
“The Pedestrian next to the Lamppost”
Adaptive Object Graphs for Better Instantaneous Mapping

Avishkar Saha1, Oscar Mendez1, Chris Russell2, Richard Bowden1

1Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, UK
2Amazon, Tubingen, Germany

{a.saha, o.mendez, r.bowden}@surrey.ac.uk, cmruss@amazon.com

Abstract

Estimating a semantically segmented bird’s-eye-view
(BEV) map from a single image has become a popular tech-
nique for autonomous control and navigation. However,
they show an increase in localization error with distance
from the camera. While such an increase in error is en-
tirely expected – localization is harder at distance – much of
the drop in performance can be attributed to the cues used
by current texture-based models, in particular, they make
heavy use of object-ground intersections (such as shadows)
[10], which become increasingly sparse and uncertain for
distant objects. In this work, we address these shortcom-
ings in BEV-mapping by learning the spatial relationship
between objects in a scene. We propose a graph neural net-
work which predicts BEV objects from a monocular image
by spatially reasoning about an object within the context of
other objects. Our approach sets a new state-of-the-art in
BEV estimation from monocular images across three large-
scale datasets, including a 50% relative improvement for
objects on nuScenes.

1. Introduction
The ability to generate top-down birds-eye-view maps

from images is an important problem in autonomous driv-
ing. Overhead maps provide compact representations of a
scene’s spatial configuration and other agents, making it
an ideal representation for downstream tasks such as nav-
igation and planning. Given their utility, the BEV estima-
tion problem of inferring semantic BEV maps from images,
has drawn increasing attention in recent years — mapping
‘things’ such as traffic cones and pedestrians, and ‘stuff’
such as road lanes and pavements.

Current BEV estimation techniques [32, 34, 36, 37] have
made impressive strides towards high-accuracy semantic
maps for both ‘things’ and ‘stuff’ from a single image.
These texture-based models are elegant in their simplic-
ity, requiring only minimal losses on their predicted BEV
maps. Although these models work well for large amor-

phous textured classes that dominate the scene, such as road
and pavement (a.k.a. stuff [4]), they suffer from low recall
and large localization error for smaller and potentially dy-
namic objects at greater distances (a.k.a. things).

In contrast, the field of monocular 3D detection dis-
plays far greater object localization accuracy by taking an
object-based approach. A simple solution to increase re-
call and localization accuracy in BEV estimation is to apply
an off-the-shelf monocular 3D detector to generate BEV
object bounding boxes. Surprisingly, this increases object
intersection-over-union (IoU) accuracy on the BEV estima-
tion task by a relative 20%. This raises the question: why
not use the best of both methods? That is, reason about ob-
jects in object space, and use them to improve the estimates
of background ‘stuff’.

We propose a novel BEV estimation method that lever-
ages object graphs to reason about scene layout. These
graphs provide a rich source of additional information to
improve object localization, as they generate context by
propagating between objects. Our model predicts BEV ob-
jects from a monocular image by spatially reasoning about
an object given the long-range context of other objects in
the scene. The contributions of our work are as follows:

1. We propose a novel application of graph convolution
networks for spatial reasoning to localize BEV objects
from a monocular image.

2. We demonstrate the importance of learning both node
and edge embeddings, their mutual enhancement and
edge supervision for the problem of object localiza-
tion.

3. We introduce positional-equivariance into our graph
propagation method, leading to state-of-the-art results
across three large-scale datasets, including a 50% rel-
ative improvement in BEV estimation of ‘things’ or
objects.

19528

2. Related Work
BEV Estimation: Initial work in road layout estima-

tion [39] took a two-staged approach of semantic segmen-
tation in the image followed by a homography-based map-
ping to the ground plane. Others [25, 38, 46] similarly ex-
ploited depth and semantic segmentation maps to lift scene
and object entities into BEV. As these methods required
dense annotation maps as additional input, recent work im-
plicitly reasons about depth and semantics within the net-
work. Some learn image-to-BEV transformations implic-
itly [27, 28, 31], while more recent approaches improved
results by conditioning the transformation on the camera’s
geometry [11,32,34,36,37]. These methods can be broadly
categorized by their transformation as either fixed or adap-
tive. Fixed approaches [34] use a fully-connected layer to
vertically condense image features into a bottleneck and
then expand into BEV with another fully-connected (FC)
layer. One limitation of the approach is that the weights of
both FC layers are fixed, increasing the layer’s tendency to
ignore small objects and resulting in a low recall for these
categories. Adaptive approaches [32,36] on the other hand,
use an attention mechanism that generates context by query-
ing a spatial location. The primary challenge of this ap-
proach is the size of the image search space: learning to se-
lect the appropriate image features for distant objects whose
relevant context is sparse and uncertain is challenging. We
overcome the issues with large search spaces by specifically
communicating between objects as nodes, aided by scene
context sampled along edges.

Monocular Object Detection: In contrast to BEV Esti-
mation, monocular object detection methods are generally
object-based, with losses applied per object. Much of this
work is centered around constraining the search space —
both in the search for objects in the image and their 3D
pose regression. A common and successful approach is to
constrain the image search space via 2D object detection
followed by 3D pose regression [19, 30, 33, 40, 44]. Some
approaches use geometric priors to constrain the projected
3D bounding box to fit within the 2D box [14, 30], while
others leveraged the relationship between 2D box height
and the estimated object height to create initial centroid
proposals [23]. Mono3D [6] on the other hand generated
3D proposals on the ground-plane which are then scored
by projecting back into the image. The primary drawback
of all these methods is that each object proposal is gener-
ated independently. Some approaches have tried to reason
globally across the scene. OFTNet [35] built on Mono3D
to reason globally in BEV by projecting a 3D voxel grid
onto the image to collect image-features. However, this
creates a bottleneck similar to the fixed BEV-estimators as
the features assigned to a voxel are independent of depth.
MonoPair [7] constrained the positions of objects by opti-
mizing their pairwise spatial relationships, however this was

a post-optimization step outside the network using only the
predicted 3D bounding boxes. While graphs have been used
for semantic reasoning [9, 26, 48], unlike all previous work,
we: (1) use graphs to reason about scene layout and (2) gen-
erate context by propagating between objects.

