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1. Objectives & Motivation

Practical goal: generalise existing tennis video annotation
system => transfer learning where relevant.

- Accomplished via the mono-modal and cross-modal
bootstrapping of high-level visual/linguistic structures

-parallels innate human capabilities?
=> psychological component of ACASVA

WHY SPORT VIDEO?

- Rich in terms of visual structures and rule-induction
possibilities, all of which have strong linguistic correlates
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1.1 Scientific & Engineering Motivations

Engineering problem:

How do we connect low-level representations to the abstract structures
governing environment - can autonomously specify a formal 'grammar’
of entities/agents common to audio and vision?

Scientific problem:
a) How are visual grammars organised and employed in the learning problem?

b) How grammars modified by prior linguistic knowledge of the domain.
c) At what stage does formal abstraction of visual features takes place?
d) How do visual grammars map onto linguistic grammars?.

e) How inferred high-level linguistic concepts (e.g. rules of an unfamiliar game)
influence lower-level visual learning (e.g. gaze-specification)?
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2. Key Themes

1. Cognitive Bootstrapping
-induction of the representational hierarchy
-passing of hypotheses up and down the representational hierarchy

2. Cross-Modality
-passing hypotheses between differing modes of representational hierarchy

-discovering common grammar underlying Visual/Aural grammars?
(agent/object/frame semantics are baseline a priori assumption in ACSAVA)
-new event detection as DISTINCT from outlier detection (cf DIRAC)

Event is new if disparity between (weakly-constrained) unimodal classifier output and fused
(highly constrained) classifier output, provided unimodal confidence high
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2. Cross-Modality -cont.
Model of Cross-modal Hypothesis Passing (Sound-> Vision):

The semantic parser (first-order logic-based) constitutes phrases as a relation between:
agents (e.g. players, officials),
objects (e.g. the ball),
actions (e.g. serving),

reference-entities (e.g. the court),
abstract quantities (e.g. match-score)

E.G. The commentators phrase ~“Henman hits the ball into the net" refers to:
Agent:: "Henman", object:. "ball", action: " hits", reference object: "the net".

Can extract semantic relations between the vocabulary entities (a 'player’ always ‘'hits' a
‘ball', but not vice-versa) to render above phrase as a predicate sequence:

agent(player); object(ball); action(hits); reference-entity(net)

=> can then be related to the high-level visual predicates (eg hypothesise that high visual
saliency object at termination of ball trajectory correlates with the spoken word 'net)’



3. Transferable Learning Between Game Domains
- Is it easier to port learning from the top or bottom of the hierarchy?
- Also true for humans?

4. Interdisciplinarity - Speech/Vision/Psychology

"Cognitive bootstrapping lies at the interface of the cognitive science and machine learning

disciplines, being both a mechanism for learning performance optimisation as well as a fact of human
cognition. The concept is one that is susceptible to empirical definition via the methods of
experimental psychology, and to direct stochastic and structural modelling by machine learning

techniques.”

- Two-way Scientific/lEngineering collaboration:

a) Engineering in assistance of scientific endeavour
(eg behavioural mining of eye-tracking data)
b) Science to inspire & benchmark engineering solutions

(eg gaze base weak supervision, determining the order in which tennis
rules induced, determining what is a hard problem)
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3. Cognitive Bootstrapping

3.1 Cognitive Bootstrapping in machine learning:

Main Features

1. Simultaneous Learning of Domain Model AND aptest Mode of Representation
- Issues of Philosophical foundation/Underdetermination of solutions
=> need objective constraints on representation
- use efficiency (eg complexity of player model is dictated by induced rules), action-relevance

2. Representational Sumbsumption
- progressive abstraction/decontextualisation of scene-description parameters

3. Inter-level Feedback of Representational Hypotheses
- top-down feedback is most novel aspect of ACASVA

4. Potential to Relax Low-level Global Coherencel/Consistency Requirements
Only require top-down consistency -cf Rensink?
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3.2 How Might Cognitive Bootstrapping
Manifest Itself in the Human Domain?

