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SeDAR: Reading floorplans like a human
Using Deep Learning to enable human-inspired localisation
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Abstract The use of human-level semantic information to
aid robotic tasks has recently become an important area for
both Computer Vision and Robotics. This has been enabled
by advances in Deep Learning that allow consistent and ro-
bust semantic understanding. Leveraging this semantic vi-
sion of the world has allowed human-level understanding to
naturally emerge from many different
approaches. Particularly, the use of semantic information to
aid in localisation and reconstruction has been at the fore-
front of both fields.

Like robots, humans also require the ability to localise
within a structure. To aid this, humans have designed high-
level semantic maps of our structures called floorplans. We
are extremely good at localising in them, even with limited
access to the depth information used by robots. This is be-
cause we focus on the distribution of semantic elements,
rather than geometric ones. Evidence of this is that humans
are normally able to localise in a floorplan that has not been
scaled properly. In order to grant this ability to robots, it is
necessary to use localisation approaches that leverage the
same semantic information humans use.

In this paper, we present a novel method for seman-
tically enabled global localisation. Our approach relies on
the semantic labels present in the floorplan. Deep Learning
is leveraged to extract semantic labels from RGB images,
which are compared to the floorplan for localisation. While
our approach is able to use range measurements if available,
we demonstrate that they are unnecessary as we can achieve
results comparable to state-of-the-art without them.
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Fig. 1: A) RGB Image, B) CNN-Based Semantic Labelling
and C) Sample SeDAR Scan within floorplan.

1 Introduction

Localisation, the process of finding a robot’s pose within
a pre-existing map, is one of the most important aspects
of both Computer Vision and Robotic systems. A globally
consistent, well localised sensor can substantially reduce the
complexity of problems like Multi-View Stereo (MVS) [1,
31], Autonomous Navigation [44], 3D Reconstruction [8,
32] and even Deep Learning[25]. While all of these prob-
lems can estimate their own sensor poses, such as MVS us-
ing a Bundle Adjustment (BA) and Autonomous Navigation
using Simultaneous Localisation and Mapping (SLAM). Un-
fortunately, both BA and SLAM suffer from the same limi-
tation: they can only ever guarantee global pose consistency
internally. This means that while pose estimates are globally
consistent, they are only valid within the context of the lo-
calisation system. There are no guarantees, at least in vision-
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only systems, that the reconstruction can be directly mapped
to the real world, or between agents (without explicit align-
ment). This paper will attempt to address these limitations
with a localisation approach that is efficient, accurate and,
most importantly, globally consistent with the real-world.

For a robotic system, it should be clear that offline batch
approaches are of limited use [16,17]. This leaves traditional
SLAM systems as the only viable approach for localisation.
However, SLAM systems are liable to drift in terms of both
pose and scale. They can also become globally inconsistent
(even internally) in the case of failed loop closures.

This problem is normally addressed by having a locali-
sation system that can relate the pose of the robot to a pre-
existing map. Examples of global localisation frameworks
include the Global Positioning System (GPS) and traditional
Monte-Carlo Localisation (MCL). MCL has the ability to
localise within an existing floorplan (which can be safely
assumed to be available for most indoor scenarios). This is
a highly desirable trait, as it implicitly eliminates drift, is
globally consistent and provides a way for the 3D recon-
structions to be related to the real world without having to
perform expensive post-hoc optimisations. Traditionally, the
range-based scans required by MCL have been produced
by expensive sensors such as Light Detection And Rang-
ing (LiDAR). These sensors are capable of producing high
density measurements at high rates with low noise, making
them ideal for range-based MCL. However, as a sensor they
are expensive, are physically large and have high power re-
quirements which is an issue for small mobile platforms.

As a response to this, modern low-budget robotic plat-
forms have used RGB-D cameras as a cheap and low-footprint
alternative. This has made vision-based floorplan localisa-
tion an active topic in the literature. However, while many
approaches have been proposed, they normally use heuris-
tics to lift the 2D plan into the 3D coordinate system of
SLAM. These heuristics include techniques like assuming
the height of doors and walls [28,52]. Making assumptions
about the world allows full 6-Degrees of Freedom (DoF)
pose estimations to be computed (by using the assumed ge-
ometry). However, this also increases the computational cost
and makes algorithms unsuitable for environments that do
not conform to these assumptions. Other examples include
Liu et al. [28], who use visual cues such as Vanishing Points
(VPs) or Chu et al. [7] who perform piecemeal 3D recon-
structions that can then be fitted back to an extruded floor-
plan. These approaches use innovative ways to extract 3D
information from images, however, the data extracted from
the image is normally not contained in the floorplan that the
sensor is meant to localise in. Fundamentally, this means as-
sumptions must be made about the floorplan. More explic-
itly, assumptions are made about information not present in
the floorplan (e.g. ceiling and door height). It also does not

fully exploit the floorplan, ignoring the semantic informa-
tion that humans use to localise.

In order to find a robust solution to MCL, inspiration can
be drawn from the way humans localise within a floorplan.
People do not explicitly measure depths to every visible sur-
face and try to match them against different pose estimates
in the floorplan. However, this is exactly how most robotic
scan-matching algorithms operate. Similarly, humans do not
extrude the 2D geometry present in the floorplan into 3D,
as is done in most vision-based approaches. Humans do the
exact opposite. Instead of depth, people use high level se-
mantic cues. Instead of extruding the floorplan up into the
third dimension, humans collapse the 3D world into a 2D
representation. Evidence of this is that many of the floor-
plans used in everyday life are not strictly accurate or in 3D.
Instead, floorplans designed for people opt instead for high
levels of discriminative landmarks on a 2D map.

Therefore, this paper proposes a fundamentally different
approach that is inspired by how humans perform the task.
Instead of discarding valuable semantic information, a Con-
volutional Neural Network (CNN) based encoder-decoder
is used to extract high-level semantic information. All se-
mantic information is then collapsed into 2D, in order to re-
duce the assumptions about the environment. A state-of-the-
art sensing and localisation framework is then introduced,
which uses these labels (along with image geometry and,
optionally, depth) to localise within a semantically labelled
floorplan. It is important to note that this paper explicitly
avoids the 3D case because the information necessary for in-
door navigation is present in the 2D representation. There-
fore, we aim for a fast and efficient localisation approach
that does not require 3D information.

Semantic Detection and Ranging (SeDAR) is an innova-
tive human-inspired framework that combines new semantic
sensing capabilities with a novel semantic Monte-Carlo Lo-
calisation (MCL) approach. As an example, Figure 1 shows
a sample SeDAR scan localised in the floorplan. SeDAR
has the ability to surpass LiDAR-based MCL approaches.
SeDAR also has the ability to perform drift-free local, as
well as global, localisation. Furthermore, experimental re-
sults show that the semantic labels are sufficiently strong
visual cues that depth estimates are no longer needed. Not
only does this vision-only approach perform comparably to
depth-based methods, it is also capable of coping with floor-
plan inaccuracies more gracefully than strictly depth-based
approaches. Furthermore, this approach relies on high-level
semantic cues making it robust to repetitive and texture-less
regions.

This paper presents several important extensions to our
preliminary work [33] presented at the International Con-
ference on Robotics and Automation (ICRA). Firstly, we
extend our method to operate on all SUN3D labels (rather
than wall, door and window) and add the ability to create
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semantic floorplans from a known pose and a SeDAR scan.
Secondly, to assist in reproducing the work, we add a signif-
icant amount of detail to the methodology, including a com-
plete formalisation of MCL and the SeDAR sensing modal-
ity. Thirdly, we create an expansive new dataset for seman-
tic localisation, make it publicly available and add compari-
son against state-of-the-art SLAM algorithms. Fourthly, we
use this extended dataset to explore new properties of the
proposed algorithm including results on a hand-drawn map.
Finally, an evaluation on the TUM RGB-D dataset is per-
formed. This evaluation includes the creation of new se-
mantic floorplans and a comparison against state-of-the-art
SLAM (2D and 3D) and MCL algorithms

This paper describes the process by which SeDAR is
used as a human-inspired sensing and localisation frame-
work. To do this, a generic definition and formalisation of
MCL is presented first. Following this, the semantically salient
elements are extracted from a floorplan and an RGB image
is parsed into a SeDAR scan. The three main novelties of
this paper are then presented. In the first, the semantic in-
formation present in the floorplan is used to define a new
motion model. In the second, the SeDAR scan is used to de-
fine a novel sensor model using a combination of range and
label information. In the third, an additional sensor model is
presented that only depends on label information (an RGB
image). Finally, we present localisation results on several
datasets and modalities.

2 Literature Review

The field of SLAM is predicated on the simple idea that the
pose of a sensor and the reconstructed landmarks are con-
ditioned on each other [11,43]. This idea is not limited to
raw features, but can also be done at the level of objects, as
shown by McCormac et al. [29]. However, if one of them
is known a priori, it is possible to marginalise the other
[36]. In the same way that independent reconstruction al-
gorithms [16,17] can provide more robust representations
of the world, independent localisation algorithms can also
provide more robust and consistent pose estimates. In fact,
recent work by Scheider et al. [40] explore the idea that a
pre-existing SLAM map is an extremely useful asset for fur-
ther mapping sessions. However, in each of these cases the
environment must be navigated a-priori. Instead we propose
to use pre-existing, human-readable (and therefore innacu-
rate) 2D floorplans to localise, requiring no initial mapping
session.

It is clear that an accurate map will yield an accurate lo-
calisation, and scan-matching localisation approaches [15,
10] use this fact successfully. However, independent local-
isation algorithms can also be extremely useful when only
inaccurate maps are available. A clear example of this is the

way humans localise within “theme-park”-like maps that en-
code coarse information using high-level landmarks. While
it might not be possible to localise within these maps with
millimetre accuracy, these maps (and the techniques that use
them) are ideal for solving problems such as loop closure,
global localisation, etc. This paper attempts to use this idea
by combining pre-existing floorplans with image-based se-
mantic segmentation to provide high-accuracy localisation
in 2D.

While it might be desirable to estimate full 3D poses, re-
cent work by Sattler et al. [39] demonstrates that large-scale
3D models are not strictly necessary for accurate vision-
based localisation. Sattler et al. further conclude that 2D-
based localisation approaches using coarse maps can be a
good first step towards highly accurate localisation. This in-
sight is important to this paper, where the aim is to localise
within a 2D floorplan without making assumptions about the
3D structure of the building.

