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Abstract— How does a person work out their location using
a floorplan? It is probably safe to say that we do not explicitly
measure depths to every visible surface and try to match them
against different pose estimates in the floorplan. And yet, this
is exactly how most robotic scan-matching algorithms operate.
Similarly, we do not extrude the 2D geometry present in the
floorplan into 3D and try to align it to the real-world. And yet,
this is how most vision-based approaches localise.

Humans do the exact opposite. Instead of depth, we use
high level semantic cues. Instead of extruding the floorplan up
into the third dimension, we collapse the 3D world into a 2D
representation. Evidence of this is that many of the floorplans
we use in everyday life are not accurate, opting instead for high
levels of discriminative landmarks.

In this work, we use this insight to present a global
localisation approach that relies solely on the semantic labels
present in the floorplan and extracted from RGB images. While
our approach is able to use range measurements if available,
we demonstrate that they are unnecessary as we can achieve
results comparable to state-of-the-art without them.

I. INTRODUCTION

Indoor localisation is perhaps one of the most crucial

aspects for any robotic system. It allows robots to in-

teract with the world and provides a representation and

understanding that can be shared with humans and other

agents. Traditional Vision-Based Simultaneous Localization

and Mapping (VSLAM) systems can provide localisation

within a map that is built on-the-fly. However, VSLAM

systems are liable to drift in terms of both pose and scale.

They can also become globally inconsistent in the case of

failed loop closures. Finally, even in the case of no scale

drift and correct loop closures, a VSLAM system can only

ever guarantee global consistency internally. This means that

while pose estimates are globally consistent, they are only

valid within the context of the VSLAM system. There are

no guarantees, at least in vision-only systems, that we can

directly map the reconstruction to the real world (or between

agents).

This problem is normally addressed by having a localisa-

tion system that can relate the pose of the robot to a pre-

existing map. Examples of global localisation frameworks

include the Global Positioning System (GPS) and traditional

Monte-Carlo Localisation (MCL). MCL has the ability to

localise within an existing floorplan (which can be safely

assumed to be available for most indoor scenarios). This is

a highly desirable trait, as it implicitly eliminates drift, is

Fig. 1: A) RGB Image, B) CNN-Based Semantic Labelling

and C) Sample SeDAR Scan within floorplan.

globally consistent and provides a way for the created 3D

reconstructions to be related to the real world without having

to perform expensive post-hoc optimizations. Traditionally,

the range-based scans required by MCL have been produced

by expensive sensors such as Light Detection And Ranging

(LiDAR). These sensors are capable of producing high

density measurements at high rates with low noise, making

them ideal for range-based MCL. However, in addition to

their expense, they are large and require a lot of power.

As a response to this, modern low-budget robotic plat-

forms have used RGB-D cameras as a cheap and low-

footprint alternative. This has made vision-based floorplan

localisation an active topic in the literature. However, while

many approaches have been proposed, they normally use

heuristics to lift the 2D plan into the 3D coordinate system

of VSLAM. Examples include Liu et al. [15], who use visual

cues such as Vanishing Points (VPs) or Chu et al. [3] who

perform piecemeal 3D reconstructions that can then be fitted

back to an extruded floorplan. A common problem with these

approaches is that the 3D data extracted from the image

is normally orthogonal to the floorplan that it is meant to

localise in. This means that assumptions must be made about

dimensions not present in the floorplan. These approaches

also do not fully exploit the floorplan, ignoring the semantic
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information.

We propose a fundamentally different approach that is in-

spired by how humans perform the task. Instead of discarding

valuable semantic information, we use a Convolutional Neu-

ral Network (CNN)-based encoder-decoder to extract high-

level semantic information. We then collapse all semantic

information into 2D in order to reduce the assumptions about

the environment. We then use these labels, image geometry

and (optionally) depth along with a semantically labelled

floorplan to create a state-of-the-art sensing and localisation

framework.

Semantic Detection and Ranging (SeDAR) is an innova-

tive human-inspired framework that combines new semantic

sensing capabilities with a novel semantic Monte-Carlo Lo-

calisation (MCL) approach. As an example, figure 1 shows

a sample SeDAR scan localised in the floorplan. We show

that SeDAR has the ability to surpass LiDAR-based MCL

approaches. SeDAR also has the ability to perform drift-free

local, as well as global, localisation. Furthermore, experi-

mental results show that the semantic labels are sufficiently

strong visual cues such that depth estimates are no longer

needed. Not only does this vision-only approach perform

comparably to depth-based methods, it is also capable of

coping with map inaccuracies more gracefully than strictly

depth-based approaches.

This paper describes the process by which SeDAR is

used as a novel human-inspired sensing and localisation

framework. In section IV-A, semantically salient elements

are extracted from a floorplan. Section IV-B describes how

these semantic elements are identified in the robot’s camera

by using a state-of-the-art CNN-based semantic segmentation

algorithm and presented as a novel sensing modality. We

then present the three main contributions of this paper. First,

section IV-C introduces a novel motion model that includes

a “ghost factor” that uses semantic information to influence

how particles move through occupied space. Second, sec-

tion IV-D introduces a novel sensor model that estimates

observation likelihoods using semantic information, range

and bearing information. Third, section IV-E introduces a

second novel motion model that uses semantic and bearing

information to allow observation likelihoods to be estimated

from an RGB image only. Finally, in section V we present the

results obtained by using our approach in multiple sensing

modalities.

II. LITERATURE REVIEW

Monte-Carlo Localisation (MCL) was made possible by

the arrival of accurate range-based sensors such as SOund

Navigation And Ranging (SONAR) and Light Detection And

Ranging (LiDAR). These approaches, which we call Range-

Based Monte-Carlo Localisation (RMCL), are robust and

reliable and still considered state-of-the-art in many robotic

applications. Recent advances in computer vision have made

it possible for us to imagine new types of perceptual sensors

which are capable of semantic understanding of a scene.

Semantic sensing modalities, such as SeDAR, have the

ability to revolutionize MCL.