1. Initially observer attends to multitude of low-
level features driven by visual/aural saliency

2. Observer induces partial game rules

3. Attention becomes focussed on rule-relevant
entities

4. Focussed-attention permits deeper rule
guantification (can assess independently)

5. Goto 3
=> should be apparent in gaze behaviour:



Visual (edge, corner, motion)—Saliency—based Fixation
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Rule-Saliency—based Fixation
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3.2 Theoretical Basis for Cognitive

Bootstrapping

Have an_a priori scene description eg edge/line detections, blob tracks etc
- Not appropriate for task of game annotation
(want 'Player A hits the ball into the net'-type description).

- Is there an objective measure of the 'best' scene-description that can gives this type
of output without it being specified in advance?

=> YES: Minimum Description Length (MDL) :
Best Hypothesis H = min,, Length(H) + Length(Data|H)

In parametric terms want to minimise;
cost-of-scene-description=cost-of-parametrization+cost-of-parametric-description

cost-of-parametrization is min. bit length of algorithm required to specify
parametrized entities: cost-of-parametric-description is number bits
required to describe scene using these parameters



Argue most compact MDL description/coordinatisation of a sport match
at a particular time IS IN TERMS OF GAME RULES - EG:

match{1|2|3}, set{1|2|3}, game{1|2|3}, serve_end{top|bottom}, serve_end{left|right},
player A location{1111|1112|..}, player B location{1111|1112|..}, rally _n°{1|2|..}
+ player/ball offset terms (ie deviations from expected location}

=> parameters function as indexicals within the subsumption hierarchy

IF we have inferred game rules correctly, offset terms are confined with small area (a
square, roughly), so that the above description is close to description length minimum.

IE MDL description= Most Rule-Salient Scene Description
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Can approximate MDL (Kolmog.) complexity-gives Bayesian Information Criterion:

BIC cost= n° parameters*In(n° samples®®) - In max liklihood(Data|parameters)

Hierarchical parameters co-index lower-level parameters (eg through progressive sub-
factoring), so that n° of parameters at level i appropriate to describing data of intrinsic
dimensionality Dis ~ (n samples)’\(1-i/D)

=> the number of parameters decreases with increasing i

Also, key criterion for generating additional parameters is that they
reduce uncertainty => max liklihood(Data|parameters) increases with |.

Hence min BIC cost is dominated by max liklihood considerations




lllustration of Parametric Subsumption:



Cross—Road Descriptors: level 1

pararoetric dezeniption: (pxl.pyl,prd py2.px3, pyipxd,pyvd .., camx, cary, velx, vely)




{Cross—Road Descriptors: level 2
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Cross—Road Descriptors: level 3
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Cross—Road Descriptors: level 4
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So, utilising parametric subsumption, we have that:

Most Rule-Salient Set of Scene Description=MDL=BIC=Max L

Usually, Expectation Maximisation (EM) renders max liklihood tractable:

(iterate between allocating data to individual parameters on basis of parametruc
expectation and then maximising likelihood of parameters given this data allocation)

However parametric-subsumption means cannot use straightforward EM

- need to iterate between (standard) 'horizontal' EM and (new) 'vertical' EM
(wherein data is allocated to subsumptive parametrisation on basis of expectation,
and likelihood of novel parameters is maximised on the basis of this allocation)

=>Equivalent to top-down, bottom-up cognitive bootstrap iteration

-allows us to prove that Cognitive Bootstrapping is convergent:



So, how do we make EM '2-dimensional’, to take into account
parameter subsumption?

Standard EM: Log likelihood may be "demarginahsed’ as follows:

((121) = logp(W | Iiiy) = log Zep(We , 2| 1im1) (1)
where the scene description for ¢ < T at level § — 1 is given by W and
g=1z1,22,... = () 18 vector of allocations of the input data W to level
i — 1 parameters, [, .