2.1 Monte-Carlo Localisation

MCL can be considered the state-of-the-art for mobile robot
localisation today. Introduced by Dallaert et al. [10], MCL
is a form of Particle Filter (PF) where each particle is a pose
estimate (and the map is known). It uses a motion model
to propagate particles which in turn causes the weights to
become the observation likelihood given the pose [48]. Re-
sampling based on the weights then focuses computation in
areas with more probable pose estimates.

Monte-Carlo Localisation (MCL) was made possible by
the arrival of accurate range-based sensors such as Sound
Navigation And Ranging (SoNAR) and LiDAR. These Range-
Based Monte-Carlo Localisation (RMCL) approaches are
robust, reliable and still considered state-of-the-art in many
robotic applications. As such, they will be discussed first be-
low.

Recent advances in computer vision have made vision-
based approaches possible. These approaches, called Vision-
Based Monte-Carlo Localisation (VMCL), typically use RGB
cameras to avoid expensive sensors and will be discussed
second.

Finally, the recent rise in Deep Learning has made semantic-
based approaches possible. These approaches rely on neural
networks to extract semantic information from the world,
and use it to localise. Semantic sensing modalities, such as
the one presented in this paper, have the ability to revolu-
tionise MCL.

2.1.1 Range-Based Monte-Carlo Localisation (RMCL)

RMCL was first introduced by Fox et al. [15] and Dellaert
et al. [10]. RMCL improved the Kalman Filter based state-
of-the-art by allowing multi-modal distributions to be repre-
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sented. It also solved the computational complexity of grid-
based Markov approaches. More recent approaches, such as
those proposed by Kanai et al. [23], have moved the focus
of RMCL into 3D. Kanai et al. focus on a pre-existing 3D
reconstruction and simulate 3D depth readings at each par-
ticle. In what is probably the closest approach to ours, Bed-
kowski et al. [3] use a 3D LiDAR scanner, extract normals
and use them to segment floors, walls, doors and edges be-
tween labels. They then use an approach based on Iterative
Closest Point (ICP), with added label constraints, to esti-
mate the observation likelihood. While this seems like a very
promising approach, Bedowski et al. use very simple heuris-
tics to classify their points (surface normals, point height,
etc.). This work differs from these approaches by using tech-
niques based on Deep Learning to provide better estimates
of semantic labels and more robust observation likelihoods.

2.1.2 Vision-Based Monte-Carlo Localisation (VMCL)

RMCL-based approaches require expensive LiDAR and/or
SoNAR sensors to operate reliably. Instead, Dellaert et al.
[9] extended their approach to operate using vision-based
sensor models.

VMCL allowed the use of rich visual features and low-
cost sensors, but had limited performance compared to the
more robust LiDAR-based systems. However, with the ris-
ing popularity of RGB-D sensors, more robust vision-based
MCL approaches became possible. Fallon et al. [14] pre-
sented a robust MCL approach that used a low fidelity a pri-
ori map to localise, but required the space to be traversed by
a depth sensor beforehand. Brubaker et al. [5] removed the
need to traverse a map with a sensor, and instead used visual
odometry, pre-existing roadmaps and a joint MCL/closed-
form approach in order to localise a moving car. More re-
cently, visual approaches began to resemble traditional MCL
by localising in an extruded floorplan. Winterhalter et al.
[52] performed MCL using an RGB-D camera, basing the
observation likelihood on the normals of an extruded floor-
plan. Chu et al. [7] removed the RGB-D requirement, by
creating piecemeal reconstructions and basing the observa-
tion likelihood on direct ICP between these reconstructions
and the extruded floorplan. Similar work by Neurbert et al.
[37] also removed the RGB-D requirement, using synthe-
sised depth images from the floorplan and comparing the
gradient information against an RGB image, allowing purely
monocular localisation. However, these approaches all rely
on geometric information to provide an observation likeli-
hood.

MCL-based approaches tend to be robust, but they op-
erate entirely on the geometric information present in the
floorplan. Therefore, they require depth images directly from
sensors and/or local SLAM-based reconstructions. By con-
trast, our approach aims to use non-geometric semantic in-

formation present in the floorplan in order to perform the
localisation.

The use of semantic information for indoor localisation
has been enabled by advances in Deep Learning, such as the
approaches of Badrinarayanan et al. [2], Kendal et al. [24]
and Long et al. [41]. More importantly, approaches like that
of Holder et al. [20] have begun to take these approaches
outdoors. Poschmann et al. [38], and the work presented in
this paper, attempt to use semantic information in an MCL
context. Poschmann et al. follow a very similar approach to
Neurbert et al. but synthesise semantic images (rather than
depth ones) and base the observation likelihood on photo-
metric consistency with a CNN-based segmentation method
(on an RGB image). However, the work presented in this pa-
per does not synthesise semantic images but rather uses the
semantic segmentation of the real observation to augment
traditional LiDAR-like sensors. Furthermore, we make no
assumptions about the 3D environment, and instead rely on
RGB observations and a 2D floorplan.

2.2 Closed-Form Localisation Approaches

While the field of MCL evolved in the robotics community,
non-MCL-based approaches became more popular in the vi-
sion community. Shotton et al. [42] used regression forests
to predict the correspondences of every pixel in the image
to a known 3D scene, they then combined this in a RAN-
dom SAmple and Consensus (RANSAC) approach in order
to solve the camera pose. Melbouci et al. [30] used extruded
floorplans, but performed local bundle adjustments instead
of MCL. Caselitz et al. [6] use a local SLAM system to
create reconstructions that are then aligned using ICP to a
LiDAR-built 3D map. However, instead of MCL they op-
timise the correspondences with a non-linear least squares
approach.

More recent approaches have begun to also look at se-
mantic information. Wang et al. [51] use text detection from
shop fronts as semantic cues to localise in the floorplan of
a shopping centre. Liu et al. [28] who use floorplans as a
source of geometric and semantic information, combined
with vanishing points, to localise monocular cameras. These
vision-based approaches tend to use more of the non-geometric
information present in the floorplan. However, a common
trend is that assumptions must be made about geometry not
present in the floorplan (e.g. ceiling height). The floorplan is
then extruded out into the 3rd dimension to allow approaches
to use the information present in the image.

The proposed approach differs from the approach of
Poschmann et al. [38], Wang et al. [51] and Liu et al. [28] in
two important ways. Firstly, it does not require an extruded
floorplan, opting instead to project the sensory information
down to 2D and localise there. This makes our approach
be able to run in real time. Secondly, it has the capability
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(a) Correct (b) Incorrect

Fig. 2: Laser scan matching, the robot is correctly localised
when the observations match the geometry of the map [47].

of augmenting traditional LiDAR sensors making it a more
generic solution.

We use a CNN-based semantic segmentation (that is un-
derstandable to humans) in order to extract labels that are in-
herently present in human-readable floorplans. This allows
us to take all that information and collapse it into a 3-DoF
problem, making our approach more
tractable than competing 6-DoF approaches while avoiding
additional assumptions.

3 Problem Definition

While there exist many approaches to perform MCL, Range-
Based Monte-Carlo Localisation (RMCL) [52,7] is widely
considered to be the state-of-the-art localisation method for
pre-existing maps. RMCL is a scan-matching algorithm, it
assumes the presence of a sensor that provides range and
bearing tuples across a scanline. The problem then becomes
one of finding the pose of the robot that makes the sensor
observations match the floorplan. Figure 2a shows a case of
the scan being correctly matched for a correctly localised
robot. Conversely, Figure 2b shows an incorrectly matched
scan for an incorrect pose.

State-of-the-art localisation performs this matching in a
Sequential Monte-Carlo (SMC) [10] framework, which can
be broadly summarised as follows. Firstly, there is a predic-
tion stage where particles are propagated using a motion-
model, which is normally odometry from the robot (with
Gaussian noise). Secondly, an update phase where each par-
ticle is weighted according to how accurately the observa-
tions align to the map. Finally, a re-sampling step is per-
formed proportional to the weight of each particle and the
process is then repeated.

More formally, the current pose xt ∈ Xt ⊂ SE(2)
can be estimated as a set of possible pose samples St ={
sit; i = 1..N

}
given odometry measurements Ut =

{
uj ; j = 1..t

}
, sensor measurements Zt =

{
zj ; j = 1..t

}
and a 2D map V. Under the assumption that all odometry
measurements are equally likely, the posterior is calculated
as

Pr
(
sit
∣∣Zt, Ut

)
∝ Pr

(
zt
∣∣si′t , V)Pr

(
si′t
∣∣ut, sit−1)Pr

(
sit−1

∣∣Zt−1, Ut−1
)
,

(1)

which implies that only the most recent odometry and obser-
vations are used [10]. This means that at each iteration the
particles from Pr

(
sit−1

∣∣Zt−1, Ut−1
)

are: propagated using
a motion model Pr

(
si′t
∣∣ut, sit−1), weighted using a sensor

model Pr
(
zt
∣∣si′t , V) and resampled according to the pos-

terior Pr
(
sit
∣∣Zt, Ut

)
. Algorithm 1 describes this process in

more detail.

1: function MCL(St−1,ut,zt)
2: St = S′t = ∅
3: for i = 1→ N do
4: si′t ← MOTION MODEL(ut, s

i
t−1)

5: wi
t← SENSOR UPDATE(zt, s

i′
t , V)

6: S′t ← S′t +
〈
si′t , w

i
t

〉
7: end for
8: for i = 1→ N do
9: st← WEIGHTED SAMPLE(S′t)

10: St ← St + st
11: end for
12: S̄t ← MEAN(St)
13: return S̄t
14: end function

Algorithm 1: Sequential Monte-Carlo Localisation in a
known floorplan.

As stated previously, in an MCL context the prediction
stage is performed using a motion model. The motion model
is defined by the odometry received from the robot (ut).
This odometry can be used to “shift” the particles, assign-
ing a likelihood based on the probability of the final posi-
tion given the measured odometry. More formally, particles
are propagated according to ut with Gaussian noise applied
such that

Pr
(
si′t
∣∣ut, sit−1) ∼ N (ut + sit−1, Υt

)
(2)

where Υt is the covariance of the odometry, and the symbol
∼ implies Pr

(
si′t
∣∣ut, sit−1) is distributed asN

(
ut + sit−1, Υt

)
meaning Gaussian noise is applied to the linear and angular
components of the odometry. This means the motion model
allows MCL-based approaches to reason about the noise char-
acteristics of their odometry. While it would be impossible
to fully account for noise in the odometry (due to wheel slip-
page, changing model parameters, etc.), a well tuned motion
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(a) Original (b) Likelihood Field (c) Semantic

Fig. 3: Original floorplan compared to the likelihood field
and the labelled floorplan.

model allows for a robust estimate. In Section 6.1, the tradi-
tional definition of a motion-model is augmented to include
a “ghost factor” that uses semantic information to influence
how particles move through occupied space.