Graph neural networks: Graph neural networks
(GNNs) have emerged as a powerful neural architecture to
learn from graph-structured data, exhibiting promising re-
sults in social networks [29], drug design [41] and more.
GNNs build node representations by aggregating local in-
formation from their neighborhood. Drawing on the suc-
cesses of convolutional neural networks (CNNs), several
works have generalized convolution operations to the graph
domain. These graph convolution networks (GCNs) gen-
erally fall into two major categories: spectral and spa-
tial. Spectral approaches [8, 21] perform convolutions in
the Fourier domain, while spatial approaches [15, 47] per-
form them in the node (or vertex) domain. Importantly, our
graphs have Euclidean interpretations, thus our graph con-
volutions need to be spatial instead of spectral. Recently,
Velickovic et al. [43] developed an attention-based neigh-
borhood aggregation mechanism operating in the node do-
main — the Graph Attention Network (GAT). Here, every
node updates its representation by attending to its neighbors
conditioned on itself, resulting in GATs becoming the state-
of-the-art neural architecture for graph learning [2].

Apart from a few notable exceptions [18,49], most graph
learning methods ignore the representational capabilities of
edges and focus only on node embeddings. CensNet [18]
addressed the utility of edge features by simultaneously em-
bedding both nodes and edges into a latent feature space
using spectral graph convolutions. NENN [49] approached
this co-embedding in the spatial domain. We similarly learn
both node and edge embeddings along with their mutual en-
hancement. However, unlike all previous approaches, our
graph propagation method is made position equivariant to
account for the importance of Euclidean structure in local-
ization.

3. Our approach
Given an image captured while driving, we wish to infer

a semantically segmented BEV map of its scene. As shown
in Fig. 1, we approach BEV estimation as a two stage pro-
cess of object localization followed by subsequent complete
BEV estimation, including the localization of amorphous
’stuff’ such as road or sidewalk that can not be treated as
objects. To improve object localization beyond the stan-
dard accuracies offered by 3D object detection, we generate
context by propagating information between objects to infer
their spatial layout. In this section, we first motivate the use
of graphs for object localization (Sec. 3.1). We then discuss
the main components of our approach shown in Fig. 1: first,
we structure scene content in the form of a graph across

19529

FE

GC

EI MP

GRAPH CONSTRUCTOR GRAPH PROPAGATOR SCENE ESTIMATOR

IMAGE

OBJECT
GRAPH
(initial)

OBJECT
GRAPH
(final)

BEV MAPS (scene)

Figure 1. Model Architecture. Our Graph Constructor takes image features HI and candidate regions B as input and generates a graph
G = (V, E) of the scene’s N objects. The Graph Propagator passes messages across the nodes and edges of the graph in a position-
equivariant manner, co-embedding both nodes and edges to a latent feature space for object localisation, resulting in a graph G′ = (V ′, E ′)
with updated embeddings. The Scene Estimator takes the image features HI and transforms them to BEV where they are combined with
object embeddings V ′ to generate BEV maps MBEV .

the image and/or BEV-plane (Sec. 3.2). Next, we local-
ize objects in BEV by propagating structural and positional
embeddings across the graph (Sec. 3.4). Finally, we use its
learned embeddings to generate complete maps including
‘stuff’ the amorphous regions such as road (Sec. 3.4).

3.1. Design Motivations

Why graph representations? A natural question is
what makes object graphs more suitable for localization
than current BEV estimation methods? The answer is
twofold: (1) graphs encode explicit geometric relationships
between objects that BEV networks have to model implic-
itly and (2) they allow nonlocal communication between en-
tities, which a convolutional BEV network requires many
downsampling operations to do. In this section, we build
on this to motivate our need for (1) a graph which jointly
learns node and edge embeddings; and (2) supervising edge
embeddings as a way of placing geometric constraints.

Why learn node embeddings? The primary challenge
in object localization is depth estimation. To resolve an ob-
ject’s depth, monocular scene understanding methods typi-
cally rely on visual cues from the object’s intersection with
the ground [10]. While artefacts such as shadows provide
strong priors, they become increasingly sparse and uncer-
tain for distant objects. When such image features become
unreliable, it remains possible to localize an object by com-
paring its appearance, geometry and position to others in
the scene. This can be done by representing each object as
a node in a graph and message passing between them.

Why learn edge embeddings? While propagating be-
tween nodes provides a baseline mechanism for localiza-
tion, regressing a node’s location within the graph still re-
quires traversing a large search space. To restrict this space,
we can place geometric constraints on object localization
by predicting the midpoint of each edge — however, this
requires learned edge embeddings.

3.2. Graph Construction

Our constructed graphs should represent both scene ob-
jects and their spatial relationships. Given an image I com-

posed of N objects, and with known intrinsic matrix K, our
Graph Constructor (shown in Fig. 1) constructs a Euclidean
graph G = (V, E), with V its set of N = |V| nodes and E its
set of E = |E| edges. Each node has explicit Euclidean po-
sitional features pi ∈ R2 representing the object’s estimated
location in the ground plane. Aside from its Euclidean rep-
resentation, each node and edge has a set of image features
Sv
i and Se

i , respectively.
Unlike the majority of graph-based learning methods

where the input graphs are given, we construct ours on the
fly. We design our graph based on two key choices: (1) Fea-
ture assignment: what features should each node and edge
possess? (2) Graph connectivity: how should nodes be con-
nected to each other?

