Tennis Ball Tracking

Fei Yan

ACASVA Project Meeting June 24, 2010 University of Surrey, Guildford

Tennis understanding system

- A system that "understands" tennis
- High level reasoning relies on low level processing:
 - court line detection / court model fitting
 - ball tracking
 - player tracking / player action recognition

Tennis annotation system

Difficulties of tennis ball tracking Overall strategy Ball candidate detection Layered data association Future work

Tennis understanding system

Difficulties of tennis ball tracking

- Small size, high velocity
- Motion deformation, motion blur
- Occlusion in successive frames
- Abrupt change of motion direction
- Camera pan, tilt and zoom (PTZ)
- Monocular sequences

Difficulties of tennis ball tracking

Fei Yan Tennis Ball Tracking

(日) (同) (三) (三)

э

Overall strategy

- Track after detection (TAD) and track before detection (TBD)
 - TAD: small objects with simple representations
 - TBD: large objects with complex representations
- A TAD approach can be decomposed into:
 - candidate detection
 - data association
- Data association is the key in tennis ball tracking

Ball candidate detection

- De-interlace, geometric distortion correction
- Homography computation and motion conpensation
- Motion-compensated frame differencing for motion segmentation
- An example sequence
- Motion segmentation results on the example sequence

Layered data association - candidate level association

- Candidate level association: an example
- Fitting a constant acceleration dynamic model:

$$\mathbf{v}_1 = \frac{\mathbf{z}_2 - \mathbf{z}_1}{\Delta k_{21}} - \frac{\Delta k_{21} \times \mathbf{a}}{2}$$
(1)

$$\mathbf{a} = 2 \times \frac{\Delta k_{21} \times (\mathbf{z}_3 - \mathbf{z}_2) - \Delta k_{32} \times (\mathbf{z}_2 - \mathbf{z}_1)}{\Delta k_{21} \times \Delta k_{32} \times (\Delta k_{21} + \Delta k_{32})}$$
(2)

• Evaluating the quality of a model

$$C = \sum_{k=i-V}^{i+V} \sum_{j} \rho(\mathbf{z}_{k}^{j})$$
(3)

$$\rho(\mathbf{z}_{k}^{j}) = \begin{cases} d^{2}(\hat{\mathbf{z}}_{k}, \mathbf{z}_{k}^{j}) & \text{if } d(\hat{\mathbf{z}}_{k}, \mathbf{z}_{k}^{j}) < d_{th} \\ d_{th}^{2} & \text{if } d(\hat{\mathbf{z}}_{k}, \mathbf{z}_{k}^{j}) \ge d_{th} \end{cases}$$
(4)

Layered data association - tracklet level association

- All tracklets in the example sequence
- Tracklet level association: shortest path problem in a directed and edge-weighted graph
 - Each node is a tracklet
 - Edge weight reflects the "compatibility" of the two nodes
 - Desired data association contained in the shortest path
- Final tracking results after event detection

Layered data association - tracklet level association

- All tracklets in the example sequence
- Tracklet level association: shortest path problem in a directed and edge-weighted graph
 - Each node is a tracklet
 - Edge weight reflects the "compatibility" of the two nodes
 - Desired data association contained in the shortest path
- Final tracking results after event detection

Layered data association - tracklet level association

- All tracklets in the example sequence
- Tracklet level association: shortest path problem in a directed and edge-weighted graph
 - Each node is a tracklet
 - Edge weight reflects the "compatibility" of the two nodes
 - Desired data association contained in the shortest path
- Final tracking results after event detection

Layered data association an efficient APSP algorithm

- General-purpose APSP algorithms:
 - Applying Dijkstra's algorithm repeatedly: $O(N^3)$
 - The Floyd-Warshall algorithm: $O(N^3)$
 - Johnson's algorithm: $O(N^2 \log N + NE)$
- Trellis graph: $\forall e^{p,q}_{u,v} \in \mathcal{E}$, u+1=v
- \mathcal{G} has a special topological property: $\forall e_{u,v}^{p,q} \in \mathcal{E}$, u < v

Layered data association an efficient APSP algorithm

- General-purpose APSP algorithms:
 - Applying Dijkstra's algorithm repeatedly: $O(N^3)$
 - The Floyd-Warshall algorithm: $O(N^3)$
 - Johnson's algorithm: $O(N^2 \log N + NE)$
- Trellis graph: $\forall e^{p,q}_{u,v} \in \mathcal{E}$, u+1=v
- \mathcal{G} has a special topological property: $\forall e_{u,v}^{p,q} \in \mathcal{E}$, u < v

Layered data association an efficient APSP algorithm

- Based on dynamic programming
 - Assume APSP in $\mathcal{G}^{(i-1)}$ is solved
 - Solve APSP in $\mathcal{G}^{(i)}$ using the APSP results in $\mathcal{G}^{(i-1)}$
- Complexity: $O(N^2)$

Future work

- Doubles game?
 - More abrupt motion change and more clutter
 - Improve the robustness of the current tracker
- Other ball games?
 - Badminton? Table tennis?