Progress with players action recognition

Teo de Campos

CVSSP – Centre for Vision Speach and Signal Processing University of Surrey

2nd ACASVA meeting, 13 January 2010

Teo de Campos (Univerisity of Surrey)

Players Action Recognition

ACASVA 2 1 / 36

Overview of the vision tasks

- Difficulties with the VAMPIRE system
- Data acquisition

Player Detection

- Processing foreground blobs for player detection
- Using parts-based person detector
- 3 Action Recognition
- 4 Future work

References

・ 同 ト ・ ヨ ト ・ ヨ

Overview of the vision tasks

- Difficulties with the VAMPIRE system
- Data acquisition

Player Detection

- Processing foreground blobs for player detection
- Using parts-based person detector

3 Action Recognition

4 Future work

References

< ∃ > .

Overview of the vision tasks

- Difficulties with the VAMPIRE system
- Data acquisition

Player Detection

- Processing foreground blobs for player detection
- Using parts-based person detector
- 3 Action Recognition

4 Future work

References

Overview of the vision tasks

- Difficulties with the VAMPIRE system
- Data acquisition

Player Detection

- Processing foreground blobs for player detection
- Using parts-based person detector
- 3 Action Recognition

4 Future work

References

Overview of the vision tasks

- Difficulties with the VAMPIRE system
- Data acquisition

Player Detection

- Processing foreground blobs for player detection
- Using parts-based person detector
- 3 Action Recognition

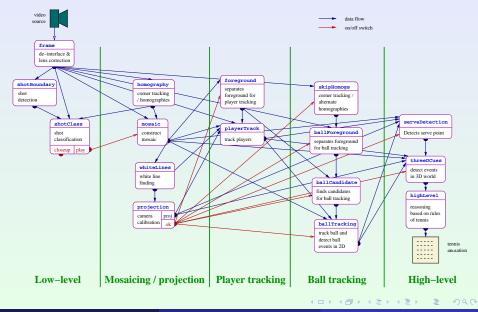
4 Future work

5 References

- Prior to rule adaptation, we need to detect incongruent events (Josef's talk).
- For that, we need "weak" classifiers for
 - ball events (Ibrahim)
 - player actions (Teo)
 - audio events
- To train and evaluate the above modules, we need labelled data.
- The VAMPIRE system is a very useful start point.

Overview of the vision tasks

- Difficulties with the VAMPIRE system
- Data acquisition


Player Detection

- Processing foreground blobs for player detection
- Using parts-based person detector
- 3 Action Recognition
- 4 Future work

5 References

- ∢ ∃ →

The VAMPIRE modules

Teo de Campos (Univerisity of Surrey)

Players Action Recognition

ACASVA 2 5 / 36

Projection

Teo de Campos (Univerisity of Surrey)

Players Action Recognition

ACASVA 2 6 / 36

Ball tracker

	EUROSPORT
MYA TOUR CALENDARY TORAY TORAY TENNIS SAISO	
E Store	- West
	-
B*	

Teo de Campos (Univerisity of Surrey)

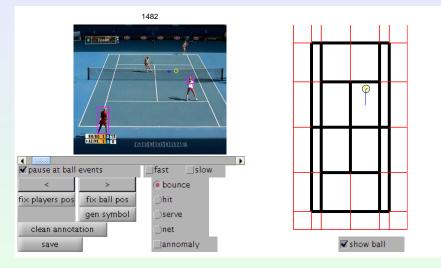
Players Action Recognition

ACASVA 2 7 / 36

- <u>Shot classification</u>: shots are classified as "play" if $\alpha \cdot motion + \beta \cdot hist_peaks + \gamma > 0$. Too many shots were taken as "not play". Tuning γ solved this.
- Projection: mismatches between detected lines and court model lines happen too often in doubles. We (mostly Bill) improved by using cropped mosaics, but further work is needed.
- Player tracker: hard coded for games of singles.
- <u>Ball tracker</u>: often outputs too many trajectory change events
- Serve detection: not robust
- High level: hard coded for singles.