RMCL was first introduced by Fox et al. [8] and Del-

laert et al. [6]. RMCL improved the Kalman Filter based

state-of-the-art by allowing multi-modal distributions to be

represented. It also solved the computational complexity of

grid-based Markov approaches. However, these approaches

require expensive LiDAR and/or SONAR sensors to operate

reliably. Instead, Dellaert et al. [5] extended their approach

to operate using vision-based sensor models. Vision-based

MCL allowed the use of rich visual features and cheap

sensors, but had limited performance compared to the more

robust LiDAR-based systems.

With the rising popularity of RGB-D sensors, more robust

vision-based MCL approaches became possible. Paton and

Kosecka [17] use a combination of feature matching and

Iterative Closest Point (ICP) to perform pose estimation and

localisation. Brubaker et al. [2] used visual odometry and

pre-existing roadmaps in a joint MCL/closed-form approach

in order to localise a moving car. Fallon et al. [7] presented a

robust MCL approach that used a low fidelity a priori map

to localise in, but required the space to be traversed by a

depth sensor beforehand. Winterhalter et al. [24] performed

MCL, but based the likelihood of the sensor model on the

normals of an extruded floorplan. Chu et al. [3] is the

closest to us, they attempted to mimic the human thinking

process by creating piecemeal reconstructions of an extruded

floorplan, the MCL sensor model was then based on matches

against these reconstructions. These MCL-based approaches

tend to be robust, but they operate entirely on the geometric

information present in the floorplan and therefore require

depth images either from sensors and/or reconstructions. By

contrast our approach aims to use non-geometric semantic

information present in the floorplan in order to perform the

localisation.

While the field of MCL evolved in the robotics com-

munity, in vision, the non-MCL-based field of floorplan

localisation became more popular. Melbouci et al. [16] used

extruded floorplans, but performed local bundle adjustments

instead of MCL. Shotton et al. [19] used regression forests to

predict the correspondences of every pixel in the image to a

known 3D scene, they then combined this in a RANdom

Sample And Consensus (RANSAC) approach in order to

solve the camera pose. Chu et al. [4] use information from

the floorplans and Google StreetView in order to reason

about the geometry of the building and perform a robust

reconstruction. The most similar work to our approach is

Wang et al. [23] who use text detection from shop fronts

as semantic cues to localise in the floorplan of a shopping

centre and Liu et al. [15] who use floorplans as a source

of geometric and semantic information, combined with van-

ishing points, to localise monocular cameras. These vision-

based approaches tend to use more of the non-geometric

information present in the floorplan. However, a common

trend is that assumptions must be made about geometry not

present in the floorplan (e.g. ceiling height). The floorplan is

then extruded out into the 3rd dimension to allow approaches

to use the information present in the image. By contrast, our

approach aims to extract the information from the image and



(a) Correct (b) Incorrect

Fig. 2: Laser scan matching, the robot is correctly localised

when the observations match the geometry of the map [22]

collapse the 3D world down into the 2D floorplan where

localisation can be performed. This provides a 3-Degrees of

Freedom (DoF) localisation requiring less assumptions about

the environment.

Recently, advances in Deep Learning have made robust

semantic segmentation models widely available. Approaches

like that of Badrinarayanan et al. [1], Kendal et al. [11]

and Long et al. [18] have made semantically informed

approaches possible. One such approach is Tateno et al. [21]

who use the CNN-based depth and semantic label predictions

of Laina et al. [13] to aid in their Simultaneous Localization

and Mapping (SLAM) pipeline. Lee et al. [14] extend the

approach of Badrinarayanan et al. [1] to directly estimate

room layout keypoints. While many such approaches exist,

they mainly focus on extracting the room layout based on

Manhattan world assumptions. Instead, this work proposes to

use CNN-based semantic segmentation (that is understand-

able to humans) in order to extract labels that are inherently

present in human-readable floorplans. This allows us to take

all that information and collapse it into a 3-DoF problem,

making our approach more tractable than competing 6-DoF

approaches while avoiding additional assumptions.

III. BACKGROUND

While there exist many approaches to perform MCL,

RMCL is widely considered to be the state-of-the-art lo-

calisation method for pre-existing maps. RMCL is a scan-

matching algorithm, it assumes the presence of a sensor that

provides range and bearing tuples across a scanline. The

problem then becomes finding the pose of the robot that

makes the sensor observations match the floorplan. Figure

2a shows a case of the scan being correctly matched for

a correctly localised robot. Conversely, figure 2b shows an

incorrectly matched scan for an incorrect pose.

State-of-the-art localisation performs this matching in an

Sequential Monte-Carlo (SMC) framework, which can be

broadly summarised as follows. First, there is a prediction

stage where particles are propagated using a motion-model,

normally odometry from the robot (with Gaussian noise).

Second, an update phase where each particle is weighted

according to how accurately the observations align to the

map. Finally, a re-sampling step is performed proportional

to each particle’s weight. The process is then repeated.

More formally, the pose xt ∈ Xt ⊂ SE(2) can be

estimated using a set of pose samples St =
{

sit; i = 1..N
}

,

odometry measurements Ut =
{

uj; j = 1..t
}

, sensor mea-

surements Zt =
{

zj; j = 1..t
}

and a 2D map V. The

posterior is calculated as

Pr
(

sit
∣

∣Zt, Ut

)

= Pr
(

zt
∣

∣si′t , V
)

Pr
(

si′t
∣

∣ut, s
i
t−1

)

Pr
(

sit
∣

∣Zt, Ut

)

(1)

which implies that only the most recent odometry and

observations are used [6]. This means that at each iteration

the particles from Pr
(

sit−1

∣

∣zt−1
, ut−1

)

are: propagated

using a motion model Pr
(

si′t
∣

∣ut, s
i
t−1

)

, weighted using a

sensor model Pr
(

zt
∣

∣si′t , V
)

and resampled into the posterior

Pr
(

sit
∣

∣zt, ut

)

. Algorithm 1 describes this process in more

detail.