We can prove that :

—

E(1:21) = F(Iio1,9) + Dice(a(2)||p(zWe, L-1)) (2]
(D 1s the KL distance)
smee g = 0, we find that FI:I,-:, .q) 15 a lower bound of g’“i__'l s

F(i-1.q) itself can he maximised via alternate maximisation of the com-
ponent parameters, g and [;_;: (ie can prove alternate steps always in-
- = - - 5 - . - . a
crease F(Li_y.q)). F(fi-1.q) 15 maximised wrt g for iteration j when g =

o(Z|WT, (1,2, )9).

Thus, process mvolves iteratively caleulating expected allocation of = for a
- =, - - " = L] 1 -
cwven [;_y. and then maximising [, wrt this allocation. The process is

always tractable and convergent.



A 'wertical’ component 15 required to make the subsumption of param-
eters generally tractable. Having mascamised the mdiv iduﬂl lewvel's paramet-
ric/world description likelihoods ({1, ) = log pi:lii £ I L) now wish to fined

the argument that maximises £ [ﬂ;:l = log p(W, |f:,¢
Proceeding as for the standard EM algornthm:

£(fe) = log p(W | ) = log Bzp(W{, Z|0z) (3)
z-lgﬂill.. Celll prones

(1) = F(F.Q) + Dyo (Q(2)[p(ZIWT, 1)) (4)

where:

—+ pl W i

F'(I, Q) = 22Q(Z) log

'-'JIZE."-'

Z now represents the allocation of W = (W™ ta the [.‘Iﬂl’ﬂl'.[l["tl!lr‘i I,
of all of mdridual levels below £+ 1 [m hich we know we can maximse
individually via the horizontal EM process above ).



Following the ‘expectation’ step allocating ), the next step 1s to max-
imise ' [y, Q) with this €} allocation fixed. This is done by determining a
snper-ordinating parameter candidate E [:icr E midexes f.-:.] that maximises
the likelihood I = ﬂ-‘i’ll’-”’—r — log p{{WT )7, f,-__.||f_j. As i general EM. final
convergence of the process oceurs when no Further inerease in Y| f;.fj] 15
observed ie when I, = I (i the parametrisation matches that intrinsic to
the data ).

Since I'( I, €2) constitutes a lower bound on the likelihoad, as is always
mereasing, we have thus proved that the process of cognitive booting mmst
he convergent, (QED

IE 2D-EM is process of iteratively projecting
progressively higher-level representational hypotheses
onto sensor data, and testing for optimality

=>Since EM is convergent, Cognitive Bootstrapping is convergent

- iterative top-down, bottom-up process always reaches BIC
minimum (possibly local)



NOTE - Two ways in which new high-level description can
modify low-level description:

1. Via the downward action of prior probabilities: sV W) #p(WT,)

If new parameters are informative, can give rise to an improved
separation between existing modes characteristics — ie existing
indexicals now refer to better distinguished entities.

2. Where resources are limited & low-level parametrisation is
computationally expensive, can coarse graining over, or omit
parametrisation of low-level entities not distinguished by higher level
parameters.

eg A subset of parametrisation instances can be classed as
'‘background’ due to not being rule-salient, such that no further
parametric allocation (eg tracking) is carried out on them.



One Other Cognitive Bootstrapping Issue:
Choice of Base-level descriptors (input space)

Helps to choose a priori domain carefully:

- want features that universalise across all court games
as far as possible

IE SUCH THAT UNIVERSALISATION IS IMPLICIT IN
PARAMETRIC SUBSUMPTION

Example: universal court area descriptors




Tennis Badminton
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Hough transform output
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Player relative line—labelling
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Tennis Serve Badminton Serve

(0,-3,42,2)
Serve defined as: Serve defined as:
(-1,0,0,+1) <<0,-3.+2,-2) (-1,4+1,0.+2) <H0,-2+1,-1)
Heirarchy of visual descriptors: Parametric
Subsumption
pixel level:  (25,33,36,43) <— (32,5,73,13) (24,43,32,53) < (34,14,44,25)
Hough box: (-1,0,0,4+1) <+0,-3,4+2,-2) (-1,4+1,0,+2) «<—(0,-2.+1,-1)

