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1. Objectives & Motivation
 

   Practical goal: generalise existing tennis video annotation 
system  =>  transfer learning where relevant.

 - Accomplished via the mono-modal and cross-modal      
bootstrapping of high-level visual/linguistic structures 

    -parallels innate human capabilities? 

     =>  psychological component of ACASVA

WHY SPORT VIDEO? 

  - Rich in terms of visual structures and rule-induction 
possibilities, all of which have strong linguistic correlates



1.1 Scientific & Engineering Motivations

Engineering problem:

  How do we connect low-level representations to the abstract structures 
governing  environment - can autonomously specify a formal  'grammar' 
 of entities/agents common to audio and vision?

Scientific problem:
a) How are visual grammars organised and employed in the learning problem?

b) How grammars modified by prior linguistic knowledge of the domain.

c) At what stage does formal abstraction of visual features takes place?

d) How do visual grammars map onto linguistic grammars?.    

e) How  inferred high-level linguistic concepts (e.g.  rules of an unfamiliar game) 
influence lower-level visual learning (e.g.  gaze-specification)?

Linking factor: cognitive bootstrapping



2. Key Themes

1. Cognitive Bootstrapping

    -induction of the representational hierarchy

-passing of hypotheses up and down the representational hierarchy     

2. Cross-Modality

    -passing hypotheses between differing modes of representational hierarchy

    -discovering common grammar underlying Visual/Aural grammars? 

     (agent/object/frame semantics are baseline a priori assumption in ACSAVA)

    -new event detection as DISTINCT from outlier detection (cf DIRAC) 

     Event is new if disparity between (weakly-constrained) unimodal classifier output and fused  
(highly constrained) classifier output, provided unimodal confidence high

 1. Cognitive Bootstrapping

    -induction of the representational hierarchy

    -passing of hypotheses up and down the representational hierarchy -

 bottom-up game rule induction, top-down specification of low-level features 
=> end up with GAME-RULE-SALIENT scene descriptors.

            



2. Cross-Modality -cont.

Model of Cross-modal Hypothesis Passing (Sound-> Vision):

The semantic parser (first-order logic-based) constitutes phrases as a relation between:

agents (e.g. players, officials), 

objects (e.g. the ball), 

actions (e.g. serving), 

reference-entities (e.g. the court),

abstract quantities (e.g. match-score)

E.G. The commentators phrase ``Henman hits the ball into the net'' refers to:

 Agent:: ``Henman'', object:``ball'', action: ``hits'', reference object: ``the net''.

 

Can extract semantic relations between the vocabulary entities (a 'player' always 'hits' a 
'ball', but not vice-versa) to render above phrase as a predicate sequence: 

     agent(player); object(ball); action(hits); reference-entity(net) 

 => can then be related to the high-level visual predicates (eg hypothesise that high visual 
saliency object at termination of ball trajectory correlates with the spoken word 'net)'



3. Transferable Learning Between Game Domains

       - Is it easier to port learning from the top or bottom of the hierarchy?

       - Also true for humans?  

4. Interdisciplinarity - Speech/Vision/Psychology

  ”Cognitive bootstrapping lies at the interface of the cognitive science and machine learning 
disciplines, being both a mechanism for learning performance optimisation as well as a  fact of human 
cognition. The concept is one that is susceptible to empirical definition via the methods of 
experimental psychology, and to direct stochastic and structural modelling by machine learning 
techniques.”

       - Two-way Scientific/Engineering collaboration:

         a) Engineering in assistance of scientific endeavour

             (eg behavioural mining of eye-tracking data)

                   b) Science to inspire & benchmark engineering solutions 

              (eg gaze base weak supervision, determining the order in which tennis 
rules induced, determining what is a hard problem)



3. Cognitive Bootstrapping
3.1 Cognitive Bootstrapping in machine learning:

Main FeaturesMain Features
1. Simultaneous Learning of Domain Model AND aptest Mode of Representation 
         - Issues of Philosophical foundation/Underdetermination of solutions

     => need objective constraints on representation

         - use efficiency (eg complexity of player model is dictated by induced rules), action-relevance

2. Representational Sumbsumption
         - progressive abstraction/decontextualisation of scene-description parameters    

3. Inter-level Feedback of Representational Hypotheses 
   - top-down feedback is most novel aspect of ACASVA

4. Potential to Relax Low-level Global Coherence/Consistency Requirements
Only require top-down consistency -cf Rensink?

3 Inter-level feedback of hypotheses

    - proof of convergence

           - horizontal/vertical em

           - very generalised hierarchical dirclet process       

 