1: function MCL(St−1
,ut,zt)

2: St = S′t = ∅
3: for i = 1→ N do

4: si′t ← MOTION MODEL(ut, s
i
t−1

)

5: wi
t ← SENSOR UPDATE(zt, s

i′
t , V)

6: S′t ← S′t +
〈

si′t , w
i
t

〉

7: end for

8: for i = 1→ N do

9: st ← WEIGHTED SAMPLE(S′t)

10: St ← St + st
11: end for

12: S̄t ← MEAN(St)

13: return S̄t

14: end function

Algorithm 1: Sequential Monte-Carlo Localisation in a

known floorplan.

In an MCL context, the motion model is defined by

the odometry received from the robot. This propagates the

particles according to ut with Gaussian noise applied such

that

Pr
(

si′t
∣

∣ut, s
i
t−1

)

∼ sit−1
+N (ut, Υt) (2)

where Υt is a covariance on the linear and angular compo-

nents of the odometry. Fundamentally, this allows errors in

the odometry to be accounted for during particle propagation.

The sensor model is defined by each range-scanner obser-

vation. We can estimate the likelihood of each full range-scan

(zt) under the assumption that each measurement in the scan

is independent of each other. That is,

Pr
(

zt
∣

∣si′t , V
)

=

K
∏

k=1

Pr
(

zkt
∣

∣si′t , V
)

(3)

is the likelihood of the putative particle si′t , where

zt =
{〈

θkt , r
k
t

〉

; k = 1..K
}

is the set of range and bearing

tuples that make up each scan. Calculating the likelihood can

be done two ways, the beam model and the likelihood field

model.



In the beam model, a raycasting operation is performed.

Starting from the current particle’s pose, a ray is cast

along the bearing angle θkt until it intersects map geometry.

The likelihood Pr
(

zkt
∣

∣si′t , V
)

is then estimated using the

difference between the range rkt obtained from the sensor

and the range rk∗t obtained from the raycasting operation.

In the likelihood field model, a distance map is used

in order to avoid the expensive raycasting operation. The

distance map is a Lookup Table (LUT) of the same size

as the map, where each cell contains the distance to the

nearest map geometry. This map is estimated similar to the

Chamfer distance, where we perform a search in a window

around each cell and store the distance to the closest occupied

cell in the map. When queried, this distance is converted

into a likelihood. Figure 3 shows the estimated distance

map for a floorplan, the creation of which will be explored

further in section IV-A. This distance map is only estimated

once during initialisation. During runtime, the endpoint of

each measurement can be estimated directly from the pose,

bearing and range. The probability is then simply related to

the distance reported by the LUT.

The raycasting method is (strictly speaking) more closely

related to the sensing modality, as the closest geometry may

not lie along the ray. However, in practice, most robotics

systems use the likelihood field model as it is both faster

and tends to provide better results. This is because the

raycasting operation can report very incorrect measurements

due to small pose errors. An example of this is when looking

through an open door, an error of a few centimetres can make

the rays miss the door. This makes the distribution inherently

less smooth.

IV. METHODOLOGY

The problem with state-of-the-art approaches is that they

only use one-dimensional information. More explicitly, using

only the range information from the sensors fundamentally

limits how discriminative each reading can be. Instead, we

present a novel semantic sensing and localisation framework

called SeDAR that leverages semantic and, optionally, range

information. We will show that we can use our novel SeDAR

sensing and localisation framework to outperform traditional

RMCL.

A. Semantic Floorplans

RMCL requires a floorplan and/or previously created

range-scan map that is accurate in scale and globally consis-

tent. A previously created range-scan map requires a robust

SLAM algorithm such as GMapping [9] to be run. This

is not an ideal situation as it forces the robot to perform

an initial exploration, is sensitive to noise and the resulting

map is difficult to interpret by humans. Instead of using a

metric-accurate reconstruction, a more flexible and feasible

alternative is using a human-readable floorplan. However,

this would make RMCL less robust due to differences

between the floorplan and what the robot can observe (e.g.

inaccuracies, scale variation and furniture).

To overcome this, we augment the localisation with se-

mantic labels extracted from an existing floorplan. We limit

the labels to walls, doors and windows. The reason for

this limitation is two-fold. First, they are salient pieces of

information that humans naturally use to localise. Second,

they are simple to automatically extract from a floorplan

using image processing. As can be seen in figure 3c, these

semantically salient elements have been colour coded in

order to represent different labels.

In order to make a labelled floorplan readable by the

robot, it must first be converted into an occupancy grid. An

occupancy grid is a 2D representation of the world, in which

each cell in the grid has an occupancy probability attached

to it. Any cell that is above an occupancy threshold is

then considered as being occupied. Estimating the occupancy

of an existing floorplan is done by taking the normalized

greyscale value of each cell.

The map can then be defined as

V =
{

v
m
; m ∈ M ⊂W

}

(4)

where M is a set of 2D positions and W is the set of whole

numbers. Assuming L = {a, d, w} is the set of possible cell

labels (wall, door, window), each cell is defined as

v
m

=
〈

vo

m
, vw

m
, vd

m
, va

m

〉

(5)

where vo

m
is the occupancy likelihood and ℓ ∈ L denotes

the label likelihood.

Having incorporated the semantic labels into the standard

occupancy grid, it is now necessary to use them in sensing.

B. SeDAR Sensor

Modern low-cost robotics systems turn RGB-D images

into range-based scans zt =
{〈

θkt , r
k
t

〉

; k = 1..K
}

. This can

be accomplished by looking exclusively at the depth image.

It can be shown that the angle along the horizontal axis, θkt ,

can be calculated by

θkt = atan2

(

u− cx

fx

)

(6)

where (u, v), (cx, cy), (fx, fy) are the pixel coordinates,of

the principal point and focal length, respectively, of the

camera. While it is possible to estimate a second angle along

the vertical axis, this is unnecessary in the case of floorplan

localisation. It can also be shown that the range measurement

rkt can be calculated as

rkt =

√

(

dkt (u− cx)

fx

)2

+

(

dkt (v − cy)

fy

)2

+
(

dkt
)2

(7)

where dkt is the current depth measurement at pixel k. At this

point, a traditional LiDAR can be emulated. Notice that all

the information present in the RGB image is being discarded.