The sensor model is defined by each range-scanner ob-
servation. The probability of each full range-scan (zt) can
be estimated under the assumption that each measurement
in the scan is independent of each other. That is,

Pr
(
zt
∣∣si′t , V) =

K∏
k=1

Pr
(
zkt
∣∣si′t , V) (3)

is the likelihood of the putative particle si′t , where

zt =
{〈
θkt , r

k
t

〉
; k = 1..K

}
(4)

is the set of range and bearing tuples that make up each scan.
Calculating the likelihood can be done two ways, using a
beam model [49] or a likelihood field model [46].

In the beam model, a raycasting operation is performed.
Starting from the pose of the current particle, a ray is cast
along the bearing angle θkt . The raycasting operation termi-
nates when an occupied cell is reached and the likelihood is
estimated as

Pr
(
zkt
∣∣si′t , V) = e

−
(
rkt − rk∗t

)2
2σ2

o (5)

where rkt is the range obtained from the sensor and rk∗t is
the distance travelled by the ray.

In the likelihood field model, a distance map is used in
order to avoid the expensive raycasting operation. The dis-
tance map is a Lookup Table (LUT) of the same size as
the floorplan, where each cell contains the distance to the
nearest geometry. This map is estimated similar to a Cham-
fer distance [4], where a search is performed in a window
around each cell and the distance to the closest occupied cell
in the floorplan is stored. When queried, this distance is con-
verted into a likelihood using equation 5. Figure 3 shows the
estimated distance map for a floorplan, the creation of which
will be explored further in Section 6.2. This distance map is

only estimated once during initialisation. During runtime,
the endpoint of each measurement can be estimated directly
from the pose, bearing and range. The probability is then
simply related to the distance reported by the LUT.

The raycasting method is (strictly speaking) more closely
related to the sensing modality, as the closest geometry may
not lie along the ray. However, in practice, most robotics
systems use the likelihood field model as it is both faster and
tends to provide better results. This is because the raycasting
operation can report incorrect measurements due to small
pose errors. An example of this is when looking through an
open door, an error of a few centimetres can make the rays
miss the door. This makes the distribution inherently less
smooth.

4 Methodology

The problem with state-of-the-art approaches is that they
only use the range information from the sensor, fundamen-
tally limiting how discriminative each reading can be.

Instead, this paper presents a semantic sensing and local-
isation framework called SeDAR. SeDAR introduces a like-
lihood field model that incorporates semantically salient in-
formation into the traditional range-enabled approach. In an
alternative approach, SeDAR combines the raycasting and
likelihood field approaches in a novel formulation which al-
lows localisation without range measurements. Experimen-
tal evaluation shows that SeDAR outperforms traditional
RMCL when using both semantic and depth measurements.
When using semantic-only measurements, it is shown that
SeDAR can perform comparably to depth-enabled approaches.

5 Semantic Labelling and Sensing

Before using the semantic labels to aid in floorplan localisa-
tion, it is necessary to extract them. To do this, a floorplan
is labelled in order to identify semantically salient elements.
These salient elements are then identified in the camera of
the robot by using a state-of-the-art CNN-based semantic
segmentation algorithm [24].

5.1 Floorplan

RMCL requires a floorplan and/or previously created range-
scan map that is accurate in scale and globally consistent,
this presents a number of challenges. A previously created
range-scan map requires a robust SLAM algorithm such as
GMapping [19] to be run. This is not ideal as it forces the
robot to perform an initial exploration to construct a map
before localisation can be performed. Moreover, the SLAM
algorithm is also sensitive to noise and the resulting map is
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difficult to interpret by humans. Instead of using a metric-
accurate reconstruction, a more flexible and feasible alter-
native is using a human-readable floorplan.

RMCL is not robust to differences between the floor-
plan and what the robot can observe (e.g. inaccuracies, scale
variation and furniture). To overcome these issues, the lo-
calisation is augmented with semantic labels extracted from
an existing floorplan. For the remainder of this section, and
without loss of generality, the labels will be limited to walls,
doors and windows. The reason for this limitation is two-
fold. Firstly, they are salient pieces of information that hu-
mans naturally use to localise and are therefore easy to dis-
cuss. Secondly, they are simple to automatically extract from
a floorplan using image processing. In practice, we use sim-
ple image processing techniques along with manual labeling
to create a labeled floorplan. As can be seen in Figure 3c,
these semantically salient elements have been colour coded
to highlight the different labels. It should be noted, that this
limitation will be lifted in section 7.4, where all the labels in
the CNN-based semantic segmentation algorithm [24] are
used to both construct the floorplan and localise within it.

In order to make a labelled floorplan readable by the
robot, it must first be converted into an occupancy grid. An
occupancy grid is a 2D representation of the world, in which
each cell in the grid has an occupancy probability attached
to it. Any cell that is above a threshold is then considered
as being occupied. Estimating the occupancy of an existing
floorplan is done by taking the normalised greyscale value
from the floorplan image.

The map can then be defined as a set of voxels

V =
{
vm ; m ∈ M

}
(6)

where M is a set of integer 2D positions. Assuming L =

{a, d, w} is the set of possible cell labels (wall, door, win-
dow), each cell is defined as

vm =
〈
vo
m , v

w
m , v

d
m , v

a
m

〉
(7)

where vo
m is the occupancy likelihood and v

`

m , where ` ∈
L, denotes the label likelihood. The semantic floorplans pre-
sented in this work maintain occupancy and label likelihoods,
which can then be either thresholded (as in equation 14) or
used directly.

Having incorporated the semantic labels into the stan-
dard occupancy grid, it is now necessary to use them in sens-
ing.

5.2 SeDAR Sensor

Extracting semantic labels from a robot-mounted sensor is
one of the most important parts of SeDAR. It is theoretically
possible to directly label range-scans from a LiDAR-based

scanner. In fact, there is a wide range of landmark-based
SLAM systems that use range sensors [12]. However, there
are limitations on the amount of information that can be ex-
tracted from a range-scan.

Beyond the structure of the environment, the additional
information contained in floorplans pertains to important ar-
chitectural features (such as doors and windows). These ar-
chitectural features are well defined in terms of their appear-
ance. Therefore, they are ideally suited to semantic segmen-
tation of the image.

In SeDAR, labels are extracted from the RGB image
only. This is by design, as it allows the use of cameras that
cannot sense depth. In the following sections, this sensing
modality will be used in a novel MCL framework that does
not require range-based measurements. However, it should
be noted that SeDAR is capable of using range measure-
ments, should they be available.

If they are used, SeDAR is completely agnostic to the
source of the depth measurements. They can come from a
deep learning-based depth estimation [27] or a dense Struc-
ture from Motion (SfM) system [13]. However, for the pur-
poses of this paper, a simple RGB-D sensor is used. Either
way, the method for parsing an RGB-D image into a SeDAR
scan is the same.

5.2.1 RGB-D to SeDAR

For a low-cost robotic system that uses an RGB-D image as
a proxy for a more expensive LiDAR scanner, a horizontal
depth scanline is typically extracted from the depth image as

zt =
{〈
θkt , r

k
t

〉
; k = 1..K

}
, (8)

where θkt is the angle around the vertical axis and rkt is the
corresponding range. This can be accomplished by looking
exclusively at the depth image.

The angle around the vertical axis, θkt , can be calculated
by

θkt = atan2

(
u− cx
fx

)
(9)

where (u, v), (cx, cy), (fx, fy) are the pixel coordinates, prin-
cipal point and focal length, respectively, of the camera. While
it is possible to estimate a second angle along the vertical
axis, this is unnecessary in the case of floorplan localisation.
More importantly, incorporating this information into the lo-
calisation framework requires assumptions to be made about
the floorplan (e.g. ceiling height). The underlying assump-
tion is that the centre scanline corresponds to casting rays
parallel to the floorplan. This implies the camera must be
parallel to the ground plane. However, cameras mounted at
an arbitrary Special Orthogonal Space (SO(3)) orientation
can still be used assuming that an appropriate scanline is
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(a) RGB Image. (b) Label Image ( `kt ).

(c) Depth Image (rkt ). (d) SeDAR Scan.

Fig. 4: Visualisation: sensor input, semantic segmentation
and the resulting SeDAR scan.

used. In practice, small errors in the orientation of the cam-
era are negligible.

The range measurement rkt can be calculated as

rkt =

√(
dkt (u− cx)

fx

)2

+

(
dkt (v − cy)

fy

)2

+
(
dkt
)2

(10)

where dkt is the current depth measurement at pixel k. At this
point, a traditional range-scan can be emulated. Notice that
in a standard range-scan, all the visible information present
in the RGB image is being discarded. On the other hand,
a SeDAR-scan consists of a set of bearing, range and label
tuples,

zt =
{〈
θkt , r

k
t , `

k
t

〉
; k = 1..K

}
, (11)

where `kt is the semantic label. While the scanline still dis-
cards a large amount of information in the RGB image, it
is important to note that the methods used to estimate the
label have already used the context the image provides. It
would also possible to look at wider scanlines and provide
likelihoods for each label (rather than a single label). In our
experiments, this has been unnecessary.

In order to estimate the labels, a CNN-based encoder-
decoder network is used, trained on the SUN3D [53] dataset,
that can reliably detect doors, walls, floors, ceilings, furni-
ture and windows. This state-of-the-art semantic segmenta-
tion runs at frame-rate on an NVIDIA Titan Xp, which al-
lows images to be parsed into a SeDAR-scan with negligible
latency. The label `kt is then simply the label at pixel k.

It is important to note that the CNN has not been fine-
tuned to any specific task. In fact, this is an important lim-
itation of the approach presented in this paper. When the
semantic segmentation fails, the observations become unre-
liable. This means that correct particles can given low scores
and removed from the filter. However, in practice, the CNN
appears to generalise well to most indoor environments.