Feature extraction: The features assigned to a node
form an initial embedding that is updated in order to make
positional predictions in BEV (the same principle also ap-
plies to edge embeddings). As described in Sec. 3.1, one
way to determine the relative depths of objects in a scene
is by comparing their appearance, geometry and position.
We represent each of these aspects with the object’s textu-
ral features, its 2D bounding box dimensions and its cen-
ter. Given an image I, we first obtain a set of candidate
object regions B = {b1, ..., bn} using a region proposal
network. For each region, we obtain its center coordi-
nates pUV

i ∈ R2, its bounding box bi ∈ R4, and an ROI
pooled [13] feature vector fi ∈ RC×h×w. Additionally, for
long range vertical context to aid in depth estimation, we
include a set of vertical scanlines taken across the bound-
ing box’s width which are pooled horizontally to obtain a
feature vector li ∈ RC×H×1. This gives us a set of objects
O = {o1, ..., on}, where oi = (pi, si) is an object with a
positional coordinate pi and a set of image feature states
Si = {bi, li, fi}.

Graph connectivity: A graph’s structure determines
how information is propagated between its nodes and edges.
Our input objects are detected in the image, however we
want to localize them in BEV. When determining the depth
of an object, it is typically more helpful to determine this
relative to other objects at similar depths rather than at

19530

INPUT GRAPH

ORIGINAL GRAPH CONJUGATE GRAPH

OUTPUT GRAPH NODE-LEVEL UPDATE EDGE-LEVEL UPDATE

node2node + edge2node M.P edge2edge + node2edge M.P

. . . .

INPUT GRAPH
NODE AND EDGE FEATURES

OUTPUT GRAPH
NODE AND EDGE FEATURES

SINGLE LAYER OF MESSAGE PASSING

MORE LAYERS
OF

MESSAGE PASSING

Figure 2. Our graph propagation method. A single layer of message passing consists of node-to-node and edge-to-node updates, followed
by edge-to-edge and node-to-edge updates. The node and edge embeddings of the output graph are then supervised for localisation.

larger depth differences. For instance, when localizing a
distant pedestrian, knowing that it is behind a vehicle that
is close to the camera is not useful. Instead, we estimate its
depth by looking at where it is in relation to other objects at
similar depths. From this, we extract two principles for our
graph connectivity: (1) we want our graph structure to exist
in the Euclidean domain, where we can connect objects in
the image or BEV-plane, (2) we want to order objects by a
coarse approximation of their relative depths and then con-
nect them to their nearest depth neighbors. We approximate
these coarse, unscaled relative depths Z0 = {z0i , ..., z0n} as
Z0 = {di · c|i ∈ N}, where c is the vector from the center
bottom edge of the image to its principal point (u0, v0) and
di the object’s vector from from its 2D image coordinate
pUV
i to the principal point. These relative depth approxima-

tions are unscaled and very coarse, serving only to distin-
guish between an object that is obviously far and one that is
near. We then use these coarse unscaled approximations Z0

to generate the graph’s connectivity based on nearest neigh-
bors, resulting in an adjacency matrix A ∈ RN×N where
Aij = 1 if there exists an edge between nodes i and j.

Embedding initialization: With the graph’s structure
determined, we assign its nodes and edges initial features
which will be used for propagation later. Below, we de-
scribe the features assigned to each node followed by edges.

First, we obtain Euclidean representations pBEV
i ∈ R2

of each node. For each object, we define its initial BEV
Euclidean position as pBEV

i = (z0i tan
−1(α0

i), z
0
i), where

α0
i is its estimated viewing angle. Again, the scale of both

parameters is arbitrary and only serves to indicate relative
differences between positions. We then define each node’s
initial feature as a tuple:

v0
i = (pi, Si = {bi, li, fi}), (1)

where pi is its BEV coordinate estimate and Si a set of fea-
tures from the image and BEV.

Then, for each edge’s features eij , we use the adjacency

matrix A and follow the same feature extraction process as
defined above for the nodes resulting in Eq. 1. Just as each
object is defined by a bounding box, we similarly define
each edge as its bounding box region in the image. Conse-
quently, the node feature extraction process described above
can be applied to each edge.

Finally, we have a graph G = (V, E) where each node
has object features v0

i = (pvi , S
v
i = {bvi , lvi , fv

i }) and each
edge has scene features e0ij = (pei , S

e
i = {bei , lei , fe

i }).

3.3. Graph propagation

Given our input graph G, with initial node features v0
i

and edge features e0ij , we want to pass messages across and
between both nodes and edges to learn updated embeddings
v′
i and e′ij , which we will use for localization. We think

of the input graph as a perturbed mass and spring system,
and the message passing as a relaxation process that returns
the system to equilibrium, which in our case would be the
output object locations. Our message passing mechanism,
illustrated in Fig. 2, is motivated by the challenges posed by
standard GNNs: namely, (1) the need for spatial awareness,
or more explicitly, positional equivariance and (2) mutually
enhanced node and edge embeddings.

Positional equivariance: To describe how we build po-
sitional equivariance into our graph propagation, we begin
with the standard GCN formulation and the challenges it
poses for our task. We then formulate our approach in re-
sponse to those challenges.