・ 同 ト ・ ヨ ト ・ ヨ ト

Overview of the vision tasks


- Difficulties with the VAMPIRE system
- Data acquisition

Player Detection

- Processing foreground blobs for player detection
- Using parts-based person detector
- 3 Action Recognition
- 4 Future work

5 References

Tennis annotation tool

Teo de Campos (Univerisity of Surrey)

Players Action Recognition

▲ 클 ▶ 클 ∽ 역 여 ACASVA 2 10 / 36

Status	Туре	Year	Players	Scores	Lang	Tournament
Run	Mens Sngl	2003				Aus. open (TV)
Done	Ladies Sngl	2003	Williams sisters			Aus. open (TV)
Done	Ladies Sngl	2009				Japan (TV)
	Ladies Sngl	2009				(TV)
Done	Ladies Dbl	2008				Australian open
Done	Ladies Dbl	2009	Williams sisters vs.			Australian open
	Mens Dbl	2008	Nestor/Zimonjic Def. Bjorkman/Ullyett	76 67 63 63	Eng	Wimbledon
	Ladies Dbl	2009	S.Williams/V.Williams Def. Stosur/Stubbs	76 64	Eng	Wimbledon
	Ladies Dbl	2007	Black/Huber Def. Srebotnik/Sugiyama	57 63 108 (TB)	Eng	Masters
	Ladies Dbl	2002	Hingis/Kournikova Def. Hantuchova/Sanchez	62 67 61	Eng	Australian open
	Mens Dbl	2009	B.Bryan/M.Bryan Def. Bhupathi/Knowles	64 64	Eng	Masters
	Mens Dbl	2009	Lopez/Verdasco Def. Berdych/Stepanek	76 75 62	Eng	Davis and Fed Cup
	Mens Dbl	2008	B.Bryan/M.Bryan Def. Dlouhy/Paes	76 76	Eng	US Open
	Mens Dbl	2009	Dlouhy/Paes Def. Moodie/Norman	36 63 62	Dutch	Roland Garros
	Ladies Dbl	1999	S.Williams/V.Williams Def. Hingis/Kournikova	63 67 86	Jap	Roland Garros
	Ladies Dbl	2007	Dechy / Safina Def. Chan / Chuang	64 62	Fr	US Open

We grabbed four games and purchased DVDs of 12 games.

Disk space has become an issue! We need about 5TB to just to pre-process (with VAMPIRE) all of the above.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Overview of the vision tasks

- Difficulties with the VAMPIRE system
- Data acquisition

Player Detection

- Processing foreground blobs for player detection
- Using parts-based person detector
- 3 Action Recognition
- 4 Future work

5 References

→ Ξ →

Processing foreground blobs for player detection

Mosaic, built per shot

Input image: deinterlaced field with radial distortion corrected, registered with the mosaic

Result: moving blobs. These are merged with a morphological opening operation

Teo de Campos (Univerisity of Surrey)

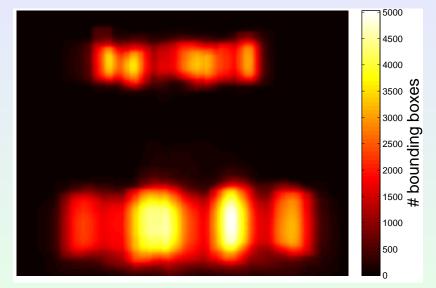
Players Action Recognition

ACASVA 2 13 / 36

Algorithm

- Background subtraction
- 2 Morphological opening
- Fit bounding boxes to all continuous blobs
- Merge nearby boxes
- Solution Apply geometric constraints: area, aspect ratio, ratio area/BB_area
- Apply temporal constraint
- Apply foreground mask