Top-down, bottom-up iterative 
convergence



3.2 How Might Cognitive Bootstrapping 
Manifest Itself in the Human Domain?

1. Initially observer attends to multitude of low-
level features driven by visual/aural saliency

2. Observer induces partial game rules
3. Attention becomes focussed on rule-relevant 

entities
4. Focussed-attention permits deeper rule 

quantification (can assess independently)
5. Goto 3
=> should be apparent in gaze behaviour:







3.2 Theoretical Basis for Cognitive 
Bootstrapping
Have an a priori scene description  eg  edge/line detections, blob tracks etc

       - Not appropriate for task of game annotation 

(want 'Player A hits the ball into the net'-type description).

  - Is there an objective measure of the 'best' scene-description that can gives this type 
of output without it being specified in advance?

=>  YES:    Minimum Description Length (MDL) Minimum Description Length (MDL) :   

 Best Hypothesis H = min
H
  Length(H)  + Length(Data|H)

In parametric terms want to minimise: 
cost-of-scene-description=cost-of-parametrization+cost-of-parametric-description

     cost-of-parametrization is min. bit length of algorithm required to specify 
parametrized entities: cost-of-parametric-description is number bits 
required to describe scene using these parameters              



Argue most compact MDL description/coordinatisation of a sport match 
at a particular time IS IN TERMS OF GAME RULES -  EG:

match{1|2|3}, set{1|2|3}, game{1|2|3}, serve_end{top|bottom},  serve_end{left|right}, 
player_A_location{1111|1112|..},  player_B_location{1111|1112|..}, rally_no{1|2|..}        
+ player/ball offset terms (ie deviations from expected location}

 => parameters function as indexicals indexicals within the subsumption hierarchy

IF we have inferred game rules correctly, offset terms are confined with small area (a 
square, roughly), so that the above description is close to description length minimum.

IE MDL description= Most Rule-Salient Scene Description



Can approximate MDL (Kolmog.) complexity-gives Bayesian Information Criterion:

BIC cost= no parameters*ln(no samples0.5) - ln max liklihood(Data|parameters)

Hierarchical parameters co-index lower-level parameters (eg through progressive sub-
factoring),  so that no of parameters at level i appropriate to describing data of intrinsic 
dimensionality D is   ~ (no samples)^(1-i/D)

   => the number of parameters decreases with increasing i 

Also,  key criterion for generating additional parameters is that they 
reduce uncertainty => max liklihood(Data|parameters) increases with i.

Hence min BIC cost is dominated by max liklihood considerations 

=> can consider just the likelihood maximisation, provided is treated in 
appropriately subsumptive terms.

Max likelihood is always tractable if can use Expectation-Maximisation

(though local minima) => BIC is computable and tractable?



Illustration of Parametric Subsumption:











So, utilising parametric subsumption, we have that:

Most Rule-Salient Set of Scene Description=MDL=BIC=Max L

Usually, Expectation Maximisation (EM) renders max liklihood tractable:

      (iterate between allocating data to individual parameters on basis of parametruc 
expectation and then maximising likelihood of parameters given this data allocation)

However parametric-subsumption means cannot use straightforward EM 

-   need to iterate between (standard) 'horizontal'  EM and (new)  'vertical' EM 
(wherein data is allocated to subsumptive parametrisation on basis of expectation, 
and likelihood of novel parameters is maximised on the basis of this allocation)

 =>Equivalent to top-down, bottom-up cognitive bootstrap iterationcognitive bootstrap iteration

-allows us to prove that Cognitive Bootstrapping is convergent:



So, how do we make EM '2-dimensional', to take into account 
parameter subsumption?





IE 2D-EM is process of iteratively projecting  
progressively higher-level representational hypotheses 
onto sensor data, and testing for optimality

=>Since EM is convergent, Cognitive Bootstrapping is convergent 

   - iterative top-down, bottom-up process always reaches BIC 
minimum (possibly local)



NOTE - Two ways in which new high-level description can 
modify low-level description:

1.  Via the downward action of prior probabilities:

If new parameters are informative, can give rise to an improved  
separation between existing modes characteristics – ie existing 
indexicals now refer to better distinguished entities.

2.  Where resources are limited & low-level parametrisation is 
computationally expensive, can coarse graining over, or omit 
parametrisation of low-level entities not distinguished by higher level 
parameters. 

 eg  A subset of  parametrisation instances can be classed as 
'background'  due to not being rule-salient, such that no further 
parametric allocation (eg tracking) is carried out on them.