Description from

Hough sign: (—ve,+ve,—ve,+ve) <— (+ve,—ve +ve,—ve) (—ve,+ve,—ve,+ve) <— (+ve,—ve,+ve,—ve) Indentical Serve
¥ 1This point of Heirarchy

H. sign contract: (—ve,+ve) <— (+ve,—ve) (—ve,+ve) <— (+ve,—ve)



————————
4. Inspirations — Related projects

1. COSPAL

-Parametric subsumption of representation, P-A learning

2. Modelling information seeking by integrating visual and
semantic and memory maps

(University of Nice, University Joseph Fourier, Centre national de la recherche scientifique)

3. ViSICAST

- First-order logic-based semantic DRS to mediate between visual & oral grammar



4. VAMPIRE-Visual Active Memory Processes & Interactive REtrieval,

- Active memory system, operating at several different semantic levels, leading to a degree
of machine understanding when applied to specific scenarios.

- Demonstrate the Active Memory concept by applying it to the analysis and browsing of a
tennis video. Annotation provided at all levels, from shot detection to a complete breakdown
of the scoring during the match.

5. DIRAC -Detection & ldentification of Rare Audio-visual Cues

- Developing environment-adaptive autonomous artificial cognitive systems that will
detect, identify and classify rare events from multiple active information-seeking
audio-visual sensors.
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4.1 COSPAL

In perception-action (P-A) learning, action precedes perception

- to reduce complexity, only consider perceptual
states that distinguish results of agent actions

=> The creation of novel symbolic representation of the
world can only occur in relation to the heirarchical
acquisition of novel abstract action capabilities.

- Perceptual framework can be falsified by
exploratory actions in same way as the agent's
external world model




COSPAL test domain: The 'shape-sorter' puzzle




1) Bootstrapping Representations
in the Logical Domain

Three principle stages:
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1) Randomised exploratory activity

carried out in terms of all levels of current
world-model/representational-framework

2) Induction of gen. rules governing action legitimacy
(legitimacy: action does what agent intends)
= affordance-based model of world

3) Remapping of Perceptual Variables to represent
action model in most efficient manner (=P-A condition)

{Action Possibilities} <=> {P_revised} X {P_revised}.

REPEAT




—!
Remapping the Percept Space

After ILP (Example).

O Suppose that after limited exploration we have inferred a
partially accurate representation of the shape-sorter rules in
terms of the a priori predicates 'position' (positional
occupancy) and 'inc_z' (vertical adjacency):

move(X1,Y1,Z21,X2,Y2,7Z2) :- position(A,X1,Y1,Z1), |
inc_z(Z3,Z2), position(B,X2,Y2,7.2)

O (ie 'entity labelled A can be moved onto entity labelled B')



O Can represent clause 1I/O structure as the
following schematic:
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O By defining predicates as functionally reversible, possible to
instantiate all of the legitimate moves via the variables (A,B)
rather than the original (X1,Y1,21,X2,Y2,72).

O je move(X1,Y1,21,X2,Y2,7Z2) => move(A,B)

=> Have implicitly remapped the original three-dimensional percept
space (X, Y, Z) into two new one-dimensional 'spaces' (A & B).

{Action Possibilities} <=> {P_revised }X {P_revised}.

=> Have reconceived the percept space in terms of the high-level
concepts objects and surfaces, rather than the lower-level concept
position.
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Cognitive Bootstrapping as Active Learning

O Employ remapped percept space to (randomly) propose
percept states to which exploratory movement can take place.

(ie drive exploration from newly-inferred higher-level
perceptual categories)

- should cause faster convergence on objective model because
actions capable of falsifying existing models are found far
sooner.




Experimental Results

O Active Learning Performance verses Passive Learning Performance:
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O Convergence ~/ umes Ldster on averdge (uetlnea as time taken to attain
<0.5 percent of maximum accuracy).

(also higher maximum achieved)



The Sub-Logical Bootstrapping Architecture
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» Again, the world model is a hierarchical structure of behavioural models and perceptual
concepts.