Given a graph G = (V, E), a standard GCN layer takes as
input a set of node embeddings {hi ∈ Rd|i ∈ V } and edges
E. The layer produces an updated set of node embeddings
{h′

i ∈ Rd|i ∈ V } by applying the same parametric function
fW to every node given its neighbors Ni = {j ∈ V |(j, i) ∈
E}:

h′
i = fW (hi, AGGREGATE({hj |j ∈ Ni})) (2)

These graph convolution functions are designed to be in-

19531

variant to node position and permutation because in most
graph learning tasks there is no canonical position for its
nodes. Thus, such a function would fail to differentiate iso-
morphic nodes with the same 1-hop local neighborhood.
This is unsuitable for our task, as objects may typically
have the same node degree yet have completely different
Euclidean structures. To overcome this, we concatenate Eu-
clidean positional information to the node’s features dur-
ing message passing (Eq. 3). This allows us to learn node
representations which capture Euclidean structure. Addi-
tionally, the Euclidean structure of our graph changes be-
tween successive message passing layers, raising the need
for updated positional information at each message pass-
ing layer. We do this by propagating positional embeddings
to learn better structures at the next update (Eq. 4). This
differs from existing GCNs which integrate positional in-
formation by concatenating it with the input node features
only [1, 12, 22]. Given these requirements, we propose a
spatially-aware message-passing mechanism with learnable
structural and positional embeddings. The generic update
equations of our method are defined as:

h′
i = fh([hi∥pi], AGGREGATE({[hj∥pj]|j ∈ Ni})),

∀hi ∈ Si.
(3)

p′
i = fp(pi, AGGREGATE({pj |j ∈ Ni})), (4)

where ∥ is the concatenation operation and fh and fp repre-
sent separate parametric functions for each feature state in
Si and position, respectively. In this way, positional infor-
mation is updated and dissipated through each feature state
at each round of message passing.

Mutually enhanced node and edge embeddings: We
wish to learn both node and edge embeddings by propagat-
ing information between them. That is, alongside node-to-
node and edge-to-edge propagation, we also want edge-to-
node and node-to-edge communication. Here we detail the
application of our generic update equations (Eq. 3 and 4) to
mutually enhance node and edge embeddings. As shown in
Fig. 2, each round of message passing consists of two up-
date mechanisms: a node-level update followed by an edge-
level update.

In our node-level update, each node state calculates a
weighted average of the node and edge states of its neigh-
borhood. Each node i updates its position pv

i and its feature
states xv

i ∈ Sv
i by computing a weighted average of the cor-

responding states of its neighborhood’s nodes xv
j ∈ Sv

j and
edges xe

ij ∈ Se
ij :

xv′
i = αi,iΘx[x

v
i ∥pv

i] +
∑

j∈N (i)

αi,jΘx([x
v
j∥pv

j] + [xe
ij∥pe

ij]),

xv
i ,p

v
i ,x

e
ij ,p

e
ij ∈ Rd,Θx ∈ Rd′×2d

(5)

pv′
i = αi,iΘpp

v
i +

∑
j∈N (i)

αi,jΘp(p
v
j + pe

ij),

pv
i ,p

e
ij ∈ Rd,Θp ∈ Rd′×d

(6)

where Θ is a linear transformation weight matrix, and αi,j

is an attention coefficient which we define below. We have
excluded the nonlinearity that is applied to xv′

i and pv′

i for
clarity. The inclusion of edge embedding [xe

ij∥pe
ij] makes

this equation a node-to-node + edge-to-node update, mean-
ing the updated node embedding contains context from its
edge embeddings. If we wanted to keep this purely node-
to-node, we would simply omit the edge embeddings.

For our weighted average, we apply attention over the
neighborhood similar to GAT [43], however we also include
edge embeddings in this calculation. In our approach, each
node i calculates the importance of its neighboring node j
and the edge between them eij using a scoring function Λ :
Rd × Rd × Rd → R to calculate the attention coefficients:

Λ(hi,hj , ei,j) = σ(a⊤ · [Θhi∥Θhj∥Θei,j]),

Θ ∈ Rd′×d,a ∈ R3d′ (7)

where a and Θ are learned weights and σ is a LeakyReLU
nonlinearity. Finally, the attention coefficients are normal-
ized across all choices of j using the softmax function:

αi,j =
exp (Λ(hi,hj , ei,j))∑

k∈N (i)∪{i} exp (Λ(hi,hk, ei,k))
, (8)

Similarly, our edge-level update aggregates its neighbor-
ing edge and node embeddings. However, incorporating
node embeddings into the aggregation function is challeng-
ing over the input graph G. Instead, we construct its con-
jugate graph ϕ(G) and perform the edge-level updates here.
The conjugate, ϕ(G), is a graph whose nodes are edges of G
and two nodes are adjacent in ϕ(G) if and only if the corre-
sponding edges are adjacent in G. The adjacency matrix Ae

of the conjugate ϕ(G) can be calculated as follows:

Ae = CTC − 2I (9)

where C is the incidence matrix of the input graph G, and
I is the identity matrix. Using the conjugate ϕ(G) =
(Vϕ, Eϕ), each edge embedding {ei,j ∈ Rd|i ∈ Vϕ} can
be updated using Eq. 5 - 8, except with nodes and edges
swapped.

After multiple rounds of message-passing, our graph
propagation method outputs a graph with updated node
embeddings {vi

′ = (pvi
′, Sv

i
′ = {bvi ′, lvi ′, fv

i
′})|i ∈

V} and edge embeddings {e′ij = (pei
′, Se

i
′ =

{bei ′, lei ′, fe
i
′})|(i, j) ∈ E}.

3.4. Scene estimation

Using the node embeddings output by our graph prop-
agation module, we make predictions for scene categories.