Processing foreground blobs for player detection



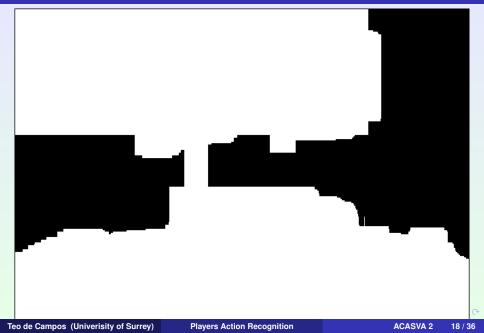
Teo de Campos (Univerisity of Surrey)

Players Action Recognition

- Initial background subtraction and pre-processing: 119 red boxes
- Merging: 32 cyan boxes
- Geometric constraints: 8 dashed magenta boxes
- Spatio-temporal consistence: 7 dashed green boxes
- Mask filter: 5 dotted yellow boxes

Player location pdf

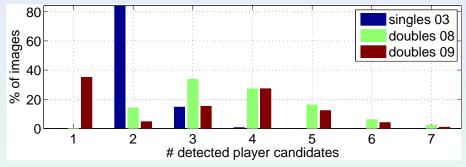
Computed from a 35 minutes footage of singles.


Teo de Campos (Univerisity of Surrey)

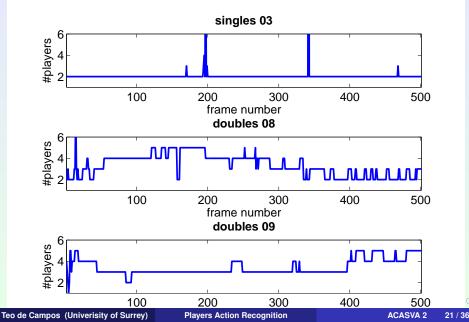
Players Action Recognition

ACASVA 2 17 / 36

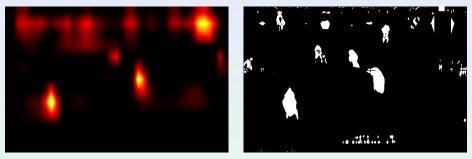
< A >


Foreground mask

Footage	BS blobs	motion	mask
singles 03	177.4 ± 23.8	$\textbf{2.8} \pm \textbf{1.5}$	$\textbf{2.2}\pm\textbf{1.3}$
doubles 08	64.9 ± 21.9	$\textbf{4.7} \pm \textbf{1.3}$	$\textbf{3.8} \pm \textbf{1.2}$
doubles 09	50.4 ± 44.7	$\textbf{3.5} \pm \textbf{2.2}$	$\textbf{3.0}\pm\textbf{1.7}$


Number of player candidates per frame after some stages of the processing pipeline.

- BS blobs: initial blob detection from background subtraction;
- motion: application of a motion smoothness constraint;
- *mask*: application of the likely player location mask.



Detected player candidates in each frame of play shots. Total number of play frames: 25984, 17737 and 33223 for sngl03, dobl08 and dobl09, respectively.

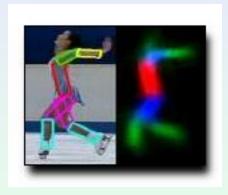
Player detections over time

Combining with visual saliency

Combining background subtraction with visual saliency maps from [Walther & Koch, 2006] by thresholding both and using an OR operation.

Overview of the vision tasks

- Difficulties with the VAMPIRE system
- Data acquisition


Player Detection

- Processing foreground blobs for player detection
- Using parts-based person detector
- 3 Action Recognition
- 4 Future work

5 References

→ Ξ →

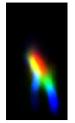
Using parts-based person detector to locate players [Ramanan *et al.*, 2007]

< 12 ▶ < 三

Results training with a serve frame

Torso pixels

Lower arm pixels

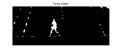


Lower leg pixels

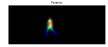
Teo de Campos (Univerisity of Surrey)

Posterior

Players Action Recognition


Mode in posterior

ACASVA 2 25 / 36


Results training with "walking person"