2.  Where resources are limited & low-level parametrisation is 
computationally expensive, can omit levels via coarse graining over, 
or omitting parametrisation of low-level entities not distinguished or 
not involved by higher level parameters. 

 eg   a subset of  parametrisation instances classed as 'background'  
due to  not being rule salient , so that no further parametric allocation 
(eg tracking) is carried out on them. 

 



 

One Other Cognitive Bootstrapping Issue: 
Choice of Base-level descriptors (input space)

Helps to choose a priori domain carefully:

 - want features that universalise across all court games 
as far as possible 

 IE SUCH THAT UNIVERSALISATION IS IMPLICIT IN 
PARAMETRIC SUBSUMPTION

Example: universal court area descriptors



    Tennis                    Badminton













4. Inspirations – Related projects

1. COSPAL 1. COSPAL 

-Parametric subsumption of representation, P-A learning

2. Modelling information seeking by integrating visual and  2. Modelling information seeking by integrating visual and  
semantic and memory maps semantic and memory maps 

 (University of Nice, University Joseph Fourier, Centre national de la recherche scientifique)

3. ViSiCAST3. ViSiCAST

  - First-order logic-based semantic DRS to mediate between visual & oral grammar

5. VAMPIRE Existing Stsyem -  (Bill 2 discuss)



4. VAMPIRE-Visual Active Memory Processes & Interactive REtrieval, 4. VAMPIRE-Visual Active Memory Processes & Interactive REtrieval, 
 -  Active memory system, operating at several different semantic levels, leading to a degree 

of machine understanding when applied to specific scenarios.

  - Demonstrate the Active Memory concept by applying it to the analysis and browsing of a 
tennis video. Annotation provided at all levels, from shot detection to a complete breakdown 
of the scoring during the match. 

5. DIRAC -5. DIRAC -Detection & Identification of Rare Audio-visual Cues Detection & Identification of Rare Audio-visual Cues 

  - Developing environment-adaptive autonomous artificial cognitive systems that will 
detect, identify and classify rare events from  multiple active information-seeking 
audio-visual sensors. 





In perception-action (P-A) learning, action precedes perception 

  - to reduce complexity, only consider perceptual                       
states that distinguish results of agent actions 

=> The creation of novel symbolic representation of the 
      world can only occur in relation to the heirarchical 
      acquisition of novel abstract action capabilities.

  - Perceptual framework can be falsified by                                
exploratory actions in same way as the agent's                       
external world model

 

    4.1 COSPAL 



COSPAL test domain: The 'shape-sorter' puzzle
 



1) Bootstrapping Representations 
in the Logical  Domain

Three principle stages:



1) Randomised exploratory activity  
    carried out in terms of all levels of current                           

world-model/representational-framework

2) Induction of gen. rules governing action legitimacy
    (legitimacy: action does what agent intends)
     = affordance-based model of world

3) Remapping of Perceptual Variables to represent                    
 action model in most efficient manner (=P-A condition)

{Action Possibilities} <=>  {P_revised} X {P_revised}. 

                                    REPEAT  



  

Remapping the Percept Space 
After ILP (Example).

 Suppose that after limited exploration we have inferred a 
partially accurate representation of the shape-sorter rules in 
terms of the a priori predicates 'position' (positional 
occupancy) and 'inc_z' (vertical adjacency):

      move(X1,Y1,Z1,X2,Y2,Z2) :- position(A,X1,Y1,Z1),          
 inc_z(Z3,Z2), position(B,X2,Y2,Z2)

 (ie 'entity labelled A can be moved onto entity labelled B')



  

 Can represent clause I/O structure as the 
following schematic:



  

 By defining predicates as functionally reversible, possible to 
instantiate all of the legitimate moves via the variables (A,B) 
rather than the original (X1,Y1,Z1,X2,Y2,Z2).

 ie      move(X1,Y1,Z1,X2,Y2,Z2) => move(A,B)

 => Have implicitly remapped the original three-dimensional percept        
space (X, Y, Z)  into two new one-dimensional 'spaces' (A & B).

       {Action Possibilities} <=>  {P_revised }X {P_revised}.

 => Have reconceived the percept space in terms of the high-level 
concepts objects and surfaces, rather than the lower-level concept 
position.



  

Cognitive Bootstrapping as Active Learning

  Employ remapped percept space to (randomly) propose 
percept states to which  exploratory movement can take place.

      (ie drive exploration from newly-inferred higher-level 
perceptual categories) 

    - should cause faster convergence on objective model because 
actions capable of  falsifying existing models are  found far 
sooner.