19532

Here we take a texture-based approach based on [36], where
image features from our frontend are transformed into the
BEV-plane to generate BEV maps for scene categories.
However, one key difference is that we condition the la-
tent features of this module on our node embeddings. In
this way, we constrain the latent BEV space for scene cat-
egories as objects provide strong cues for the existence of
roads, pavements, etc.

Following [36], a Transformer T [42] maps image fea-
tures HI to BEV-features HBEV :

T : RC×H×W × R3×3 → RC×100×100

(HI ,K) → HBEV .
(10)

A decoder D with deep layer aggregation [50] then gener-
ates BEV maps for scene categories using the latent BEV
features HBEV conditioned on node embeddings {v′

i|i ∈
V}:

D : RC×100×100 × RLV → Rk×100×100

(HBEV , {vi|i ∈ V}) → MBEV .
(11)

3.5. Loss

Object Network: Our object network predicts parame-
ters to help recover the object’s BEV-bounding box with its
yaw θ, dimensions δ = (l, w), centroid pv = (x, z) and
label c. Additionally, we also predict the midpoint of our
graph’s edges pe = (x, z). For each of these heads we first
apply a two-layer MLP to the appropriate input feature.

Node and Edge localization: We supervise the graph’s
output node and edge embeddings v′

i and e′ij entirely for
localization. To obtain BEV positions (x, z), we regress pa-
rameters for each using separate MLPs. We regress viewing
angle α using the viewing angle α0 estimated in the Graph
Constructor, and directly regress z-axis depth z. The view-
ing angle and z-axis depth are then used to determine x.

Classification, Dimensions and Orientation: We use
the initialized node features v0

i to make predictions for the
object’s label, dimensions and orientation. As shown in
Fig. 1, these estimations are made early in the network so
they constrain the graph’s initial features when used for lo-
calization later. For object classification, we use the focal
loss [24] in its original formulation. We directly regress ob-
ject dimensions. Instead of predicting object yaw θ, we pre-
dict its observation angle β, which is the sum of its viewing
angle and object yaw. Estimating observation angle rather
than yaw helps account for an object’s changing appearance
based on its viewing angle [30]. We follow [30] and es-
timate observation angle using a discrete-continuous loss:
the orientation range is discretized into multiple bins and
then the angle is regressed as an offset from the bin center.

Our object network is trained using a multitask loss de-
fined as:

Ltotal = Llocv + Lloce + Lθ + Ldim + Lc (12)

where Llocv , Lloce and Ldim and regression losses for the
object’s centroid, edge midpoint, and object dimensions,
Lθ is the discrete-continuous loss for orientation, and Lc is
the object classification loss. All regression losses use the
Smooth L1 Loss and all classification losses use a cross-
entropy loss unless otherwise specified.

Scene Network: We train our scene network using the
same multiscale Dice loss as [36]. Please see the supple-
mentary for further details on all losses.

4. Experiments
Datasets: We compare our approach to current state-of-

the-art approaches on the nuScenes [3], Argoverse [5] and
Lyft [20] datasets. nuScenes [3] consists of 1000 clips 20-
seconds in length, captured across different cities. Each
scene is annotated with 3D bounding boxes for 10 object
classes, along with vector maps for the road, sidewalk, and
more. We generate our BEV ground truth maps follow-
ing [34].

Implementation: We use a pretrained ResNet-50 [16]
with a feature pyramid (FPN) as our frontend. We extract
each level of the FPN, interpolate to the same size and add,
to obtain a single set of features. To obtain our candidate
2D regions in the image, we use FCOS3D [45] and fine
tune it to the appropriate dataset (during training we use
jittered ground truth regions). Each node in our graph is
connected to its 3 nearest neighbors, and we use 2 layers of
message-passing. Our BEV Estimation module uses a BEV
latent feature space of 100x100 pixels, with each represent-
ing 0.5m2 in world coordinates. Its largest scale output
is 100x100 pixels which we upsample to 200x200 for fair
comparison with the literature. We optimize using Adam,
with a weight decay of 1e− 4, and a learning rate of 5e−5
which decays by 0.99 every epoch for 50 epochs.

4.1. Ablations

Mutually enhanced embeddings: In Table 1 we
demonstrate the effectiveness of using node and edge em-
beddings, mutually enhancing them, and the effect of their
supervision. Beginning with a node-only graph results in
the lowest IoU (although this is still higher than current
SOTA BEV estimators in Table 3). Adding edge embed-
dings and then allowing nodes to gather information from
them (n2n + e2n) increases IoU slightly. This increase is
understandable as each node is now gathering context from
both its neighboring objects and its surrounding scene. The
largest increase in IoU arrives from edge embeddings com-
municating between themselves and their supervision (n2n
+ e2n + e2e). This demonstrates the benefit of using edges
to geometrically constrain the spatial layout of the nodes.
Finally, combining all types of graph propagation with both
node and edge supervision results in the best localization,
highlighting the benefits of mutually enhanced embeddings.

19533

Image Ground truth OursSTA-ST [35]PON [32] TIIM-ST [34]

Figure 3. Our model results on nuScenes. As highlighted, our model is able to localize distant and/or heavily occluded vehicles and
pedestrians, which the other methods miss.

Table 1. Graph propagation types. IoU(%) across objects for dif-
ferent graph propagation types on nuScenes. n2n = node-to-node,
e2n = edge-to-node, e2e = edge-to-edge and n2e = node-to-edge.