STAGE 1) primitive goal detection and determination of motor
constraints via perceptual variables:

Observe supervised shape-sorter solving: determine behaviour
histogram in a priori perceptual parameter space

- use saliency thresholds to determine goal parameters_
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=> symbolic, context-free parametrisation of shape-sorter peAlrceptual goals
- can then be mapped onto parameters of existing motor capabilities by
stochastic exploration



STAGE 2) Perform stochastic exploration within the domain of generalisations of
existing capabilities to find an action model instantiation satisfying the current goal.

Progress towards goal measured by introducing a perceptual distance function.

= >do this by randomly concatenating sequences of existing motor capabilities
indexed by primitive symbolic goals

O(n) =Move to Object n

G(s) =Grip/Ungrip
M(x,y)= Move to (X,Y)

Cl(p) : M(x.,v,) Of(m) G{s1)

(_Tz(p) : G(Sz) 'O(I?z) J'Il:f(.iﬁ:., }’2)

C_Yk(p) : 'O(I?s;) G(Ss;) ﬂ’f(xk, :":k)




We then generalise the behavioural capabilities by
mapping into a more compact parameter domain:

Established Capabilities ~ (&) (6o ) CR@ ) (Cony

Random Instantiatio

of Sequence Parameters (/) G(sx) | C(1 X ) R(a,) | M(x,.v,)
Remove Redundant Chains | |
(no or -ve effect on goal distance) s ;0 R(a,)

Remove Redundant Parameters \* /

(always instantiated to constant — eg 'grip') | € (77, X, Vi)

Define Novel Action Capability l
(with own perceptual parametrisation) H(d,)
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4.2 Integrating visual, semantic and
Mmemory maps
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Information seeking: 3 processes

*Visual:

® Model based on the feature integration theory (Treisman & Gelade, 1980)
® Itti's model (Itti & Koch, 2000)
* Semantic:
® Latent Semantic Analysis, Colides (Kitajima, Blackmon, & Polson, 2000)
* Guidance memory:

® Inhibition of return (IOR) (Klein, 1988)

51



Our model: Integration of 3 maps

For a given fixation : compute the weights of each words and choose the next
fixated word

The map are conditionned on the current fixation and the memory map depends
on all the previous fixations

Visual Semantic Memory

Main M
A% SaliencyMap +S Map +m Map A Viap

v+s+m=1
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a classical visual saliency map multiplied by a

Vlsual map filter corresponding to

the visual acuity per degree of eccentricity.

Visual Map

Weight(w) = Saliency(w)*V Acuity(w, currentfix)

Saliency(w) = nbChar(w)/9*(fontSize(w)/19)A2

o

Resolution

cachette
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Memory map
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Validation
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What are the "good" parameters for the model?

ALl hinati : V. S 1 M 1
Weights with minimum error are the following:

— number of fixations until target is found (F): V=0.3, S=0.1, M = 0.6;

— average angle between saccades (A): V =0.25,S=0, M =0.75;

— rate of progression saccades (S): V =0.35, S =0, M = 0.65;

Average relative errors for all values of V and M

oo | Comparison of human distribution of
> 08 saccades with the best model.
\ 4
= 07 L a0 _ — —
< o V=.30,M=.60,S=.10
Dog 106
v Distribution of saccade amplitude
g 05 -0.5
E 04F 10.4 H "human data"
=S
_U_'l 0.3 =0.3 . I .
> 02l 05 5

01 0.1 §

ol |
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Memory weight (M) N T O
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5. Work Programme

WP1: Data Collection (CVSSP, DoP & CMP)
T1.1 Obtain machine-learning footage;
T1.2 Obtain psychology footage;

T1.3 Obtain annotation data-base.

WP2: Psychological study of human learning in the sports video domain
(DoP)

T2.1 Determine the number and nature of the differing gaze-attention
behavioural classes w.r.t familiar sport footage;

T2.2 Determine the evolution of these classes w.r.t unfamiliar footage;
T2.3 Compile a functional model of cognitive bootstrapping in human
cognitive domain.