Figure 4 shows the input images and the resulting SeDAR
scan. Figure 4a shows the RGB image from which the label
image in Figure 4b is extracted. Figure 4c shows the depth
image. In all of these, the scanline shown in the middle of the
image denotes specific pixel locations where `kt and rkt are
extracted from the label and depth image, respectively. Fi-
nally, Figure 4d shows the resulting SeDAR scan, where the
scanline can be seen localised within a floorplan. A localised
range-less SeDAR scanline would look similar to this, as ev-
ery (

〈
θkt , `

k
t

〉
) tuple would perform ray-tracing until it hit

an obstacle. Without ray-tracing, the scanline would simply
have no depth. Now that the semantic labels are added into
the map and the sensor, they can be used in a novel MCL
algorithm.

6 Semantic Monte-Carlo Localisation

It has been shown that there is a large amount of easily-
attainable semantic information present in both the floorplan
and the image. This information has been largely ignored in
the MCL literature in favour of range-based approaches.

In this Section, this semantic information is combined
into a novel semantic MCL approach. In the motion model,
the semantic information is used to inform collision mod-
els. In the sensor model two approaches are presented. The
first introduces a likelihood field model that incorporates se-
mantically salient information into the traditional approach.
The second approach combines the raycasting and likeli-
hood field approaches into a method which allows locali-
sation without range measurements.

6.1 Motion Model

Equation 2 formalised the motion model as Pr
(
si′t
∣∣ut, sit−1).

However, it is well understood in the literature that the actual
distribution being approximated is Pr

(
si′t
∣∣ut, sit−1, V). This

encodes the idea that certain motions are more or less likely
depending on the map (e.g. through walls).

Under the assumption that the motion of the robot is
small, it can be shown that

Pr
(
si′t
∣∣ut, sit−1, V) = κPr

(
si′t
∣∣ut, sit−1)Pr

(
si′t
∣∣V)

(12)
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(see e.g. [47]) where κ is a normalising factor and V is the
set containing every cell in the map. This allows the two
likelihoods to be treated independently.

In an occupancy map, the motion Pr
(
si′t
∣∣ut, sit−1) is

defined in the same way as equation 2. The prior Pr
(
si′t
∣∣V)

is simply the occupancy likelihood of the cell that contains
si′t , that is

Pr
(
si′t
∣∣V) = 1− Pr

(
vo

si′t

)
(13)

which is an elegant solution in the case where the “floor-
plan” was previously built by the robot.

However, this approach becomes problematic when us-
ing human-made floorplans. Human-made floorplans typi-
cally have binary edges (when they are made on a computer)
or edges with image artefacts (when they are scanned into a
computer). This does not reflect what the robot can observe
and can cause issues with localisation. Therefore, most ap-
proaches tend to assume a binary interpretation of the occu-
pancy. This is done by setting the probability to

Pr

(
vo

si′t

)
=

1 if vo

si′t
≥ τo

0 otherwise
(14)

where τo is a user defined threshold. This thresholding op-
eration is necessary when the floorplan is not created by the
robot (e.g. using scan-matching). While this makes depth-
based methods perform reliably, it is a crude estimate of re-
ality. For instance, most humans would not even notice if
a door is a few centimetres away from where it should be.
Issues like this present real problems when particles propa-
gate though doors, as it is possible that the filter will discard
particles as they collide with the edge of the door frame.

Instead, the motion model presented here uses semantic
information to augment this with a ghost factor that allows
particles more leeway in these scenarios. Therefore the pro-
posed prior is

Pr
(
si′t
∣∣V) =

(
1− Pr

(
vo

si′t

))
e−εG δd (15)

where δd is the distance to the nearest door. While other
labels such as windows can be used, in the case of a ground-
based robot doors are sufficient. The distance, δd, can be
efficiently estimated using a lookup table as defined in Sec-
tion 6.2.

More importantly, εG is a user defined factor that deter-
mines how harshly this penalty is applied. Setting εG = 0

allows particles to navigate through walls with no penalty,
while very high values approximate equation 14. The ef-
fects of εG will be explored in Section 7.1.1. This motion
model is more probabilistically accurate than the occupancy
model used in most RMCL approaches, and has the added

advantage of leveraging the high-level semantic information
present in the map.

Having presented a semantically enabled motion model,
it is now necessary to give the sensor model the same treat-
ment.

6.2 Sensor Model

The naı̈ve way of incorporating semantic measurements into
the sensor model would be to use the beam model. In this
modality, the raycasting operation would provide not only
the distance travelled by the ray, but also the label of the
cell the ray hit. If the label of the cell and the observation
match, the likelihood of that particle being correct is in-
creased. However, this approach suffers from the same lim-
itations as the traditional beam model: it has a distinct lack
of smoothness. On the other hand, the likelihood field model
is significantly smoother, as it provides a gradient between
each of the cells. By contrast, the approach presented here
uses a joint method that can use likelihood fields to incorpo-
rate semantic information in the presence of semantic labels.
More importantly, it can also use raycasting within a likeli-
hood field in order to operate without range measurements.

As described in Section 3, the likelihood field model cal-
culates a distance map. For each cell vm , the distance to the
nearest occupied cell

δo (m) = min
m′
‖m − m′‖ , vo

m′ > τo (16)

is calculated and stored. When a measurement zkt =
〈
θkt , r

k
t

〉
is received, the endpoint is estimated and used as an index
to the distance map. Assuming a Gaussian error distribution,
the weight of each particle si′t can then be estimated as

PrRNG

(
zkt
∣∣si′t , V) = e

−δ2o
2σ2

o (17)

where δo is the value obtained from the distance map and σo

is dictated by the noise characteristics of the sensor. How-
ever, this model has three main limitations. Firstly, it makes
no use of the semantic information present in the map. Sec-
ondly, the parameter σo must be estimated by the user and
assumes all measurements within a scan have the same noise
parameters. Thirdly, it is incapable of operating in the ab-
sence of range measurements.

Instead, as mentioned in Section 5.1, this work uses the
semantic labels present in the map to create multiple like-
lihood fields. For each label present in the floorplan, a dis-
tance map is calculated. This distance map stores the short-
est distance to a cell with the same label.

Formally, for each map cell vm the distance to the near-
est cell of each label is estimated as

δ ` (m) = min
m′
‖m − m′‖ , v

`

m′ > τo (18)
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(a) Semantic Floorplan (b) Wall Likelihood Field

(c) Door Likelihood Field (d) Window Likelihood
Field

Fig. 5: Original floorplan compared to the likelihood field
for each label.

where δ ` ∈ {δa, δd, δw} are distances to the nearest wall,
door and window, respectively. Figure 5 shows the distance
maps for each label. For clarity, the argument (m), is omit-
ted for the remainder of the paper.

This approach overcomes the three limitations of the state-
of-the-art. Firstly, the use of semantic information [7,10,23,
28,52]. Secondly, adapting the sensor noise parameters to
the map [10,23,52]. Thirdly, operation in the absence of
range measurements [3,10,23,52]. These points will now be
discussed.

6.2.1 Semantic Information

Most localisation approaches [7,10,23,28,52] do not use
any semantic information present in the map. While approaches
such as that of Bedkowski et al. [3] and Poschmann [38]
have begun to use this information, they either rely on geo-
metric primitives for their semantic segmentation approach
([3]) or rely on synthetic 3D reconstructions of the map ([38]).
Contrary to this, SeDAR uses the semantic information present
in the map. When an observation
zkt =

〈
θkt , r

k
t , `

k
t

〉
is received, the bearing θkt and range rkt

information are used to estimate the endpoint of the scan.
The label `kt is then used to decide which semantic likeli-
hood field to use. Using the endpoint from the previous step,
the label-likelihood can be estimated similarly to equation

17,

PrLBL

(
zkt
∣∣si′t , V) = e

−δ2`
2σ2

`

(19)

where δ ` is the distance to the nearest cell of the relevant
label and σ ` is the standard deviation (which will be de-
fined using the label prior). The probability of an observa-
tion given the map and pose can then be estimated as

Pr
(
zkt
∣∣si′t , V) = εoPrRNG

(
zkt
∣∣si′t , V)+ε `PrLBL

(
zkt
∣∣si′t , V)

(20)

where εo and ε ` are user defined weights. When ε ` = 0 the
likelihood is the same as standard RMCL. On the other hand,
when εo = 0 the approach uses only the semantic informa-
tion present in the floorplan. These weights are explored and
defined in Section 7.1.1. Unlike range scanners, σ ` cannot
be related to the physical properties of the sensor. Instead,
this standard deviation is estimated directly from the prior
of each label on the map. Defining σ ` this way has the ben-
efit of not requiring tuning. However, there is a much more
important effect that must be discussed.

6.2.2 Semantically Adaptive Standard Deviation

Most approaches [10,23,52] rely on hand-tuned parameters
for the standard deviation of the observation likelihood σo.
However, when a human reads a floorplan, unique landmarks
are the most discriminative features. The more unique a land-
mark, the easier it is to localise using it (because there are
not many areas in the map that contain it). It then follows
that the more rare a landmark, the more discriminative it is
for the purpose of localisation. Indeed, it is easier for a per-
son to localise in a floorplan by the configuration of doors
and windows than it is by the configuration of walls. This
translates into the simple insight: lower priors are more dis-
criminative. Therefore, σ ` is tied to the prior of each label
not only because it is one less parameter to tune, but because
it implicitly makes observing rare landmarks more benefi-
cial than common landmarks.

Relating σ ` to the label prior Pr (`) controls how smoothly
the distribution decays w.r.t. distance from the cell. We make
the likelihoods more spatially lenient on sparser labels: the
smaller Pr (`) is, the smoother the decay. In essence, this
allows more discriminative landmarks to contribute towards
the localisation from further away.

6.2.3 Range-less Semantic Scan-Matching

The final, and most important, strength of this approach is
the ability to perform all of the previously described method-
ology in the complete absence of range measurements. Most
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approaches [3,10,23,52] are incapable of operating without
the use of range measurements. Those that are capable of
range-less performance [7,28], rely on strong assumptions
about the geometry ([28]) and/or estimate a proxy for depth
measurements ([7]). Both these cases have important limita-
tions that are avoided by our semantic scan-matching.

The approach has so far been formalised on the assump-
tion of either

〈
θkt , r

k
t

〉
tuples (existing approaches) or〈

θkt , r
k
t , `

k
t

〉
tuples (SeDAR-based approach). However, our

approach is capable of operating directly on
〈
θkt , `

k
t

〉
tuples.

In other words, depth measurements are explicitly not added
or used.