Graph Propagation Supervision Objects Mean
n2n nodes 20.0
n2n + e2n nodes 21.1
n2n + e2n + e2e nodes and edges 25.9
n2n + e2n + e2e + n2e nodes and edges 27.1

Graph node and edge features: In Table 2 we demon-
strate the effect of initializing nodes and edges with dif-
ferent feature types. Interestingly, relying solely on ap-
pearance results in a baseline IoU of 22.5%. This sug-
gests the model is able to localize objects to a large extent
just by comparing their textural features. Part of this re-
sult also stems from the scene context aggregated by our
frontend’s feature pyramid, meaning the ROI crops of each
object contain broader scene context and not just the ob-
ject’s appearance. This may explain why the inclusion of
scanline features do not improve upon this much. In con-
trast, including the object’s bounding box parameters cre-
ates the largest improvement. Since images of urban driv-
ing environments display strong regularities in scene struc-
ture, knowing where an object is in the image and its im-
age dimensions provides enough information to infer depth
coarsely. Finally, modulating each feature type with posi-
tional information improves upon this further. This can be
explained by the attention mechanism: positional approx-
imations of a node’s neighborhood can signal which may
be the most relevant, as it is typically the nearest neighbors

Table 2. IoU (%) effect of graph feature types on nuScenes.

Graph Node and Edge Features Objects Mean
Appearance 22.5
Appearance, scanline 22.9
Appearance, geometry 26.1
Appearance, geometry, scanline 26.2
Position w. appearance, scanline, geometry 27.1

which are of most use in terms of context for localisation.
Effect of graph node degree: In Table 6 we exam-

ine the effect of node degree when constructing our input
graphs. Broadly, IoU is inversely proportional to node de-
gree. The progressive decrease in performance is explained
by the information available to each node when aggregat-
ing its neighborhood: larger node degrees entail more re-
dundancies, and learning to minimize this is increasingly
challenging as redundancies in the neighborhood grow.

4.2. Comparison to SOTA

Baselines: We compare against a number of state-of-the-
art BEV estimation methods across nuScenes, Argoverse
and Lyft datasets. We compare against ‘fixed’ approaches
VPN [31], PON [34], STA [37], and ‘adaptive’ approaches
LSS [32], FIERY [17] and TIIM [36]. For completeness,
we also compare our BEV estimation results on ‘objects’ to
those of a state-of-the-art 3D object detector FCOS3D [45].

In Table 3, we demonstrate a 30% relative improvement
over the next best performing method TIIM [36], outper-
forming both its spatial TIIM-S and spatio-temporal TIIM-
ST models. In particular, our ‘objects’ classes show a rel-

19534

Table 3. nuScenes IoU (%) results on the validation split of [34]. The last row displays the relative improvement per category over the
current state-of-the-art BEV Estimators.

Model Drivable Crossing Walkway Carpark Car Truck Trailer Bus Con.Veh. Bike Motorbike Ped. Cone Barrier Mean Objects Mean
VPN [31] 58.0 27.3 29.4 12.3 25.5 17.3 16.6 20.0 4.9 4.4 5.6 7.1 4.6 10.8 17.4 11.7
PON [34] 60.4 28.0 31.0 18.4 24.7 16.3 16.6 20.8 12.3 9.4 7.0 8.2 5.7 8.1 19.1 12.9
STA-S [37] 71.1 31.5 32.0 28.0 34.6 18.0 11.4 22.8 10.0 14.6 7.1 7.4 5.8 10.8 21.8 14.3
TIIM-S [36] 72.6 36.3 32.4 30.5 37.4 24.5 15.5 32.5 14.8 15.1 8.1 8.7 7.4 15.1 25.1 17.9
FCOS3D [45] - - - - 28.6 25.0 20.4 34.2 8.1 11.1 14.6 9.8 9.5 23.9 - 18.6
STA-ST [37] 70.7 31.1 32.4 33.5 36.0 22.8 13.6 29.2 12.1 12.1 8.0 8.6 6.9 14.2 23.7 16.4
TIIM-ST [36] 74.5 36.6 35.9 31.3 39.7 26.3 13.9 32.8 14.2 14.7 7.6 9.5 7.6 14.7 25.7 18.1
Ours 75.9 39.7 37.9 36.8 41.5 38.0 28.8 58.1 23.8 12.2 18.4 11.5 9.0 30.1 33.0 27.1
Rel. improv. (%) 6.4 12.9 21.6 20.0 4.5 44.5 73.2 77.2 60.7 -19.0 127.3 21.5 17.8 99.7 32.4 50.0

Table 4. Argoverse results on the validation split of [34].

Method Drivable Veh. Ped. L.Veh. Bike Bus Trailer Motorbike Mean
VPN [31] 64.9 23.9 6.2 9.7 0.9 3.0 0.4 1.9 13.9
PON [34] 65.4 31.4 7.4 11.1 3.6 11.0 0.7 5.7 17.0
TIIM-S [36] 75.9 35.8 5.7 14.9 3.7 30.2 12.1 2.6 22.6
Ours 78.2 52.1 6.9 23.0 3.1 49.0 23.8 6.9 30.3

Table 5. IoU(%) against ‘adaptive’ approaches on nuScenes
canonical validation split and Lyft.

nuScenes Lyft
Driv. Car Veh. Driv. Car Veh.

LSS [32] 72.9 32.0 32.0 - 43.1 44.6
FIERY [17] - 39.9 - - - -
TIIM-S [36] 78.9 39.9 38.9 82.0 45.9 45.4
Ours 81.4 41.7 49.8 84.2 47.4 48.3

Table 6. IoU(%) effect of node degree on nuScenes.

Node Degree 0 1 2 3 5 10 15 20+
Objects Mean 20.2 26.2 26.5 27.1 21.1 14.2 11.56 10.3

ative increase of 50%, with Motorbikes and Barriers show-
ing a 100% relative gain. Much of this difference can be
attributed to our object-based approach to localizing these
classes. For fair comparison, we also compare our results on
‘objects’ to another object-based approach: FCOS3D [45].
Here we demonstrate a similar 45% relative improvement
across all object classes. With FCOS3D producing object
bounding boxes just like we do, the difference in perfor-
mance here is likely due to our graph-based approach to
localization. Our results on Argoverse display similar pat-
terns, where we improve upon the next best performing
method TIIM-S [36] by 33%.