WP3: Development and maintenance of cognitive video annotation
system (CVSSP)

T3.1 Generalise reference feature recogniser, object and agent
trackers;

T3.2 Generalise interface to rule set module;

T3.3 Build any additional structures pertinent to automated cognition
as suggested by WP2;

T3.4 Add Rule induction module;

T3.5 Add high-to-low-level cognitive feedback module;
T3.6 Add perceptual remapping module;

T3.7 Add match-commentary segmentation module;
T3.8 Carry out code maintenance and optimisation.
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WP4: Evaluation of transferable learning ability in the visual
domain (CVSSP)

1. Transferable learning from tennis singles to tennis doubles}. These have identical low-level visual features, but
differing rule protocols, serving to test logical induction given a fixed visual feature set.

2. Transferable learning from singles tennis (Wimbledon) to singles (French Open)}. These have identical high-level
rule protocols, but differing low-level features.

3. Transferable learning from singles tennis to doubles badminton}. These games significantly differ at both the high {\it
and} low-levels of representation: hypotheses must propagate both up and down the learning hierarchy.

T4.1 Evaluation of transferable learning of low-level vision primitives;
T4.2 Evaluation of transferable learning of high-level game-
representations;

T4.3 Evaluation of bidirectional learning transfer for full cognitive
bootstrapping module.
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WPS5. Investigation of the effect of linguistic moderation on human
learning (DoP/CMP)

1. How prior verbal descriptions of game protocol affect the induction of
low-level visual representation.

2. How exposure to match commentary affects the induction of high
and low level representations}.

T5.1 Determine how prior descriptions of game protocol affect the
induction of low level visual features;

T5.2 Determine how exposure to match commentary affects
induction of high and low-level visual features;

T5.3 Establish how visual grammar schematics correlate with the
abstract match-commentary representation of WP6.



WP6: Integration of Speech and Language Technology (CMP/CVSSP)

T6.1 Construction of initial speech-recognition system for transcribing
audio;

T6.2 Construction of initial semantic parser for transposing commentary
In action/ agent/referent/abstraction predicate-terms;

T6.3 Modification of parser & recognition systems to incorporate cross-
modal bootstrapping;

T6.4 Construction of demonstrator.

WP7: Management & dissemination (CVSSP)



1 June 2008 1 June 2009 1 June 2010 1 June 2011 1 June 201<
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KEY
RA1 — CVSSP Research Associate NR1 — CVSSP Named Researcher (20% time commitment)
RA2 - " " " CO1 — CVSSP Co—Investigator (60% time commitment)
RA3 — DoP Research Associate CO2 — DoP Co—Investigator (10% time commitment)
RA4 — CMP Research Associate PI1 — CVSSP Principal Investigator (10% time commitment)
D1 — CVSSP Ph.D. (Research Topic: Cognitive Bootsrapping) PI2 — DoP Principal Investigator (5% time commitment)
D2 — CVSSP Ph.D. (Research Topic: Cross—Modal Grammars) PI3 — CMP Principal Investigator (10% (ime commitment)




Nominal job allocations at CVSSP
(with many horizontal/vertical overlaps)

Josef: Principle Investigator

Me: Project Coordinator

Teo: action classification + eye-tracking behavioural mining
Aftab: rule induction/top-down feedback

Fei: ball/shuttlecock tracking

Ibrahim: HMM universalisation, cross-modality

Bill: code-base overseer



Results on data subjects
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Supervised Learning Framework

Symbolic goal: an element of the symbolic perceptual domain (ie a subset of the original
feature space with the redundant context eliminated).
=> Goals are therefore parametrised by the features salient to the current learning

scenario.
(x1,yl,nl)

xl?éx2
Y17 Yo
n, =n,

R

%’1 TVeleeilt gf cga)]ect nl onto n2 involves 6 perceptual parameters

- however the goal can be specified by just 2 parameters: (n1,n2).
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