Incorporating range-less measurements is simple. The
beam and likelihood field models are combined in a novel
approach that avoids the degeneracies that would happen in
traditional RMCL approaches. In equation 5, the likelihood
of a ray is estimated using the difference between the range
(rkt ) obtained from the sensor and the range (rk∗t ) obtained
from the raycasting operation. Unfortunately, in the absence
of a range-based measurement (rkt ) this is impossible. Using
the standard distance map is also impossible, since the end-
point of the ray cannot be estimated. Using raycasting in the
distance map also fails similarly: the raycasting terminates
on an occupied cell, implying δo = 0 for every ray cast.

On the other hand, the semantic likelihood fields can still
be used as δ ` will still have a meaningful and discriminative
value. This operation is called semantic raycasting. For ev-
ery zkt =

〈
θkt , `

k
t

〉
, the raycasting is performed as described

in Section 3. However, instead of comparing rkt and rk∗t or
using δo, the label `kt is used to decide what likelihood field
to use. The cost can then be estimated as

Pr
(
zkt
∣∣si′t , V) = PrLBL

(
zkt
∣∣si′t , V) (21)

where PrLBL

(
zkt
∣∣si′t , V) is defined in equation 19. This method

is essentially a combination of the beam-model and the like-
lihood field model. More explicitly, a ray is cast along the
bearing of every observation zkt =

〈
θkt , `

k
t

〉
tuple. Once the

raycasting hits an occupied cell, we use the occupied cell’s
location to perform a lookup into the likelihood field corre-
sponding to the observation’s label. This gives us a distance
to the nearest cell with the same label. If the sensor is cor-
rectly localised, every distance should be zero. If it isn’t, the
likelihood fields provide a smooth cost-function towards the
correct pose.

It would be possible to assign binary values (i.e. label
matches or not) to equation 21. This approach would make
the observation likelihood directly proportional to the se-
ries of labels along the scanline (i.e. how closely the bear-
ing/label tuples match what is observable from each parti-
cle’s pose). However, this would be a naı̈ve solution that
provides no smooth gradient to the correct solution. Instead,
this approach uses the angular distribution of labels, com-

(a) Ground Truth (b) Overlay to Floorplan

Fig. 6: Sample Trajectory used for evaluation.

bined with distances from the likelihood field, to provide a
smooth cost-function that converges reliably.

The previous Sections have presented a series of meth-
ods to localise a ground-based robot on a pre-existing floor-
plan. In the following Section, it will be shown that these
methods are capable of outperforming standard RMCL ap-
proaches when using range-measurements. Moreover, it will
be shown that they provide comparable performance when
operating exclusively on bearing/label tuples from RGB im-
ages without range information.

7 Evaluation

This section will evaluate the strengths of the approach. As
an initial step, an evaluation and parameter exploration will
be performed on a dataset consisting of a robot driving around
a building. As a second step, our approach will be bench-
marked on the popular TUM-RGBD dataset [45].

7.1 Human-Readable Floorplans

Evaluation on our the first dataset, which will be relased
along with the paper, will focus on three main experiments.
Firstly, a thorough evaluation of the performance of the sys-
tem for a single trajectory is performed along with a param-
eter exploration of SeDAR. This is done in order to give
an insight into the intrinsic characteristics of SeDAR men-
tioned in section 4. Secondly, a repeatability experiment is
undertaken, where the performance of multiple similar tra-
jectories is evaluated. This is done in order to demonstrate
the robustness and performance of SeDAR. Finally, an eval-
uation on a more challenging hand-drawn map is performed.
This experiment allows us to demonstrate that SeDAR can
localise in geometrically inaccurate maps.

In order to evaluate the approach, a dataset will ideally
have several important characteristics. The dataset should
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consist of a robot navigating within a human-readable floor-
plan. Human-readability is required to ensure semantic in-
formation is present. The trajectory should be captured with
an RGB-D camera. This is in order to easily extract all the
possible tuple combinations (range, bearing and label). Fi-
nally, the trajectory of the robot should be on the same plane
as the floorplan.

To satisfy these constraints, we created a new dataset
to evaluate our approach on. The floorplan in Figure 3a is
used because it is large enough for meaningful tests and has
human-readable floorplans available. The dataset was col-
lected using the popular TurtleBot platform [18], as it has
a front-facing Kinect that can be used for emulating both
LiDAR and SeDAR. The dataset, will be released along with
the publication of this paper.

Normally, the ground-truth trajectory for floorplan lo-
calisation is either manually estimated (as in [52]) or esti-
mated using external Motion Capture (MoCap) systems (as
in [45]). However, both of these approaches are limited in
scope. Manual ground-truth estimation is time-consuming
and impractical. MoCap is expensive and difficult to cal-
ibrate, especially over the large public areas required for
floorplan localisation. In order to overcome these limita-
tions, a well established RGB-D SLAM system [26] is used
to provide an initial estimate. This estimate is then manually
refined, using both a computationally expensive global op-
timisation and judicious manual intervention. While it does
not localise within a floorplan, it does provide an accurate
reconstruction and trajectory for the robot, which can then
be registered with the floorplan. Figure 6a shows a sample
trajectory and map estimated by [26], while Figure 6b shows
them overlaid on the floorplan.

To quantitatively evaluate SeDAR against ground truth,
the Absolute Trajectory Error (ATE) metric presented by
Sturm et al. [45] is used. ATE is estimated by first regis-
tering the two trajectories using the closed form solution of
Horn [21], who find a rigid transformation GT X that regis-
ters the trajectory Xt to the ground truth Gt. At every time
step t, the ATE can then be estimated as

eg = g−1t
GT X xt (22)

where gt ∈ Gt and xt ∈ Xt are the current time-aligned
poses of the ground truth and estimated trajectory, respec-
tively. The Root Mean Square Error (RMSE), mean and me-
dian values of this error metric are reported, as these are
indicative of performance over coarse room-level initialisa-
tion. In order to visualise the global localisation process, the
error of each successive pose is shown (error as it varies with
time). These metrics are sufficient to objectively demon-
strate the systems ability to globally localise in a floorplan,
while also being able to measure room-level initialisation
performance.

The work presented here is compared against the ex-
tremely popular MCL approach present in the Robot Op-
erating System (ROS), called Adaptive Monte Carlo Lo-
calisation (AMCL) [10]. AMCL is the standard MCL ap-
proach used in the robotics community. Any improvements
over this approach are therefore extremely valuable. Further-
more, Adaptive Monte Carlo Localisation (AMCL) [10] is
considered to be the state-of-the-art and is representative of
the expected performance of the RMCL approaches detailed
in Section 2.1, such as Kanai et al. [23], Bedkowski et al.
[3], Winterhalter et al. [52] and Chu et al. [7]. To demon-
strate that our algorithm can outperform SLAM, we also
compare against 2D scan-matching [19], monocular [34] and
RGB-D [35] approaches in the coarse (room-level) scenario.

In all experiments, any common parameters (such as σo)
are kept the same. The only parameters varied are ε ` , εo and
εG.

7.1.1 Detailed Analysis of a Single Trajectory

In order to establish a baseline of performance, and to ex-
plore the characteristics of SeDAR discussed in this paper,
we first present a thorough evaluation of a single trajectory
on a clean floorplan. This trajectory, seen in figure 6, covers
multiple rooms and corridors and is therefore a representa-
tive sample to evaluate on.

As a first experiment, a room-level initialisation is given
to both AMCL and the proposed approach. This means that
the uncertainty of the pose estimate, roughly corresponds to
telling the robot what room in the floorplan it is in. More ex-
plicitly, the standard deviations on the pose estimate are of
2.0m in (x, y) and 2.0rad in θ. The systems then ran with a
maximum of 1000 particles (minimum 250) placed around
the covariance ellipse. The error is recorded as each new
image in the dataset is added. For the SLAM approaches,
it is not necessary to define an initialisation. However, it
was necessary to increase the number of features on ORB-
SLAM2 so that the tracking could be perfomed successfully.
Apart from this, all SLAM algorithms ran with their default
parameters.

Figure 7 compares four distinct scenarios against AMCL.
Of these four scenarios, two use the range measurements
from the Microsoft Kinect (blue lines) and two use only the
RGB image (red lines).

The first range-enabled scenario uses the range measure-
ments to estimate the endpoint of the measurement (and
therefore the index in the distance map) and sets the range
and label weights to (εo = 0.0 and ε ` = 1.0), respectively.
This means that while the range information is used to in-
form the lookup in the distance map, the costs are only com-
puted using the labels. The second range-enabled scenario
performs a weighted combination (εo = 0.25, ε ` = 0.75) of
both the semantic and traditional approaches. It is interesting
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Fig. 7: Semantic Floorplan Localisation, room-level initiali-
sation.

to note that this performs slightly worse than the label-only
approach, likely because the geometric cues in a hallway en-
vironment are relatively weak compared to semantic cues.

In terms of the ray-based version of this approach, equa-
tion 21 is used. This means there are no parameters to set.
Instead, a mild ghost factor (εG = 3.0) and a harsh one
(εG = 7.0) are shown.

Since coarse room-level initialisation is an easier prob-
lem than global initialisation, the advantages of the range-
enabled version of this approach are harder to see compared
to state-of-the-art. However, it is important to note how closely
the ray-based version of the approach performs to the rest of
the scenarios despite using no depth data. Apart from a cou-
ple of peaks, the ray-based method essentially performs at
the same level as AMCL. This becomes even more notice-
able in Table 1, where it is clear that range-based semantic
MCL (using only the labels) outperforms state of the art,
while the ray-based εG = 3.0 version lags closely behind.
The reason εG = 3.0 performs better than εG = 7.0 is be-
cause small errors in the pose can cause the robot to “clip” a
wall as it goes through the door. Since εG = 3.0 is more le-
nient on these scenarios, it is able to outperform the harsher
ghost factors.

Table 1 also shows comparison against three SLAM al-
gorithms. It is clear that monocular SLAM does not perform
well in this scenario. This is because there are large areas
of plain textureless regions where tracking is lost. RGB-D
SLAM performs better in this scenario, as it can rely on
depth cues to maintain tracking. Finally, 2D SLAM also
performs well (although slightly worse than RGB-D). How-
ever, in all cases, SeDAR outperforms the performance of
SLAM algorithms. Not only does the range-enabled SeDAR
significantly outperform SLAM, but the ray-based approach
also manages to outperform both 2D and 3D depth-enabled
SLAM. These results present a clear indication that SeDAR-
based localisation approaches are capable of outperforming
SLAM methods.