Lower kg plats

• □ > • □ > • □ > •

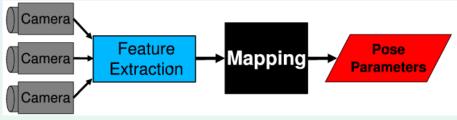
Mode in posterior

Teo de Campos (Univerisity of Surrey)

Players Action Recognition

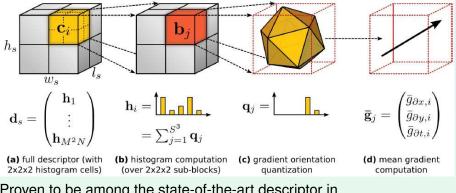
ACASVA 2 26 / 36

-



- Bad to locate limbs and articulations
- Good to detect people

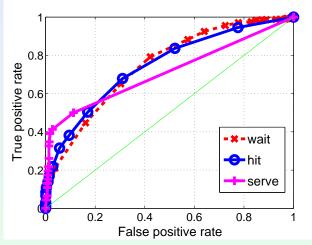
.⊒ →


イロト イヨト イヨト イ

Using the "discriminative" approach.

イロト イポト イヨト イヨト

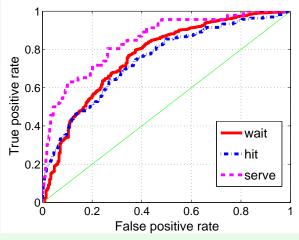
[Kläser *et al.*, 2008]'s 3D SIFT



Proven to be among the state-of-the-art descriptor in [Wang *et al.*, 2009]

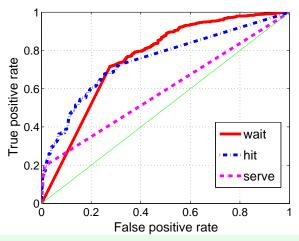
イロト イポト イヨト イヨト

Direct classification – applying PCA on the descriptors

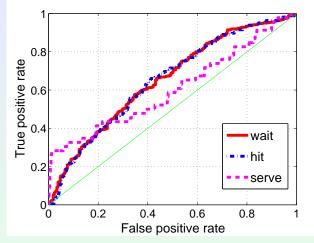

K Nearest Neighbours (K=21)

ROC curves. Mean AUC: 73.40%.

Features: square in space (same height as the player height), 12 frames in time


Action classification - MLP Neural Net

Mean AUC: 78.57%.

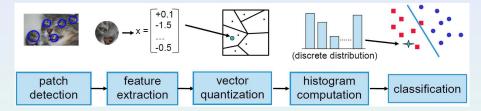

ACASVA 2 31 / 36

Action Classification – SVM linear

Mean AUC: 69.89%.

Action Classification – SVM RBF

Mean AUC: 63.66%.


The RBF σ was set to the minimum standard deviation of variables among the the training samples.

Teo de Campos (Univerisity of Surrey)

Players Action Recognition

ACASVA 2 33 / 36

Ongoing work: Bags of Visual Words

- Using dense feature extraction around player positions for each action event:
- 5 scales $\times 9y \times 9x \times 9$ frames = 3645 feature vectors per player
- 1000 visual words

• • • • • • • • • • • •

- Player detection: use [Ramanan *et al.*, 2007] as a detector to replace heuristics.
- Action recognition: evaluate 3D SIFT with BoF
- Modules of the VAMPIRE system need improvement
- Later: generalise the court detection and projection method
- Maybe (or in parallel): investigate uses of gaze data as part of the loop

ì

Kläser, A., Marszałek, M., & Schmid, C. (2008).

In: British Machine Vision Conference pp. 995-1004,.

Ramanan, D., Forsyth, D. A., & Zisserman, A. (2007).

IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (1), 65-81.

Walther, D. & Koch, C. (2006).

Neural Networks, 19, 1395-1407.

Wang, H., Ullah, M. M., Käser, A., Laptev, I., & Schmid, C. (2009).

In: Proc 20th British Machine Vision Conf, London, Sept 7-10,.

イロト イ団ト イヨト イヨト