In Table 5 we outperform adaptive methods [17, 32, 37]
on nuScenes and Lyft. A true comparison on Lyft with
LSS [32] is not possible as we were unable to acquire their
train/validation split. However, the difference in perfor-
mance can be attributed to us comparing objects for context,
while adaptive approaches rely on scene context.

To obtain a more granular understanding of our method’s
performance compared to SOTA, we compare IoU (%) ac-
curacy of ‘objects’ as a function of distance from camera
in Fig. 4. Current SOTA BEV-Estimators generally drop in
IoU as distance increases. While our method shows a slight
drop in IoU between 25-45m, it is broadly maintained along

Figure 4. IoU (%) over distance from camera on nuScenes.

the depth axis. This capability for localizing distant objects
can be seen in our qualitative results in Fig. 3, where our
model is able to correctly localize objects that are distant
and/or heavily occluded, which other methods miss.

4.3. Limitations

Our Graph Constructor enforces many inductive biases,
in terms of graph connectivity and feature type . Ideally we
want to jointly learn both the connectivity and feature selec-
tion while optimizing for object localization. For instance,
our IoU on Bikes in Table 3 suggests our graph construction
method is not optimal across all object categories. While
Bikes are a difficult category due to their large variations
in pose, it nonetheless presents an opportunity to learn the
graph construction method.

5. Conclusion

We proposed a graph convolution network with a novel
position-equivariant message passing mechanism to local-
ize objects in BEV from an image. In particular, we demon-
strated the benefit of learning both node and edge embed-
dings and methods for their mutual enhancement. One of
our key insights for better localization is the use of edge fea-
tures as a method of gathering scene context and its supervi-
sion as a way of placing geometric constraints on object lo-
cations. Our models are state-of-the-art in BEV estimation
from monocular images across three large-scale datasets.

Acknowledgements

This project was supported by the EPSRC project
ROSSINI (EP/S016317/1) and studentship 2327211
(EP/T517616/1).

19535

References
[1] Dominique Beaini, Saro Passaro, Vincent Létourneau,

William L. Hamilton, Gabriele Corso, and Pietro Lió. Di-
rectional graph networks. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Re-
search, pages 748–758. PMLR, 2021. 5

[2] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar
Veličković. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021. 2

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11621–11631, 2020. 6

[4] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 1209–1218, 2018. 1

[5] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-
jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter
Carr, Simon Lucey, Deva Ramanan, et al. Argoverse: 3d
tracking and forecasting with rich maps. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8748–8757, 2019. 6

[6] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma,
Sanja Fidler, and Raquel Urtasun. Monocular 3d object de-
tection for autonomous driving. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2147–2156, 2016. 2

[7] Yongjian Chen, Lei Tai, Kai Sun, and Mingyang Li.
Monopair: Monocular 3d object detection using pairwise
spatial relationships. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
12093–12102, 2020. 2

[8] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. Advances in neural informa-
tion processing systems, 29:3844–3852, 2016. 2

[9] Helisa Dhamo, Azade Farshad, Iro Laina, Nassir Navab,
Gregory D Hager, Federico Tombari, and Christian Rup-
precht. Semantic image manipulation using scene graphs.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5213–5222, 2020. 2

[10] Tom van Dijk and Guido de Croon. How do neural networks
see depth in single images? In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2183–
2191, 2019. 1, 3

[11] Isht Dwivedi, Srikanth Malla, Yi-Ting Chen, and Behzad
Dariush. Bird’s eye view segmentation using lifted 2d se-
mantic features. 2021. 2

[12] Vijay Prakash Dwivedi and Xavier Bresson. A general-
ization of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020. 5

[13] Ross Girshick. Fast r-cnn. In International Conference on
Computer Vision (ICCV), 2015. 3

[14] Fredrik Gustafsson and Erik Linder-Norén. Automotive 3d
object detection without target domain annotations, 2018. 2

[15] William L Hamilton, Rex Ying, and Jure Leskovec. Induc-
tive representation learning on large graphs. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems, pages 1025–1035, 2017. 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[17] Anthony Hu, Zak Murez, Nikhil Mohan, Sofı́a Dudas, Jef-
frey Hawke, Vijay Badrinarayanan, Roberto Cipolla, and
Alex Kendall. FIERY: Future instance segmentation in
bird’s-eye view from surround monocular cameras. In Pro-
ceedings of the International Conference on Computer Vi-
sion (ICCV), 2021. 7, 8

[18] Xiaodong Jiang, Ronghang Zhu, Sheng Li, and Pengsheng
Ji. Co-embedding of nodes and edges with graph neural net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1, 2020. 2

[19] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan
Ilic, and Nassir Navab. Ssd-6d: Making rgb-based 3d de-
tection and 6d pose estimation great again. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1521–1529, 2017. 2

[20] R Kesten, M Usman, J Houston, T Pandya, K Nadhamuni,
A Ferreira, M Yuan, B Low, A Jain, P Ondruska, et al. Lyft
level 5 av dataset 2019. urlhttps://level5. lyft. com/dataset,
2019. 6

[21] Thomas N. Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net, 2017. 2

[22] Devin Kreuzer, Dominique Beaini, William L Hamilton,
Vincent Létourneau, and Prudencio Tossou. Rethinking
graph transformers with spectral attention. arXiv preprint
arXiv:2106.03893, 2021. 5