On the other hand, a single SeDAR scan consists of a set

zt =
{〈

θkt , r
k
t , ℓ

k
t

〉

; k = 1..K
}

of bearing, range and label

tuples.

In order to estimate the labels, CNN-based encoder-

decoder network [11] is used. This is trained on the SUN3D



(a) Original (b) Likelihood Field (c) Semantic

Fig. 3: Original floorplan compared to the likelihood field and the labelled floorplan.

[25] dataset, and can reliably detect doors, walls, floors, ceil-

ings, furniture and windows. This state-of-the-art semantic

segmentation runs in real-time, which allows images to be

parsed into a SeDAR-scan with negligible latency. The label

ℓkt is then simply the label at pixel k.

It is important to note that we extract the labels from the

RGB image only. This is by design, as it allows the use of

cameras that cannot sense depth. In the following sections

we will use this novel sensing modality in a novel MCL

formulation with and without the range-based measurements.

C. Motion Model

MCL motion models normally assume the motion model

to be represented by Pr
(

si′t
∣

∣ut, s
i
t−1

)

. However, it is well

understood in the literature that the actual distribution being

approximated is Pr
(

si′t
∣

∣ut, s
i
t−1

, V
)

. This encodes the idea

that certain motions are more or less likely depending on the

map (e.g. through walls).

Under the assumption that the motion of the robot is small,

it can be shown that

Pr
(

si′t
∣

∣ut, s
i
t−1

, V
)

= κPr
(

si′t
∣

∣ut, s
i
t−1

)

Pr
(

sit−1

∣

∣V
)

(8)

(see e.g. [22]) where κ is a normalising factor and V is the

set containing every cell in the map. This allows the two

likelihoods to be treated independently.

In an occupancy map, the motion Pr
(

si′t
∣

∣ut, s
i
t−1

)

is de-

fined in the same way as equation 2. The prior Pr
(

sit−1

∣

∣V
)

is simply the occupancy likelihood of the cell that contains

sit, that is

Pr
(

sit−1

∣

∣V
)

= 1− Pr
(

vo

s
t−1

)

(9)

which is an elegant solution in the case where the “floorplan”

was previously built by the robot.

More explicitly, when a robot builds its own floorplan the

observations it uses are noisy. This means that, by definition,

the map encodes a measure of occupancy that reflects what

the robot can observe. This is because, as the map is built,

each cell’s occupancy likelihood is updated. Cells that are

always observed as occupied (walls) have high likelihood

of being occupied. Cells that have always been empty

(middle of a room) have low likelihood of being occupied.

More importantly, cells that are near walls or windows are

uncertain, and this is reflected in their occupancy. This is true

for a map built using offline scan-alignment and/or online

SLAM techniques (note that map-building is not a

However, this approach becomes problematic when using

human-made floorplans. Human-made floorplans typically

have binary edges and/or edges with image artefacts (in the

case where they are scanned into a computer). Either way,

this does not reflect what the robot can observe and can cause

issues with localisation. Therefore, most approaches tend to

assume a binary interpretation of the occupancy. This is done

by setting the probability to

Pr
(

vo

s
t−1

)

=

{

1 if vo

s
t−1

≥ τo

0 otherwise
(10)

where τo is a user defined threshold. While this makes depth-

based methods perform reliably, it is a crude estimate of

reality. For instance, most humans would not even notice

if a door is a few centimetres away from where it should

be. Issues like this present real problems when particles

propagate though doors, as it is possible that the filter will

discard particles as they collide with the edge of the door

frame. Instead, we propose to augment this with a ghost

factor that allows particles more leeway in these scenarios.

Therefore the proposed prior is

Pr
(

sit−1

∣

∣V
)

=
(

1− Pr
(

vo

s
t−1

))

e-ǫG δa (11)

where δa is the distance to the nearest door. While other

labels such as windows can be used, in the case of a

ground-based robot doors are sufficient. The distance, δa,

can be efficiently estimated using a lookup table as defined

in section IV-D.



(a) Semantic Floorplan (b) Wall Likelihood Field (c) Door Likelihood Field (d) Window Likelihood Field

Fig. 4: Original floorplan compared to the likelihood field for each label.

More importantly, ǫG is a user defined factor that deter-

mines how harshly this penalty is applied. Setting ǫG = 0
allows particles to navigate through walls with no penalty,

while very high values approximate equation 10. We will

explore the effects of ǫG in section V-D. This motion model

is more probabilistically accurate than the occupancy model

used in most RMCL approaches, and has the added ad-

vantage of leveraging the high-level semantic information

present in the map.

D. Sensor Model

The naı̈ve way of incorporating semantic measurements

into the sensor model would be to use the beam model. In this

modality, the raycasting operation would provide not only the

distance travelled by the ray, but also the label of the cell

the ray hit. If the label of the cell and the observation match,

the likelihood of that particle being correct is increased.

However, this approach suffers from the same limitations

as the traditional beam model: it has a distinct lack of

smoothness. On the other hand, the likelihood field model is

significantly smoother, as it provides a gradient between each

of the cells. By contrast, the approach presented here uses a

joint method that can use likelihood fields to incorporate se-

mantic information in the presence of semantic labels. More

importantly, it can also use raycasting within a likelihood

field in order to operate without range measurements.

As described in section III, the likelihood field model

calculates a distance map. For each cell v
m

, the distance

to the nearest occupied cell

δo (m) = min
m′

‖m − m′‖ , vo

m′ > τo (12)

is calculated and stored. For clarity, we omit the parameter

m for the remainder of the paper. When a measurement

zkt =
〈

θkt , r
k
t

〉

is received, the endpoint is estimated and

used as an index to the distance map. Assuming a Gaussian

error distribution, the weight of each particle si′t can then

estimated as

PrRNG

(

zkt
∣

∣si′t , V
)

= e

− δ2o
2 σ2

o
(13)

where δo is the value obtained from the distance map and σo

is dictated by the noise characteristics of the sensor. However,

this model has three main limitations. First, it makes no use

of the semantic information present in the map. Second, the

parameter σo must be estimated by the user and assumes all

measurements within a scan have the same noise parameters.