Average Trajectory Error (m)
Approach RMSE Mean Median Std. Dev. Min Max

AMCL [10] 0.24 0.21 0.20 0.11 0.04 0.95
GMapping [19] 0.71 0.63 0.57 0.31 0.32 1.43
ORB SLAM2 (Mono) [34] 8.67 7.90 6.48 3.58 2.48 15.47
ORB SLAM2 (RGB-D) [35] 0.43 0.40 0.38 0.16 0.09 0.73
Range (Label Only) 0.19 0.16 0.14 0.10 0.02 0.55
Range (Combined) 0.22 0.19 0.17 0.11 0.04 0.62
Rays (εG = 3.0) 0.40 0.34 0.27 0.22 0.07 1.51
Rays (εG = 7.0) 0.58 0.45 0.38 0.37 0.02 2.23

Table 1: Room-Level Initialisation

In order to give further context to these results, the re-
sults of state-of-the-art approaches by Winterhalter et al.
[52] and Chu et al. [7] are mentioned here. These approaches
are chosen as they present the most comparable methods in
the literature. Although direct comparison is not possible
(due to differences in the approach, and the availability of
code and datasets) an effort has been made to present mean-
ingful metrics. Winterhalter et al. [52] report (in their paper)
an error of 0.2 − 0.5m. Winterhalter et al. are estimating
a 6-DoF pose, which might make this seem like an unfair
comparison. However, they do this on a much smaller room-
sized dataset meaning the error is relatively large. While
they perform experiments on larger floorplan-level datasets,
the errors reported are much noisier ranging between 0.2 −
2m on the coarse initialisation and 0.2 − 8m on the global
initialisation. Chu et al. [7] report (in their paper) a mean er-
ror of 0.53m on the TUMindoor dataset [22], which is sim-
ilar to the one presented here. These results present further
evidence that the SeDAR-based localisation approach can
outperform the state-of-the-art localisation approaches.

In terms of qualitative evaluation, both the convergence
behaviour and the estimated path of MCL-based approaches
is shown.

The convergence behaviour can be seen in Figure 8. Here,
Figure 8a shows how the filter is initialised to roughly corre-
spond to the room the robot is in. As the robot starts moving,
it can be seen that AMCL (8b), the range-based version of
SeDAR (8c) and the ray-based version (8d) converge. Notice
that while the ray-based approach has a predictably larger
variance on the particles, the filter has successfully localised.
This can be seen from the fact that the Kinect point cloud is
properly aligned with the floorplan. It is important to note
that although the Kinect point cloud is present for visualisa-
tion in the ray-based method, the depth is not used.

The estimated paths can be seen in Figure 9, where the
red path is the estimated path and green is the ground truth.
Figure 9a shows the state-of-the-art, which struggles to con-
verge at the beginning of the sequence (marked by a blue cir-
cle). It can be seen that the range-based approach in Figure
9b (combined label and range), converges more quickly and
maintains a similar performance to AMCL. It only slightly
deviates from the path at the end of the ambiguous corri-
dor on the left, which also happens to AMCL. It can also be
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(a) Room-Level Initialisation (b) AMCL [10]

(c) SeDAR (Range-Based) (d) SeDAR (Ray-Based)

Fig. 8: Qualitative view of Localisation in different modali-
ties.

(a) AMCL [10]

(b) SeDAR (Range-Based) Path (c) SeDAR (Ray-Based) Path

Fig. 9: Estimated path from coarse room-level initialisa-
tions.

seen that the ray-based approach performs very well. While
it takes longer to converge, as can be seen by the estimated
trajectory in Figure 9c, it corrects itself and only deviates
from the path in areas of large uncertainty (like long corri-
dors).

These experiments show that SeDAR-based MCL is ca-
pable of operating when initialised at the coarse room-level.
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AMCL

Fig. 10: Semantic Floorplan Localisation, global initialisa-
tion.

It is now important to discuss how discriminative SeDAR is
when there is no initial pose estimate provided to the system.

Having evaluated against SLAM-based approaches in a
local initialisation scenario, the focus will now be on the
ability of SeDAR-based MCL to perform global localisa-
tion. In these experiments, the system is given no indication
of where in the map the robot is. Instead, a maximum of
50, 000 particles (minimum 15, 000) are placed over the en-
tire floorplan. Figure 10 shows the same four scenarios as
in the previous section. For the range-based scenarios (blue
lines) it can be seen that using only the label information
(εo = 0.0, ε ` = 1.00) consistently outperforms the state of
the art, both in terms of how quickly the values converge to a
final result and the actual error on convergence. This shows
that SeDAR used in an MCL context is more discriminative
than the standard occupancy maps in RMCL. The second
range-based measurement (εo = 0.25, ε ` = 0.75) signif-
icantly outperforms all other approaches. In this case, the
strong geometric cues present in the dataset are helping the
particle filter converge faster (therefore skewing the result in
favour of the combined method).

In terms of the ray-based version of the approach (red
lines), two scenarios are compared. A mild ghost factor (εG =

3.0) and a harsh one (εG = 7.0). These versions of the ap-
proach both provide comparable performance to the state-
of-the-art. It is important to emphasise that this approach
uses absolutely no range and/or depth measurements. As
such, comparing against depth-based systems is inherently
unfair. Still, SeDAR ray-based approaches compare favourably
to AMCL. In terms of convergence, the mild ghost factor
εG = 3.0 gets to within several meters accuracy even quicker
than AMCL, at which point the convergence rate slows down
and is overtaken by AMCL. The steady state performance
is also comparable. While the performance temporarily de-
grades, it manages to recover and keep a steady error rate
throughout the whole run. On the other hand, the harsher
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Average Trajectory Error (m)
Approach RMSE Mean Median Std. Dev. Min Max

AMCL [10] 7.31 2.26 0.20 6.95 0.028 35.45
Range (Label Only) 6.71 2.59 1.31 6.20 1.15 38.60
Range (Combined) 4.78 1.69 0.69 4.47 0.43 31.19
Rays (εG = 3.0) 7.74 4.36 2.46 6.40 1.07 27.55
Rays (εG = 7.0) 8.09 4.49 2.22 6.73 1.61 28.47

Table 2: Global Initialisation

ghost factor εG = 7.0 takes longer to converge, but remains
steady and eventually outperforms the milder ghost factor.
Table 2 shows the RMSE, error along with other statistics.
In this case, the combined range and label method performs
best.

As before, qualitative analysis can be provided by look-
ing at the convergence behaviour and the estimated paths.

In order to visualise the convergence behaviour, Figure
11a shows a series of time steps during the initialisation of
the filters. On the first image, the particles have been spread
over the ground floor of a (49m × 49m) office area. In this
dataset, the robot is looking directly at a door during the be-
ginning of the sequence. Therefore, in Figure 11b the filter
converges with particles looking at doors that are a simi-
lar distance away. The robot then proceeds to move through
the doors. Going through the door means the filter converges
significantly faster as it implicitly uses the ghost factor in the
motion model. It also gives the robot a more unique distribu-
tion of doors (on a corner), which makes the filter converge
quickly. This is shown in Figure 11c.

The estimated paths can be seen in Figure 12, where the
blue circle denotes the point of convergence. It can be seen
that AMCL takes longer to converge (further away from the
corner room) than the range-based approach. More impor-
tantly, it can be seen that the range-based approach suffers
no noticeable degradation in the estimated trajectory over
the room-level initialisation. On the other hand, the perfor-
mance of the ray-based method degrades more noticeably.
This is because the filter converges in a long corridor with
ambiguous label distributions (doors left and right are simi-
larly spaced). However, once the robot turns around the sys-
tem recovers and performs comparably to the range-based
approach.

As mentioned previously, entering or exiting rooms helps
the filter converge because it can use the ghost factor in the
motion model. The following experiments, evaluate how the
ghost factor affects the performance of the approach.

The effect of the ghost factor can be measured in a sim-
ilar way to the overall filter performance. Results show that
the ghost factor provides more discriminative information
when it is not defined in a binary fashion. This is shown
in the label-only scenario for both the range-based and ray-
based approaches, in both the global and coarse room-level
initialisation. Figure 13 shows the effect of varying the ghost

Average Trajectory Error (RMSE)
Ghost Factor (εG) Range (Labels) Range (Weighted) Rays

0.0 10.88 10.13 11.71
3.0 6.71 4.78 7.74
5.0 6.97 6.30 9.54
7.0 7.19 6.10 8.09

Table 3: Global ATE for Different Ghost Factors

Average Trajectory Error (RMSE)
Ghost Factor (εG) Range (Labels) Range (Weighted) Rays

0.0 0.25 0.27 1.20
3.0 0.24 0.25 0.40
5.0 0.22 0.24 0.70
7.0 0.19 0.22 0.58

Table 4: Room-Level ATE for Different Ghost Factors

factor during global initialisation. It can be seen that not
penalising particles going through walls, (εG = 0), is not
a good choice. This makes sense, as there is very little to
be gained from allowing particles to traverse occupied cells
without any consequence. It follows that the ghost factor
should be set as high as possible. However, setting the ghost
factor to a large value (εG = 7.0), which corresponds to re-
ducing the probability by 95% at 0.43m, does not provide
the best results.

While it might seem intuitive to assume that a higher
εG will always be better, this is not the case. High values
of the ghost factor correspond to a binary interpretation of
occupancy which makes MCL systems unstable in the pres-
ence of discrepancies between the map and the environment.
This happens because otherwise correct particles can clip
door edges and be completely eliminated from the system.
A harsh ghost factor also exacerbates problems with a lim-
ited number of particles. In fact, εG = 3.0, corresponding to
a 95% reduction at 1.0m, consistently showed the best re-
sults in all of the global initialisation experiments, as can be
seen in Table 3.

In terms of room-level initialisation, having an aggres-
sive ghost factor is more in line with the initial intuition.
Table 4 shows that for both of the range-based scenarios,
εG = 7.0 provides the best results. This is because coarse
room-level initialisation in the presence of range-based mea-
surements is a much easier problem to solve. As such, the
problem of particles “clipping” edges of doors is less of an
issue.

On the other hand, the ray-based scenario still prefers a
milder ghost factor of εG = 3.0. In this scenario, inaccura-
cies in both the map and the sensing modalities allow for
otherwise correct particles to be heavily penalised by an ag-
gressive ghost factor. Both of these results are reflected in
Figures 14a and 14b.
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(a) Global Initialisation (b) Looking at Doors (c) Converged

Fig. 11: Qualitative view of Localisation in different modalities.