  



  

Experimental Results 
 Active Learning Performance verses Passive Learning Performance:

 Convergence ~7 times faster on average (defined as time taken to attain 
<0.5 percent of maximum accuracy).

       (also higher maximum achieved)



  

 The Sub-Logical Bootstrapping Architecture

•  Involves two stages: 1) aquiring a primitive motor capability and 2) model refinement.
•  Four stage cascade process: each step is a separate perception-action cycle.
•  Again, the world model is a hierarchical structure of behavioural models and perceptual 
concepts.

Current 
Capabilities



  

STAGE 1) primitive goal detection and determination of motor 
constraints via perceptual variables:

Observe supervised shape-sorter solving: determine behaviour 
histogram in a priori perceptual parameter space

      - use saliency thresholds to determine goal parameters 

=> symbolic, context-free parametrisation of  shape-sorter perceptual goals
     - can then  be mapped onto parameters of existing motor capabilities by 
       stochastic exploration  



  

 STAGE 2) Perform stochastic exploration within the domain of generalisations of  
existing capabilities to find an action model instantiation satisfying the current goal.  

 Progress towards goal measured by introducing a perceptual distance function. 

 = >do this by randomly concatenating sequences of existing motor capabilities        
indexed by primitive symbolic goals

M(x,y)= Move to (X,Y)

G(s) =Grip/Ungrip

 
O(n) =Move to Object n



  

Established Capabilities

Random Instantiation
of Sequence Parameters 

Remove Redundant Chains 
(no or -ve effect on goal distance)

Remove Redundant Parameters
(always instantiated to constant – eg 'grip')

Define Novel Action Capability 
(with own perceptual parametrisation)

We then generalise the behavioural capabilities by 
mapping into a more compact parameter domain:



  

Results

1) Computational requirements of learning
progressive puzzle-competences for 
Bootstrapping/Non-Bootstrapping algorithms

2) Puzzle Solving Rate per Competence Level:
(1) Simple hierarchically-guided environment
(2) Simple autonomous environment
(3) Autonomous environment with distractors

3) Evolution of motor parameters in the
Bootstrapping/Non Bootstrapping regimes

n=number of P-A cycles
n

p
=number of parameters



  

4.2 Integrating visual, semantic and 
memory maps

Myriam Chanceaux 1 2, Anne Guérin-Dugué 1, Benoît Lemaire 2, Thierry Baccino 3

1 Laboratoire TIMC-IMAG, Faculté de Médecine, Domaine de la Merci, 38700 La Tronche 
2 Laboratoire GIPSA-lab, INPG, 46 av. Félix Viallet, 38031 Grenoble cedex 
3 Université de Nice Sophia Antipolis, 06357 Nice



Information seeking: 3 processes

Visual:
● Model based on the feature integration theory (Treisman & Gelade, 1980)

● Itti's model (Itti & Koch, 2000)

Semantic:
● Latent Semantic Analysis, Colides (Kitajima, Blackmon, & Polson, 2000)

Guidance memory:
● Inhibition of return (IOR) (Klein, 1988)

51
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Our model: Integration of 3 maps
For a given fixation : compute the weights of each words and choose  the next 
fixated word 
The map are conditionned on the current fixation and the memory map depends 
on all the previous fixations

v + s + m =Visual 
SaliencyMap

Memory 
Map

Semantic 
Map

Main Map

v + s + m = 1
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Visual map
 
a classical visual saliency map multiplied by a 
filter corresponding to
the visual acuity per degree of eccentricity.

Weight(w) = Saliency(w)*VAcuity(w, currentfix)

Saliency(w) = nbChar(w)/9*(fontSize(w)/19)^2
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Semantic map

• If the fixated word is semantically 
close to the definition: neighbourhood 

• If the fixated word is semantically 
away from the definition: 
neighbourhood 

• If the fixated word is neutral with 
regard to the definition (cos = 0.2): it 
does nothing

● LSA simulates word–word semantic relatedness

Short angle=large cosine 

value=semantically close 
Large angle=short cosine 
value=semantically far away 
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Memory map

• Inhibition Of Return

• Forgetting mechanism

• Memory of the path 
decreasing with time
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Validation
Based on experimental data:

● 43 subjects, scanpaths registered with eyetracker: EyeLink II

● 18 trials/subject

● 3 visual conditions (within-subject)

● 2 semantic conditions (between-subject)

Need of high level variables to 
compare data and model

● number of fixations until target is found

● average angle between saccades 

● rate of spatial progressive saccades



57

What are the "good" parameters for the model? 
All combinations of parameters V, S and M were tested

Weights with minimum error are the following:
– number of fixations until target is found (F): V = 0.3, S = 0.1, M = 0.6;
– average angle between saccades (A): V = 0.25, S = 0, M = 0.75;
– rate of progression saccades (S): V = 0.35, S = 0, M = 0.65;

Comparison of human distribution of
saccades with the best model.(V

)

(M)

V + M + S = 1

Average relative errors for all values of V and M

V = .30, M = .60, S = .10



  

5. Work Programme

WP1: Data Collection (CVSSP, DoP & CMP)

T1.1 Obtain machine-learning footage; 

T1.2 Obtain psychology footage; 

T1.3 Obtain annotation data-base.