Third, it is incapable of operating in the absence of range

measurements.

Instead, this work uses the semantic labels present in

the map to create multiple likelihood fields. For each label

present in the floorplan, we can calculate a distance map

that stores the shortest distance to a cell with the same label.

Formally, for each map cell v
m

we can estimate the distance

to the nearest cell of each label as

δ
ℓ
(m) = min

m′

‖m − m′‖ , v
ℓ

m′ > τo (14)

where δ
ℓ
= {δa, δd, δw} are distances to the nearest wall,

door and window, respectively. Figure 4 shows the distance

maps for each label. This approach overcomes the three

limitations of the state-of-the-art, which we will now discuss.

1) Semantic Information: First, SeDAR uses the semantic

information present in the map. When we receive an obser-

vation zkt =
〈

θkt , r
k
t , ℓ

k
t

〉

, we use the bearing θkt and range

rkt information to estimate the endpoint of the scan. We then

use the label ℓkt to decide which semantic likelihood field to

use. Using the endpoint from the previous step, the label-

likelihood can be estimated similarly to equation 13,

PrLBL

(

zkt
∣

∣si′t , V
)

= e

− δ2ℓ

2 σ2

ℓ
(15)

where δ
ℓ

is the distance to the nearest cell of the relevant

label and σ
ℓ

is the standard deviation (which we will define

using the label prior). The probability of an observation given

the map and pose can then be estimated as

Pr
(

zkt
∣

∣si′t , V
)

= ǫoPrRNG

(

zkt
∣

∣si′t , V
)

+ ǫ ℓPrLBL

(

zkt
∣

∣si′t , V
)

(16)

where ǫo and ǫ ℓ are user defined weights. When ǫ ℓ = 0
the likelihood is the same as standard RMCL. On the other

hand, when ǫo = 0 the approach is using only the semantic



information present in the floorplan. These weights are

properly explored and defined in section V-C. Unlike range

scanners, σ
ℓ

cannot be related to the physical properties

of the sensor. Instead, this standard deviation is estimated

directly from the prior of each label on the map. Defining

σ
ℓ

this way has the benefit of not requiring tuning. However,

there is a much more important effect that must be discussed.

2) Semantically Adaptive Standard Deviation: When a

human reads a floorplan, unique landmarks are the most

discriminative features. The more unique a landmark, the

easier it is to localise using it (because there aren’t many

areas in the map that contain it). It then follows that the more

rare a landmark, the more discriminative it is for the purpose

of localisation. Indeed, it is easier for a person to localise in a

floorplan by the configuration of doors and windows than it is

by the configuration of walls. This translates into the a simple

insight: lower priors are more discriminative. Therefore, σ
ℓ

is tied to the prior of each label not only because it is one less

parameter to tune, but because it implicitly makes observing

rare landmarks more beneficial than common landmarks.

Relating σ
ℓ

to the label prior Pr (ℓ) controls how

smoothly the distribution decays w.r.t. distance from the cell.

The smaller Pr ( ℓ) is, the smoother the decay. In essence,

the localisation algorithm should be more lenient on sparser

labels.

E. Range-less Semantic Scan-Matching

The final, and most important, strength of this approach is

the ability to perform all of the previously described method-

ology in the complete absence of range measurements. So

far, we have formalised this approach on the assumption that

we received either
〈

θkt , r
k
t

〉

tuples (existing approaches) or
〈

θkt , r
k
t , ℓ

k
t

〉

tuples (SeDAR-based approach). However, this

approach is capable of operating directly on
〈

θkt , ℓ
k
t

〉

tuples.

In other words, depth measurments are explicitly not added

to this approach.

Incorporating range-less measurements is simple. The

beam and likelihood field models are combined in a novel

approach that avoids the degeneracies that would happen

in traditional RMCL approaches. In the standard approach,

the raycasting operation terminates when an occupied cell is

reached and the likelihood is estimated as

Pr
(

zkt
∣

∣si′t , V
)

= e

−
(

rkt − rk∗t
)2

2 σ2
o (17)

where rkt is the range obtained from the sensor and rk∗t
is the distance travelled by the ray. Unfortunately, in the

absence of a range-based measurement rkt this is impossible.

Using the standard distance map is also impossible, since we

can’t estimate the endpoint of the ray. Using raycasting in

the distance map fails similarly. The raycasting terminates

on an occupied cell, implying δo = 0 for every ray cast.

On the other hand, the semantic likelihood fields can still

be used as δ
ℓ

will still have a meaningful and discriminative

value. We call this operation semantic raycasting. For every

zkt =
〈

θkt , ℓ
k
t

〉

, the raycasting is performed as described in

section III. However, instead of comparing rkt and rk∗t or

using δo, the label ℓkt is used to decide what likelihood field

to use. The cost can then be estimated as

Pr
(

zkt
∣

∣si′t , V
)

= PrLBL

(

zkt
∣

∣si′t , V
)

(18)

where PrLBL

(

zkt
∣

∣si′t , V
)

is defined in equation 15. This

method is essentially a combination of the beam-model and

the likelihood field model.

In the absence of range-measurements to estimate an

endpoint from, this hybrid approach uses semantic raycasting

to find the nearest occupied cell. The distances are then

used to provide smoothness to equation 18. More explic-

itly, it would be possible to assign binary values to this

likelihood (i.e. label matches or not). However, this would

be a naı̈ve solution that provides no smooth gradient to the

correct solution. While this approach uses distances from the

likelihood field, this should not imply that the likelihood of

an observation is dependant on distances to labels. Instead,

equation 18 implies that the observation likelihood is directly

proportional to the angular distribution of labels (i.e. how

closely the bearing/label tuples match the observation).

To summarise, this section presented several important

concepts. We introduced the idea of a semantic floorplan

that contains information that is salient to humans. We

also introduced a new sensing modality, SeDAR, that adds

semantic labels to the traditional LiDAR information. We

then incorporated these two ideas into a novel MCL-based

approach. This approach is capable of using the semantic

information present in the map to define a novel motion

model. It is also capable of using the labels from a CNN-

based segmentation to localise within the map. Our approach

can do all of the above both in the presence, and absence,

of range measurements. In the following section, we show

that our approach is capable of outperforming standard

RMCL approaches when using depth, and that it provides

comparable performance in its absence.