(a) AMCL Path (b) SeDAR (Range-Based) Path (c) SeDAR (Ray-Based) Path

Fig. 12: Estimated path from global initialisations.
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Fig. 13: Different ghost factors (εG), global initialisation.

These results allow a single conclusion. The ghost factor
must be tuned to the expected amount of noise in the map
and sensing modality. Aggressive ghost factors can be used
in cases where the pre-existing map is accurate and densely
sampled, such as the case where the map was collected by
the same sensor being used to localise (i.e. SLAM). On the
other hand, in the case where there are expected differences
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Fig. 14: Different ghost factors (εG), coarse room-level ini-
tialisation.

between what the robot is able to observe (e.g. furniture,
scale errors, etc.), it is more beneficial to provide a milder
ghost factor in order to be more lenient on small pose errors.
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Fig. 15: Same trajectory repeated five times.

7.2 Cross-Trajectory Performance

In the previous section, we used a single trajectory to show-
case the performance characteristics of SeDAR. It allowed
us to gain important insights into the way it operates. In this
section, we will aim to demonstrate that the performance is
not limited to a single trajectory.

We do this by evaluating our performance on five differ-
ent trajectories. In a global initialisation scenario, the stochas-
tic nature of MCL approaches creates large variability in the
ATE during initialisation. Therefore, using the room-level
initialisation allows us to more meaningfully assess the per-
formance on multiple trajectories.

The trajectories, shown in figure 15, are captured on a
similar route to allow for direct comparison. However, they
are captured at very different times, meaning they contain
large variability in the visual domain. These trajectories in-
clude static and dynamic obstacles, people, changing geom-
etry and other difficulties. They therefore present a challenge
for state-of-the-art MCL and SLAM approaches, which nor-
mally assume a static map.

In table 5 we show the localisation performance of sev-
eral methods accumulated over all five trajectories. The av-
erage value for each metric is presented, with its standard de-
viation shown in parenthesis. It can be seen that range-based
SeDAR outperforms all competing approaches by a signif-
icant margin. More importantly, the ray-based version of
SeDAR also significantly outperforms AMCL and monoc-
ular SLAM while performing comparably to RGB-D and
scan-matching SLAM. Fundamentally, this means that there
exist scenarios where geometric measurements are inferior
to semantic understanding without depth.

We also compare against a several learning-based ap-
proach (PoseNet [25] and PoseLSTM [50]). To enable us
to perform a meaningful comparison, we evaluate the ATE

of PoseNet and PoseLSTM trained on the original trajectory
consisting of 1128 images with ground truth pose. The algo-
rithms are then tested on each of the 5 unseen pose trajecto-
ries. The results shown in table 5 demonstrate that SeDAR
(Range and Ray) can outperform PoseNet and PoseLSTM.
This can be explained by the fact that PoseNet and PoseL-
STM maintain a single estimate of the pose, while SeDAR-
based approaches can maintain multi-nomial distributions.
However, it would be interesting to explore hybrid approaches
where PoseNet-like localisation approaches can be used to
initialise an MCL-like approach.

As seen in figure 16, AMCL does not perform well in
this scenario because it struggles to initialise properly in sev-
eral of the trajectories. This happens due to AMCL’s naı̈ve
use of the floorplan. In SeDAR, the semantic information
is inherently leveraged, as shown in figure 12b, in order to
aid initialisation. By contrast, AMCL can only reason about
the geometry of the scene which causes it to fall into local
minima (as in figure 16b).

It is clear that correctly initialised AMCL should out-
perform ray-based SeDAR (but not range-based). However,
ray-based SeDAR can offer more consistently correct initial-
isations despite the lack of depth information. Qualitatively,
both range (figure 17) and ray-based (figure 18) SeDAR
have much more consistent trajectories. While ray-based
SeDAR is liable to noisier paths, it is still capable of ac-
curately finding the correct path in all five trajectories. This
implies that the semantic cues present in the floorplan are in-
herently more discriminative than the traditional geometric
cues used by AMCL.

SLAM approaches do not suffer with incorrect locali-
sation problems in the same way that AMCL does. How-
ever, monocular SLAM again struggles to maintain tracking
in difficult indoor trajectories that include texture-less re-
gions. On the the hand, RGB-D and scan-matching SLAM
algorithms suffer with problems due to loop closure which
means their trajectory estimates drift and introduce errors.
By comparison both range and ray based SeDAR do not
suffer with problems due to tracking or loop closures. This
highlights an important strength of 2D localisation algorithms:
they can leverage pre-existing maps. Our approach does not
need to traverse the environment once before it can localise
reliably within it.

7.3 Inaccurate Hand-Drawn Map

The semantic cues in the floorplan are so discriminative, that
it is possible to use them for localisation even when the geo-
metric characteristics are severely compromised. To demon-
strate this, we use a crudely hand-drawn version of the floor-
plan in the same multi-trajectory benchmark.

This inaccurate version of the world, seen in figure 19,
presents a scenario where the geometry of the scene is com-



18 Oscar Mendez1 et al.

Average Trajectory Error (m)
Approach RMSE Mean Median Std. Dev. Min Max

AMCL [10] 3.66 (6.38) 2.86 (5.12) 1.93 (3.38) 2.25 (3.83) 0.77 (1.50) 11.53 (17.55)
GMapping [19] 0.57 (0.38) 0.51 (0.35) 0.50 (0.40) 0.22 (0.17) 0.25 (0.23) 0.84 (0.54)

ORB SLAM2 (Mono) [34] 10.41 (0.69) 9.35 (0.54) 8.14 (1.07) 4.55 (0.63) 2.64 (0.68) 20.85 (1.97)
ORB SLAM2 (RGB-D) [35] 0.57 (0.27) 0.49 (0.20) 0.44 (0.09) 0.29 (0.20) 0.13 (0.03) 1.22 (0.78)

PoseNet [25] 6.78 (0.54) 5.04 (0.53) 3.45 (0.44) 4.53 (0.36) 0.55 (0.23) 23.00 (1.66)
PoseLSTM [50] 6.76 (0.46) 4.85 (0.58) 3.36 (0.61) 4.68 (0.42) 0.53 (0.25) 24.72 (1.49)

Range (Label Only) 0.33 (0.04) 0.29 (0.04) 0.27 (0.04) 0.15 (0.01) 0.04 (0.03) 0.96 (0.11)
Range (Combined) 0.38 (0.05) 0.33 (0.06) 0.29 (0.08) 0.18 (0.03) 0.06 (0.07) 1.09 (0.19)

Rays (εG = 3.0) 0.85 (0.21) 0.72 (0.18) 0.65 (0.14) 0.44 (0.11) 0.09 (0.05) 2.27 (0.55)
Rays (εG = 7.0) 1.65 (0.83) 1.42 (0.74) 1.26 (0.62) 0.83 (0.41) 0.26 (0.33) 3.92 (2.05)

Table 5: Coarse Room-Level Initialisation (Multiple Trajectories)

(a) AMCL Path 1 (b) AMCL Path 2 (c) AMCL Path 3 (d) AMCL Path 4 (e) AMCL Path 5

Fig. 16: Estimated paths from coarse room-level initialisations.

(a) SeDAR Range Path 1 (b) SeDAR Range Path 2 (c) SeDAR Range Path 3 (d) SeDAR Range Path 4 (e) SeDAR Range Path 5

Fig. 17: Estimated path from coarse room-level initialisations.

(a) SeDAR Ray Path 1 (b) SeDAR Ray Path 2 (c) SeDAR Ray Path 3 (d) SeDAR Ray Path 4 (e) SeDAR Ray Path 5

Fig. 18: Estimated path from coarse room-level initialisations.
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Fig. 19: Crude, hand-drawn floorplan.

promised but the semantic elements are not. To us, the image
might look similar to the original floorplan because we fo-
cus on the unaltered semantic elements. To a robot, this im-
age presents an important deviation from the geometrically
accurate floorplan used in previous experiments. This ef-
fect is reflected in the performance of the strictly-geometric
AMCL.

In the previous section, we used a coarse initialisation in
order to benchmark the trajectories. In this case, we are in-
terested in benchmarking the localisation performance within
the hand-drawn map. As such, a global localisation will al-
low us to explore how discriminative semantic and geomet-
ric cues are. Furthermore, since the map is inherently in-
accurate, any detail in the ground truth will be lost (due to
ambiguity with the map).

In table 6, it is again shown that range-based SeDAR
outperforms the state-of-the-art by a significant margin. On
the other hand, the ray-based version performs comparably
(although with much tighter margins) which implies a more
consistent behaviour. The reason range-based approaches per-
form better, and ray-based approaches are more consistent
is the same. As mentioned before, the geometric elements
in this map are simply not enough for accurate localisation.
The semantic elements must be used in order to achieve rea-
sonable performance.

Qualitatively, the performance of these methods can be
more closely evaluated. Figures 20, 21 and 22 show the global
localisation trajectory once it has converged. In figure, 20, it
can be seen that AMCL never actually converges to the right
location. This means that AMCL has correctly localised in
zero of the five trajectories. In fact, the reason its accuracy is
even comparable to ray-based SeDAR is due to the registra-
tion step in ATE. More explicitly, AMCL finds a local min-
ima early and relies on the odometry to provide an “accu-
rate” trajectory in the wrong location. By contrast, SeDAR

takes longer to converge but generally finds the correct lo-
cation. Figure 21 shows that range-based SeDAR correctly
localises in three out of five trajectories. Finally, Figure 22
correctly localises in four out of five trajectories (and is ex-
tremely close in the fifth). It is important to stress that ray-
based SeDAR actually finds the correct position of the robot
more accurately and consistently than both range-enabled
approaches.

This type of behaviour implies that SeDAR has a higher
level of understanding than AMCL. Our approach is capable
of ignoring geometrically local minima because the seman-
tic elements do not support it. This higher-level reasoning is
an important step towards localisation on a human level.

7.4 Benchmark Evaluation

So far, SeDAR-based localisation has been demonstrated
to outperform both MCL and SLAM state-of-the-art algo-
rithms on a custom dataset. In this section, we will aim to
evaluate SeDAR on a well-known SLAM dataset [45]. The
evaluation will be performed against the same algorithms
[10,19,34,35] as used in the previous dataset.

