vu).
Setting γ = 0 assigns the lowest score to unobserved voxels, while γ = 1 assigns the highest.
The error curve in Figure 2 shows the same metrics used previously. The coverage curve shows
the average for only the first 5 frames, since otherwise all values of γ converge to high coverage.

It can be seen that as the value of γ goes up, the average error starts to decrease, as our
approach prefers refinement over exploration. However, the coverage also decreases as the
approach prioritises different views of the same geometry. Note that, despite the general
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Thresholds
Uniform

[12]
NBV
[12]

NBS
[14]

NBS
Proposed

Num. Frames - 41 41 unknown 26

Error (mm)
80% 0.64 0.59 0.64 0.53
90% 1.00 0.88 0.91 0.74
99% 2.86 2.08 1.89 1.68

Coverage (%)
0.75mm 79.5 82.9 72.9 87.3
1.25mm 90.2 93.0 73.8 96.4
1.75 mm 94.3 96.9 73.9 98.4

Table 1: Middlebury Evaluation for different NBV and MVS approaches.
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Figure 3: Middlebury Benchmark as number of views go up with α = 6 and γ = 0.4

downward trend, the values of γ < 0.1 are unstable because the NBV concentrates on areas of
the scene where there is no geometry, therefore making the stereo pair selection ill-posed. The
same is true with the coverage, where extremely low values of γ encourage looking at the
narrowest profiles of the object (since they will include the most unobserved voxels. It is
important to notice that all values achieve high levels of coverage. In practice, we use γ = 0.4,
since this allows slight bias towards exploration.

4.2 Quantitative Analysis
Now that we have established good values for α and γ , we can show how we compare against
other NBS methods. In order to evaluate against the online ground truth for the Middlebury
benchmark, we run our pointclouds through a Poisson Surface Reconstruction[15]. Table
1 shows, from left to right, a comparison against a voxel-based MVS approach with 41
uniformly selected views [12], with their NBV approach and the NBS approach of Jancosek
et al. [14]. It can be seen that our NBS approach consistently outperforms Hornung et al. [12]
using both uniform and selected views, while simultaneously using less frames. Furthermore,
we outperform the NBS approach of [14]. Note that we do not compare against the full
Middlebury benchmark due to the fact that most approaches are exhaustive MVS optimisations,
rather than online NBV or NBS selection approaches, making the comparison unfair.

We also compared our partial results against the ground truth from Middlebury. Figure 3
shows how the error and coverage change as the number of views increases. As expected,
we see that our approach can improve coverage whilst simultaneously reducing error. Note
that the slight instability at a small number of views is due to problems with the Poisson
Reconstruction, not the pointclouds. The pointclouds produced by our approach are clean and
accurate.

Citation
Citation
{Hornung, Zeng, and Kobbelt} 2008

Citation
Citation
{Hornung, Zeng, and Kobbelt} 2008

Citation
Citation
{Jancosek, Shekhovtsov, and Pajdla} 2009

Citation
Citation
{Kazhdan and Hoppe} 2013

Citation
Citation
{Hornung, Zeng, and Kobbelt} 2008

Citation
Citation
{Jancosek, Shekhovtsov, and Pajdla} 2009

Citation
Citation
{Hornung, Zeng, and Kobbelt} 2008

Citation
Citation
{Jancosek, Shekhovtsov, and Pajdla} 2009



10 MENDEZ ET AL.: NEXT-BEST STEREO

1 pair 3 pairs 5 pairs 7 pairs Reference (GT)
Figure 4: Results for Middlebury Dino (top) and Temple (bottom) Datasets, with varying
numbers of stereo pairs. The final column shows the reference model.

4.3 Qualitative Analysis

Figure 4 shows how as the number of views increases, so does the quality of the reconstructed
cloud. By the time our approach has selected 7 views, with their respective stereo pairs, we
are capable of producing a pointcloud that is fundamentally complete. Note that both the front
and back of the models have been successfully reconstructed from a maximum of 14 images.
This corresponds to 3.8% and 4.4% of the images for dino and temple datasets, respectively.
These results are visible in greater detail in the supplementary material.

5 Conclusions
In conclusion, we have proposed an approach that is capable of creating a dense reconstruction
of a scene by autonomously selecting images that will provide the largest gain to reconstruction.
We have presented a method to reconstruct a dense pointcloud using a joint filtering and
discretisation method, and a novel formulation that is capable of actively encouraging
or discouraging exploration in the pose selection, using only 0.8ms per pose, and finally
established a cost function that allows pose configurations that are beneficial to the sensing
framework, using only 0.3ms per pose. We have demonstrated that we are able to achieve
state-of-the-art results in our reconstructions, using as little as 3.8% of the views.
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