V. RESULTS

This section will demonstrate that SeDAR-based MCL

is capable of reliably out-performing the state-of-the-art

when using range measurements. It will also show that our

approach it is capable of comparable performance even in the

absence of range. First, the experimental setup is described.

This consists of creating a dataset of a trajectory within a

floorplan, as well as establishing error metrics. Then a com-

parison of several approaches is performed. The comparison

is done in terms of room-level and global localisation, both

quantitative and qualitative. Finally, we show the effects of

our parameters.

A. Experimental Setup

In order to evaluate this approach, we require a dataset

that has several important characteristics. The dataset should

consist of a robot navigating within a human-readable floor-

plan. Human-readability is required to ensure semantic in-

formation is present.The trajectory should be captured with

an RGB-D camera in order to extract all the possible tuple



(a) Ground Truth (b) Overlay to Floorplan

Fig. 5: Sample Trajectory used for evaluation.

combinations (range, bearing and label). Finally, we expect

the trajectory of the robot to happen on the same plane as

the floorplan. Unfortunately, most of the MCL datasets in

the literature do not contain a floorplan, opting instead for

laser-scans. RGB-D SLAM datasets are more appropriate,

but they either do not move on the floorplan plane or simply

do not contain ground-truth trajectory estimation.

Therefore, we are forced to use our own dataset - which we

will make publicly available. We use the floorplan in figure

3a because it is large enough to provide multiple trajectories

with no overlap. The dataset was collected using the popular

TurtleBot platform, as it has a front-facing Kinect that can

be used for emulating both LiDAR and SeDAR.

Normally, the ground-truth trajectory for floorplan locali-

sation is either manually estimated (as in [24]) or estimated

using Motion Capture (MoCap) systems (as in [20]). How-

ever, both of these approaches are limited in scope. Manual

ground-truth estimation is time-consuming and impractical.

MoCap is expensive, difficult to calibrate, and normally

cannot remain in the public areas required for floorplan

localisation. In order to overcome these limitations, well

established RGB-D SLAM systems are used instead. The

excellent approach by Labbe et al. [12] provides very accu-

rate pose estimation in complex environments. While it does

not localise within a floorplan, it does provide an accurate

reconstruction and trajectory for the robot, which can then

be registered into the floorplan. Figure 5a shows a sample

trajectory and map estimated by [12], while figure 5b shows

them overlaid on the floorplan.

To quantitatively evaluate the presented approach against

ground truth, the Absolute Trajectory Error (A) metric pre-

sented by Sturm et al. [20] is used. A is estimated by first

registering the two trajectories using the closed form solution

of Horn [10], who finds a rigid transformation GT
X

that

registers the trajectory Xt to the ground truth Gt. At every

time step t, the A can then be estimated as

e
g
= g-1

t
GT

X
xt (19)

where gt ∈ Gt and xt ∈ Xt are the current time-aligned

poses of the ground truth and estimated trajectory, respec-

tively. The Root Mean Square Error (RMSE), mean and

median values of this error metric are reported, as these are

indicative of performance over room-level initialisation. In
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Fig. 6: Semantic Floorplan Localisation, room-level initiali-

sation.

order to visualise the global localisation process, the error of

each successive pose is shown (error as it varies with time).

These metrics are sufficient to objectively demonstrate the

systems ability to globally localise in a floorplan, while also

being able to measure room-level initialisation performance.

We compare the work presented here against the ex-

tremely popular MCL approach present in Robot Operating

System (ROS), called Adaptive Monte Carlo Localisation

(AMCL) [6]. AMCL is the standard MCL approach in the

robotics community. Any improvements over this approach

are therefore extremely valuable. In all experiments, any

overlapping parameters (such as σo) are kept the same. The

only parameters varied are ǫ ℓ , ǫo and ǫG.

B. Room-Level Initialisation

For this evaluation, a room-level initialisation with stan-

dard deviations of 2.0m in (x, y) and 2.0rad in θ is given to

both AMCL and the proposed approach. The systems then

ran with a maximum of 1000 particles (minimum 250) placed

around the covariance ellipse. We record the error as each

new image in the dataset is added.

1) Quantitative Results: Figure 6 compares four distinct

scenarios against AMCL. Of these four scenarios, two use the

range measurements from the Microsoft Kinect (blue lines)

and two only use the RGB image (red lines).

The first range-enabled scenario uses the range measure-

ments to estimate the endpoint of the measurement (and

therefore the index in the distance map) and then sets

(ǫo = 0.0, ǫ ℓ = 1.0). This means that while the range

information is used to inform the lookup in the distance map,

the costs are always directly related to the labels. The second

range-enabled scenario performs a weighted combination

(ǫo = 0.25, ǫ ℓ = 0.75) of both the semantic and traditional

approaches.

In terms of the ray-based version of our approach, we

use equation 18. This means there are no parameters to set.



Average Trajectory Error (m)

Approach RMSE Mean Median Std. Dev. Min Max

AMCL 0.24 0.21 0.20 0.11 0.04 0.95

Range (Label Only) 0.19 0.16 0.14 0.10 0.02 0.55

Range (Combined) 0.22 0.19 0.17 0.11 0.04 0.62

Rays (ǫG = 3.0) 0.40 0.34 0.27 0.22 0.07 1.51

Rays (ǫG = 7.0) 0.58 0.45 0.38 0.37 0.02 2.23

TABLE I: Room-Level Initialisation

(a) Room-Level Initialisation (b) AMCL

(c) SeDAR (Range-Based) (d) SeDAR (Ray-Based)

Fig. 7: Qualitative view of Localisation in different modali-

ties.

Instead, a mild ghost factor (ǫG = 3.0) and a harsh one (ǫG =
7.0) are shown.