The TUM-RGBD [45] dataset is a well established bench-
mark that contains many different trajectories. As part of
this dataset, a Robot SLAM category captured on a Pioneer2
is included. Since our algorithm requires planar trajectories
and a horizontal camera, we use this subset of the bench-
mark in our evaluation. The trajectories used are known as
Pioneer 360, Pioneer Slam, Pioneer Slam2 and Pioneer Slam3.
An occupancy and semantic floorplan of the area the robot
navigates were also created in order to enable evaluation.
These maps can be seen in figure 23. It should be noted that
SeDAR, AMCL [10] and GMapping [19] all exploit the pla-
nar constraint present in the dataset. ORB SLAM2 (Mono
and RGBD) [34,35] does not have this constraint. It should
also be noted that SLAM approaches ([19,34,35]) do not
have prior knowledge of the environment.

Tables 7, 8, 9 and 10 show the results on Pioneer 360,
Pioneer Slam, Pioneer Slam2 and Pioneer Slam3, respec-
tively. In Pioneer 360, Pioneer Slam, Pioneer Slam3, it is
clear that range-based SeDAR outperforms all other approaches.
It is also important to notice that ray-based SeDAR also
outperforms monocular SLAM and performs similar to the
depth-based approaches such as AMCL. The only exception
to this is during Pioneer Slam2, where monocular SLAM
outperforms ray-based SeDAR. However, this is an extremely
challenging sequence for monocular SLAM the system con-
stantly looses tracking due to motion blur and low textures.
In order to get these numbers, only partial trajectories were
used (as it was impossible to obtain full sequences on monoc-
ular slam). Even then, the system required constant moni-
toring to ensure tracking was not lost. On the other hand,
SeDAR reports a position for every pose in the trajectory.
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Average Trajectory Error (m)
Approach RMSE Mean Median Std. Dev. Min Max

AMCL [10] 11.18 (4.29) 8.57 (4.86) 7.31 (5.12) 6.69 (1.23) 0.98 (0.71) 30.39 (3.64)
Range (Label Only) 7.26 (4.06) 4.63 (4.30) 3.76 (4.76) 5.18 (1.57) 0.78 (0.80) 30.00 (2.55)
Range (Combined) 4.64 (1.95) 2.48 (1.43) 1.39 (0.65) 3.86 (1.49) 0.33 (0.17) 27.08 (5.96)

Rays (εG = 3.0) 11.39 (1.65) 9.72 (2.30) 8.30 (3.21) 5.67 (0.77) 2.09 (0.32) 25.83 (4.38)
Rays (εG = 7.0) 11.24 (2.22) 8.97 (2.74) 7.40 (3.75) 6.57 (0.35) 1.32 (0.95) 28.91 (2.08)

Table 6: Global Initialisation (Drawn Map)

(a) AMCL Path 1
Incorrect Localisation

(b) AMCL Path 2:
Initialisation Fail

(c) AMCL Path 3:
Incorrect Localisation

(d) AMCL Path 4:
Initialisation Fail

(e) AMCL Path 5:
Initialisation Fail

Fig. 20: Estimated AMCL path from global initialisations.

(a) SeDAR Range Path 1:
Initialisation Fail

(b) SeDAR Range Path 2:
Initialisation Fail

(c) SeDAR Range Path 3:
Correct

(d) SeDAR Range Path 4:
Correct

(e) SeDAR Range Path 5:
Correct

Fig. 21: Estimated SeDAR Range path from global initialisations.

(a) SeDAR Ray Path 1:
Correct

(b) SeDAR Ray Path 2:
Noisy Path

(c) SeDAR Ray Path 3:
Correct

(d) SeDAR Ray Path 4:
Correct

(e) SeDAR Ray Path 5:
Correct

Fig. 22: Estimated SeDAR Ray path from global initialisations.
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Average Trajectory Error (m)
Approach RMSE Mean Median Std. Dev. Min Max

AMCL [10] 0.313 0.207 0.108 0.235 0.020 1.179
GMapping [19] 0.917 0.817 0.738 0.418 0.121 1.960
ORB SLAM2 (Mono) [34] 0.756 0.673 0.566 0.343 0.200 1.579
ORB SLAM2 (RGB-D) [35] 0.161 0.135 0.123 0.088 0.011 0.472
Range (Depth Only) 0.384 0.170 0.078 0.345 0.014 2.113
Range (Label Only) 0.154 0.133 0.120 0.079 0.014 0.414
Range (Combined) 0.115 0.088 0.060 0.074 0.016 0.349
Rays ((εG = 3.0)) 0.436 0.340 0.274 0.272 0.045 1.522
Rays ((εG = 5.0)) 0.256 0.191 0.148 0.170 0.012 1.007

Table 7: TUM-RGBD Pioneer 360

Average Trajectory Error (m)
Approach RMSE Mean Median Std. Dev. Min Max

AMCL [10] 0.162 0.145 0.140 0.073 0.020 0.383
GMapping [19] 0.900 0.717 0.581 0.544 0.024 2.433
ORB SLAM2 (Mono) [34] 2.076 1.948 1.969 0.717 0.168 3.645
ORB SLAM2 (RGB-D) [35] 0.287 0.269 0.262 0.100 0.018 0.718
Range (Depth Only) 0.157 0.137 0.122 0.076 0.017 0.424
Range (Label Only) 0.181 0.161 0.147 0.084 0.016 0.388
Range (Combined) 0.150 0.129 0.118 0.077 0.002 0.344
Rays ((εG = 3.0)) 0.783 0.595 0.423 0.508 0.109 2.222
Rays ((εG = 5.0)) 0.911 0.782 0.651 0.468 0.021 1.977

Table 8: TUM-RGBD Pioneer Slam

Average Trajectory Error (m)
Approach RMSE Mean Median Std. Dev. Min Max

AMCL [10] 0.147 0.123 0.110 0.080 0.007 0.373
GMapping [19] 1.063 0.857 0.635 0.629 0.118 2.703
ORB SLAM2 (Mono) [34] 1.442 1.317 1.157 0.586 0.326 2.194
ORB SLAM2 (RGB-D) [35] 0.166 0.150 0.125 0.071 0.070 0.345
Range (Depth Only) 0.175 0.166 0.165 0.055 0.036 0.357
Range (Label Only) 0.287 0.244 0.228 0.151 0.061 1.651
Range (Combined) 0.160 0.145 0.130 0.068 0.008 0.338
Rays ((εG = 3.0)) 1.707 1.465 1.184 0.877 0.040 3.817
Rays ((εG = 5.0)) 1.571 1.318 1.004 0.855 0.024 3.643

Table 9: TUM-RGBD Pioneer Slam2

Average Trajectory Error (m)
Approach RMSE Mean Median Std. Dev. Min Max

AMCL [10] 0.163 0.132 0.105 0.095 0.003 0.440
GMapping [19] 0.967 0.851 0.758 0.460 0.019 1.762
ORB SLAM2 (Mono) [34] 2.036 1.886 1.978 0.767 0.240 3.379
ORB SLAM2 (RGB-D) [35] 0.164 0.134 0.101 0.094 0.033 0.404
Range (Depth Only) 0.118 0.096 0.082 0.068 0.005 0.346
Range (Label Only) 0.163 0.145 0.127 0.073 0.027 0.419
Range (Combined) 0.143 0.121 0.122 0.077 0.010 0.397
Rays ((εG = 3.0)) 1.394 1.236 1.359 0.645 0.109 2.980
Rays ((εG = 5.0)) 3.717 3.581 3.754 0.998 1.699 5.131

Table 10: TUM-RGBD Pioneer Slam3

This means that SeDAR performs much better than monoc-
ular SLAM.

Similarly, in Pioneer Slam2 AMCL outperforms overall.
This is due to the fact that errors in the semantic segmen-
tation network make the label estimates in SeDAR noisy.

(a) Occupancy Map (b) Semantic Map

Fig. 23: Maps created using ground truth poses and scan
data.

Comparably, the depth estimates from an RGB-D camera
are less noisy. This is a known limitation of this approach,
as we do not fine-tune the network to any scenario. This is
further evidenced by the much-higher error on the ray-based
approach in this sequence, where the labels are the only cue
available for localisation. However, semantic segmentation
is a fast moving field, and improvements to the segmenta-
tion would quickly translate to increased performance for
SeDAR.

7.5 Timing

The approach presented here makes the conscious decision
to collapse the 3D world into a 2D representation. This has
very noticeable effects to the computational complexity, and
therefore speed, of the approach.

The speed of this approach was evaluated on a machine
equipped with an Intel Xeon X5550 (2.67GHz) and an NVidia
Titan X (Maxwell). OpenMP was used for threading ex-
pensive for-loops (such as the raycasting). During room-
level initialisation, or once the system has converged, the
approach can run with 250 particles in 10ms, leaving more
than enough time to process the images from the Kinect into
a SeDAR scan. Transforming the RGB images into seman-
tic labels is the most extensive operation, taking on average
120ms. This means that a converged filter can run at 8− 10

fps. When performing global localisation, the approach can
integrate a new sensor update, using 50, 000 particles, in
2.25 seconds. This delay does not impact the ability of the
system to converge, as most MCL approaches require mo-
tion between each sensor integration, meaning the effective
rate is much lower than the sensor output.

8 Conclusion

In conclusion, this work has presented a novel approach that
is capable of localising a robotic platform within a known
floorplan using human-inspired techniques. First, the seman-
tic information that is naturally present and salient in a floor-
plan was extracted. The first novelty was using the seman-
tic information present in a standard RGB image to extract
labels and present them as a new sensing modality called
SeDAR. The semantic information present in the floorplan
and the SeDAR scan were then used in a SeDAR-based MCL
approach. This approach then presented three main novel-
ties. In the first, the semantic information present in the floor-
plan was used to define a novel motion model for MCL. In
the second, the SeDAR scan was used to localise in a floor-
plan using a combination of range and label information. In
the third, SeDAR was used in the absence of range data to
localise in the floorplan using only an RGB image.
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These novelties present an important step forward for the
state-of-the-art of MCL, and therefore localisation in gen-
eral. Not only is this work capable of removing the require-
ment of expensive depth sensors [10,15], it also has the abil-
ity to improve the performance of localisation approaches
that use depth sensors [52]. When compared against the state-
of-the-art monocular approaches [7,37], leveraging the se-
mantic information present in an RGB image allows less ac-
curate maps to be used by utilising other information present
in the map. Taken together, these contributions open the door
for the usage of maps designed for human use. This implies
that localisation as a discrete process to reconstruction be-
comes a viable alternative, as pre-existing floorplans can be
used to localise while the 3D structure is reconstructed. The
advances presented in this paper make it clear that the use of
semantic information to aid localisation is the next step for
the field.
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