   

WP2: Psychological study of human learning in the sports video domain 
(DoP)

T2.1 Determine the number and nature of the differing gaze-attention 
behavioural classes w.r.t familiar sport footage; 

T2.2 Determine the evolution of these classes w.r.t unfamiliar  footage; 
T2.3 Compile a functional model of cognitive bootstrapping in human 
cognitive domain.



  

WP3: Development and maintenance of cognitive video annotation 
system  (CVSSP)

     T3.1 Generalise reference feature recogniser, object and agent 
trackers; 

T3.2 Generalise interface to rule set module;  

T3.3 Build any additional structures pertinent to automated cognition 
as suggested by WP2;  

T3.4 Add Rule induction module;

T3.5 Add  high-to-low-level cognitive feedback module; 

T3.6 Add perceptual remapping module; 

T3.7 Add match-commentary segmentation module;   

T3.8 Carry out code maintenance and optimisation.

 



  

WP4: Evaluation of transferable learning ability in the visual 
domain  (CVSSP)

1. Transferable learning from tennis singles to tennis  doubles}. These have identical low-level visual features, but 
differing  rule protocols, serving to test logical induction given a fixed visual feature set.

2. Transferable learning from singles tennis (Wimbledon) to singles  (French Open)}. These have identical high-level 
rule protocols, but differing low-level features.

3. Transferable learning from singles tennis to doubles badminton}.   These games significantly differ at both the high {\it 
and} low-levels of  representation:  hypotheses  must propagate both  up and down the learning hierarchy.

T4.1 Evaluation of transferable learning of low-level vision primitives; 
T4.2 Evaluation of transferable learning of high-level game-
representations;  

T4.3  Evaluation of bidirectional  learning transfer for full cognitive 
bootstrapping module.



                                    

                                   ====>



  

WP5. Investigation of the effect of linguistic moderation on human 
learning (DoP/CMP)

 1. How prior verbal descriptions of game protocol affect the induction of 
low-level visual representation.

2.  How  exposure to match commentary affects the induction of high 
and low level representations}. 

T5.1 Determine how prior descriptions of game protocol affect the 
induction of low level visual features; 

T5.2 Determine how exposure to match commentary affects  
induction of high and low-level visual features; 

T5.3 Establish how visual grammar schematics correlate with the 
abstract match-commentary representation of WP6.



  

WP6:  Integration of Speech and Language Technology (CMP/CVSSP)

T6.1 Construction of initial speech-recognition system for transcribing 
audio; 

T6.2 Construction of initial semantic parser for transposing commentary 
in action/ agent/referent/abstraction predicate-terms; 

T6.3 Modification of parser & recognition systems to incorporate cross-
modal bootstrapping;  

T6.4 Construction of demonstrator.

WP7: Management & dissemination (CVSSP)





Nominal job allocations at CVSSP 
(with many horizontal/vertical overlaps)

Josef: Principle Investigator
Me: Project Coordinator
Teo: action classification  + eye-tracking behavioural mining 
Aftab: rule induction/top-down feedback
Fei: ball/shuttlecock tracking
Ibrahim: HMM universalisation, cross-modality
Bill: code-base overseer
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Results on data subjects 

Significant difference 
(p=0.036)

Significant difference 
(p<0.001)

Significant difference 
(p<0.02)



Demonstration

12-13 May Myriam Chanceaux - ICVW 2008 67



  

 Supervised Learning Framework

Symbolic goal: an element of the symbolic perceptual domain (ie a subset of the original 
feature space with the redundant context eliminated).
  => Goals are therefore parametrised by the features salient to the current learning 
scenario. 

 x1,y1, n1 

 x2,y2,n2 

x1≠ x2

y1≠ y2

n1=n2

{}{}

eg Movement of object n1 onto n2 involves 6 perceptual parameters 
(x1,y1,n1,x2,x2,n2)
 
           - however the goal can be specified by just 2 parameters: (n1,n2).
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