Since room-level initialisation is an easier problem than

global initialisation, the advantages of the range-enabled

version of our approach are harder to see compared to state-

of-the-art. However, it is important to notice how closely

the ray-based version of the approach performs to the rest

of the scenarios, despite using no depth data. Apart from a

couple of peaks, we essentially perform at the same level

as AMCL. This becomes even more noticeable in table I,

where it is clear that range-based semantic MCL (using only

the labels) outperforms state of the art, while the ray-based

ǫG = 3.0 version lags closely behind. The reason ǫG = 3.0
performs better than ǫG = 7.0 is because small errors in the

pose can cause the robot to “clip” a wall as it goes through

the door. Since ǫG = 3.0 is more lenient on these scenarios,

it is able to outperform the harsher ghost factors. We will

explore this relationship further in section V-D.

2) Qualitative Results: In terms of qualitative evaluation,

we show both the convergence behaviour and the estimated

path.

The convergence behaviour can be seen in figure 7. Here,

figure 7a shows how the filter is initialised to roughly corre-

spond to the room the robot is in. As the robot starts moving,

(a) AMCL

(b) SeDAR (Range-Based) Path (c) SeDAR (Ray-Based) Path

Fig. 8: Estimated path from room-level initialisations.

we can see how AMCL (7b), the range-based version of

SeDAR (7c) and the ray-based version (7d) converge. Notice

that while the ray-based approach has a predictably larger

variance on the particles, the filter has successfully localised.

This can be seen from the fact that the reconstructed Kinect

pointcloud is properly aligned with the floorplan. It is im-

portant to note that although the Kinect pointcloud is present

for visualisation in the ray-based method, the depth is not

used.

The estimated paths can be seen in figure 8, where the

red path is the estimated path and green is the ground

truth. Figure 8a shows the state-of-the-art, which struggles to

converge at the beginning of the sequence (marked by a blue

circle). It can be seen that the range-based approach in figure

8b (combined label and range), converges more quickly and

maintains a similar performance to AMCL. It only slightly

deviates from the path at the end of the ambiguous corridor

on the left, which also happens to AMCL. It can also

be seen that the ray-based approach performs very well.

While it takes longer to converge, as can be seen by the

estimated trajectory in figure 8c, it corrects itself and only

deviates from the path in areas of large uncertainty (like long

corridors).

These experiments show that SeDAR-based MCL is ca-

pable of operating in a room-level initialised scenario. It is
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Fig. 9: Semantic Floorplan Localisation, global initialisation.

now important to discuss how discriminative SeDAR is when

there is no initial pose estimate provided to the system.

C. Global Initialisation

We now focus on SeDAR-based MCL’s ability to perform

global localisation. In these experiments, the system is given

no indication of where in the map the robot is. Instead, we

use a maximum 50, 000 particles (minimum 15, 000) placed

over the floorplan.

1) Quantitative Results: Figure 9 shows the same four

scenarios as in the previous section. For the range-based

scenarios (blue lines) it can be seen that using only the label

information (ǫo = 0.0, ǫ ℓ = 1.00) consistently outperforms

the state of the art, both in terms of how quickly the values

converge to a final result and the actual error on convergence.

This shows that SeDAR used in an MCL context is more

discriminative than standard occupancy maps in RMCL.

The second range-based measurement (ǫo = 0.25, ǫ ℓ =
0.75) significantly outperforms all other approaches. This is

probably because, in principle, the occupancy maps can be

considered another “label” in the semantic floorplan. This

makes sense because setting ǫo = 0.25 is equivalent to

weighting all labels equally, as it is a third of ǫ ℓ = 0.75
which is the weight of 3 labels.

In terms of the ray-based version of our approach (red

lines), we compare two scenarios. A mild ghost factor (ǫG =
3.0) and a harsh one (ǫG = 7.0). These versions of the

approach both provide comparable performance to the state-

of-the-art. It is important to emphasise that this approach uses

absolutely no range and/or depth measurements. As such,

comparing against depth-based systems is inherently unfair.

Still, SeDAR ray-based approaches compare favourably to

AMCL. In terms of convergence, the mild ghost factor

ǫG = 3.0 gets to within several meters even quicker than

AMCL, at which point the convergence rate slows down and

is overtaken by AMCL. The steady state performance is also

comparable. While the performance temporarily degrades, it

manages to recover and keep a steady error rate throughout

the whole run. On the other hand, the harsher ghost factor

ǫG = 7.0 takes longer to converge, but remains steady

and eventually outperforms the milder ghost factor. Table

II shows the RMSE, error along with other statistics.

2) Qualitative Results: Similar to the previous section,

we can provide qualitative analysis by looking at the con-

vergence behaviour and the estimated paths.

In order to visualise the convergence behaviour, figure 10a

shows a series of time steps during the filters’ initialisation.

On the first image, the particles have been spread over the

ground floor of a (49 x 49)m office area. In this dataset, the

robot is looking directly at a door during the beginning of the

sequence. Therefore, in figure 10b the filter converges with

particles looking at doors that are a similar distance away.

The robot then proceeds to move through the doors. Going

through the door makes the filter converge significantly faster

as it implicitly uses the ghost factor in the motion model. It

also gives the robot a more unique distribution of doors (on

a corner), which makes the filter converge quickly. This is

shown in figure 10c, where the filter converges.

The estimated paths can be seen in figure 11, where

the blue circle denotes the point of convergence. It can be

seen that AMCL takes longer to converge (further away

from the corner room) than the range-based approach. More

importantly, it can be seen that the range-based approach

suffers no noticeable degradation in the estimated trajectory

over the room-level initialisation. On the other hand, the

ray-based method’s performance degrades more noticeably.

This is because the filter converges in a long corridor

with ambiguous label distributions (doors left and right are

similarly spaced). However, once the robot turns around the

system recovers and performs comparably to the range-based

approach.

As mentioned previously, entering or exiting rooms helps

the filter converge because it can use the ghost factor in the

motion model. The following experiments, evaluate how the

ghost factor affects the performance of the approach.

D. Ghost Factor

The effect of the ghost factor can be measured in a similar

way to the overall filter performance. We show that the

ghost factor provides more discriminative information when

it is not defined in a binary fashion. This is shown in the

label-only scenario for both the range-based and ray-based

approaches, in both the global and room-level initialisation.