[23] Jason Ku, Alex D Pon, and Steven L Waslander. Monoc-
ular 3d object detection leveraging accurate proposals and
shape reconstruction. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
11867–11876, 2019. 2

[24] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 6

[25] Buyu Liu, Bingbing Zhuang, Samuel Schulter, Pan Ji, and
Manmohan Chandraker. Understanding road layout from
videos as a whole. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4414–4423, 2020. 2

[26] Yong Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen.
Structure inference net: Object detection using scene-level
context and instance-level relationships. In Proceedings of

19536

the IEEE conference on computer vision and pattern recog-
nition, pages 6985–6994, 2018. 2

[27] Chenyang Lu, Marinus Jacobus Gerardus van de Molen-
graft, and Gijs Dubbelman. Monocular semantic occu-
pancy grid mapping with convolutional variational encoder–
decoder networks. IEEE Robotics and Automation Letters,
4(2):445–452, 2019. 2

[28] Kaustubh Mani, Swapnil Daga, Shubhika Garg, Sai Shankar
Narasimhan, Madhava Krishna, and Krishna Murthy Jataval-
labhula. Monolayout: Amodal scene layout from a single
image. In The IEEE Winter Conference on Applications of
Computer Vision, pages 1689–1697, 2020. 2

[29] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon
Mannion, and Michael M Bronstein. Fake news detection on
social media using geometric deep learning. arXiv preprint
arXiv:1902.06673, 2019. 2

[30] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and
Jana Kosecka. 3d bounding box estimation using deep learn-
ing and geometry. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7074–
7082, 2017. 2, 6

[31] Bowen Pan, Jiankai Sun, Ho Yin Tiga Leung, Alex Ando-
nian, and Bolei Zhou. Cross-view semantic segmentation
for sensing surroundings. IEEE Robotics and Automation
Letters, 2020. 2, 7, 8

[32] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding
images from arbitrary camera rigs by implicitly unproject-
ing to 3d. In Proceedings of the European Conference on
Computer Vision, 2020. 1, 2, 7, 8

[33] Patrick Poirson, Phil Ammirato, Cheng-Yang Fu, Wei Liu,
Jana Kosecka, and Alexander C Berg. Fast single shot detec-
tion and pose estimation. In 2016 Fourth International Con-
ference on 3D Vision (3DV), pages 676–684. IEEE, 2016. 2

[34] Thomas Roddick and Roberto Cipolla. Predicting semantic
map representations from images using pyramid occupancy
networks. In The IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020. 1, 2, 6, 7, 8

[35] Thomas Roddick, Alex Kendall, and Roberto Cipolla. Or-
thographic feature transform for monocular 3d object detec-
tion. In Proceedings of the British Machine Vision Confer-
ence (BMVC), 2019. 2

[36] Avishkar Saha, Oscar Mendez Maldonado, Chris Russell,
and Richard Bowden. Translating images into maps. arXiv
preprint arXiv:2110.00966, 2021. 1, 2, 6, 7, 8

[37] Avishkar Saha, Oscar Mendez, Chris Russell, and Richard
Bowden. Enabling spatio-temporal aggregation in birds-eye-
view vehicle estimation. In Proceedings of the International
Conference on Robotics and Automation, 2021. 1, 2, 7, 8

[38] Samuel Schulter, Menghua Zhai, Nathan Jacobs, and Man-
mohan Chandraker. Learning to look around objects for top-
view representations of outdoor scenes. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
787–802, 2018. 2

[39] Sunando Sengupta, Paul Sturgess, L’ubor Ladickỳ, and
Philip HS Torr. Automatic dense visual semantic mapping
from street-level imagery. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 857–
862. IEEE, 2012. 2

[40] Andrea Simonelli, Samuel Rota Bulo, Lorenzo Porzi,
Manuel López-Antequera, and Peter Kontschieder. Disen-
tangling monocular 3d object detection. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1991–1999, 2019. 2

[41] Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong
Jin, Andres Cubillos-Ruiz, Nina M Donghia, Craig R Mac-
Nair, Shawn French, Lindsey A Carfrae, Zohar Bloom-
Ackermann, et al. A deep learning approach to antibiotic
discovery. Cell, 180(4):688–702, 2020. 2

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 6

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph at-
tention networks. In International Conference on Learning
Representations, 2018. 2, 5

[44] Dequan Wang, Coline Devin, Qi-Zhi Cai, Philipp
Krähenbühl, and Trevor Darrell. Monocular plan view net-
works for autonomous driving. In 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 2876–2883. IEEE, 2019. 2

[45] Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin.
Fcos3d: Fully convolutional one-stage monocular 3d object
detection. arXiv preprint arXiv:2104.10956, 2021. 6, 7, 8

[46] Ziyan Wang, Buyu Liu, Samuel Schulter, and Manmohan
Chandraker. A parametric top-view representation of com-
plex road scenes. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 10325–
10333, 2019. 2

[47] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph
Gomes, Caleb Geniesse, Aneesh S Pappu, Karl Leswing, and
Vijay Pande. Moleculenet: a benchmark for molecular ma-
chine learning. Chemical science, 9(2):513–530, 2018. 2

[48] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi
Parikh. Graph r-cnn for scene graph generation. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 670–685, 2018. 2

[49] Yulei Yang and Dongsheng Li. Nenn: Incorporate node and
edge features in graph neural networks. In Sinno Jialin Pan
and Masashi Sugiyama, editors, Proceedings of The 12th
Asian Conference on Machine Learning, volume 129 of Pro-
ceedings of Machine Learning Research, pages 593–608.
PMLR, 18–20 Nov 2020. 2

[50] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor
Darrell. Deep layer aggregation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2403–2412, 2018. 6

19537