1) Global Initialisation: Figure 12 shows the effect of

varying the ghost factor during global initialisation. It can

be seen that not penalising particles going through walls,

(ǫG = 0), is not a good choice. This makes sense, as there

is very little to be gained from allowing particles to traverse

occupied cells without any consequence. It follows that we

should set the ghost factor as high as possible. However,

setting the ghost factor to a large value (ǫG = 7.0), which

corresponds to reducing the probability by 95% at 0.43m,

does not provide the best results.



Average Trajectory Error (m)

Approach RMSE Mean Median Std. Dev. Min Max

AMCL 7.31 2.26 0.20 6.95 0.028 35.45

Range (Label Only) 6.71 2.59 1.31 6.20 1.15 38.60

Range (Combined) 4.78 1.69 0.69 4.47 0.43 31.19

Rays (ǫG = 3.0) 7.74 4.36 2.46 6.40 1.07 27.55

Rays (ǫG = 7.0) 8.09 4.49 2.22 6.73 1.61 28.47

TABLE II: Global Initialisation

(a) Global Initialisation (b) Looking at Doors (c) Converged

Fig. 10: Qualitative view of Localisation in different modalities.

(a) AMCL Path (b) SeDAR (Range-Based) Path (c) SeDAR (Ray-Based) Path

Fig. 11: Estimated path from global initialisations.

While it might seem intuitive to assume that a higher

(ǫG) will always be better, this is not the case. High values

of the ghost factor correspond to a binary interpretation of

occupancy which makes MCL systems unstable in the pres-

ence of discrepancies between the map and the environment.

This happens because otherwise correct particles can clip

door edges and be completely eliminated from the system.

A harsh ghost factor also exacerbates problems with limited

number of particles. In fact, ǫG = 3.0, corresponding to a

95% reduction at 1.0m, consistently showed the best results

in all of the global initialisation experiments, as can be seen

in table III.

2) Room-Level Initialisation: In terms of room-level ini-

tialisation, having an aggressive ghost factor is more in line

with our initial intuition. Table IV shows that for both of

the range-based scenarios, ǫG = 7.0 provides the best results.

This is because room-level initialisation in the presence of

range-based measurements is a much easier problem to solve.

As such, the problem of particles “clipping” edges of doors

is a smaller issue.

On the other hand, the ray-based scenario still prefers a

milder ghost factor of ǫG = 3.0. In this scenario, inaccura-

cies in both the map and the sensing modalities allow for

otherwise correct particles to be heavily penalised by an

aggressive ghost factor. Both of these results are reflected

in figures 13a and 13b.

These results allow us to come to a single conclusion.

The ghost factor must be tuned to the expected amount of

noise in the map and sensing modality. Aggressive ghost

factors can be used in cases where the pre-existing map is

accurate and densely sampled, such as the case where the

map was collected by the same sensor being used to localise
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Fig. 12: Different ghost factors (ǫG), global initialisation.

Average Trajectory Error (RMSE)

Ghost Factor (ǫG) Range (Labels) Range (Weighted) Rays

0.0 10.88 10.13 11.71

3.0 6.71 4.78 7.74

5.0 6.97 6.30 9.54

7.0 7.19 6.10 8.09

TABLE III: Global A for Different Ghost Factors

(i.e. SLAM). On the other hand, in the case where there

are expected differences between what the robot is able to

observe (e.g. furniture, scale errors, etc.), it is more beneficial

to provide a milder ghost factor in order to be more lenient

on small pose errors.

E. Timing

The approach presented here makes the conscious decision

to collapse the 3D world into a 2D representation. This has

very noticeable effects to the computational complexity, and

therefore speed, of the approach.

The speed of our approach was evaluated on a machine

equipped with an Intel Xeon X5550 (2.67GHz) and an

NVidia Titan X (Maxwell). We used OpenMP for threading

expensive for-loops (such as raycasting). During room-level

initialisation, or once the system has converged, our approach

can run with 250 particles in 10ms, leaving us more than

enough time to process the images from the Kinect into an

SeDAR scan. Transforming the RGB images into semantic

labels is the most extensive operation, taking on average

120ms. This means that a converged filter can run at 8− 10
fps. When performing global localisation, we can integrate a

new sensor update, using 50, 000 particles, in 2.25 seconds.

This delay does not impact the ability of the system to

converge, as most MCL-based approaches require motion

between each sensor integration, meaning that the effective

rate is much lower than the sensor output.

VI. CONCLUSION

In conclusion, this work has presented a novel approach

that is capable of localising a robotic platform within a

known floorplan using human-inspired techniques. We first

extracted the semantic information that is naturally present

and salient in a floorplan. Our first novelty was using the

semantic information present in a standard RGB image to

extract labels and present them as a new sensing modality

called SeDAR. The semantic information present in the
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Fig. 13: Different ghost factors (ǫG), room-level initialisation.

Average Trajectory Error (RMSE)

Ghost Factor (ǫG) Range (Labels) Range (Weighted) Rays

0.0 0.25 0.27 1.20

3.0 0.24 0.25 0.40

5.0 0.22 0.24 0.70

7.0 0.19 0.22 0.58

TABLE IV: Room-Level A for Different Ghost Factors

floorplan and the SeDAR scan were then used in a novel

semantic MCL approach. This approach presented three

main novelties. First, the semantic information present in the

floorplan was used to define a novel motion model for MCL

Second, the SeDAR scan was used to localise in a floorplan

using a combination of range and label information. Finally,

SeDAR was used in the absence of range data to localise in

the floorplan using only an RGB image.
In future work, we would like to explore several areas

of interest. Using odometry estimated directly from the
camera would be a priority. We would also like to use
CNN-based depth estimation to both populate the range in
SeDAR and inform the scale of the visual odometry. The
Bayesian probabilities from the semantic segmentation can
also be used to augment the sensor model. Another avenue
of research would be to use the detected semantic labels
that are not present in the floorplan to help localisation
and/or augment the floorplan. Finally, we would like to
integrate SeDAR to SLAM algorithms that operate on the
scan-matching principle.
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