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Detecting player foreground

Mosaic, built per shot

- -
Input image: de-
interlaced field with
radial distortion cor-
rected, registered with
the mosaic

= =
Moving blobs, filtered
with a morphological
opening operation
(erosion→ dilation)

Teo de Campos (Univerisity of Surrey) Players action detection ACASVA 3 4 / 28



Processing foreground blobs for player detection

Algorithm
1 Background subtraction
2 Morphological opening
3 Fit bounding boxes to all continuous blobs
4 Merge nearby boxes
5 Apply geometric constraints: area, aspect ratio, ratio area/BB area
6 Apply temporal constraint
7 Apply foreground mask
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Processing foreground blobs for player detection
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Resulting boxes for the previous image

Initial background subtraction and pre-processing: 119 red boxes
Merging: 32 cyan boxes
Geometric constraints: 8 dashed magenta boxes
Spatio-temporal consistence: 7 dashed green boxes
Mask filter: 5 dotted yellow boxes
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Player location pdf
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Computed from a 35 minutes footage of singles.
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Foreground mask
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Statistics of the bounding boxes

Number of player candidates per frame after some stages of the
processing pipeline:

Footage BS blobs motion mask
singles 03 177.4± 23.8 2.8± 1.5 2.2± 1.3

doubles 08 64.9± 21.9 4.7± 1.3 3.8± 1.2
doubles 09 50.4± 44.7 3.5± 2.2 3.0± 1.7

BS blobs: initial blob detection from background subtraction;
motion: application of a motion smoothness constraint;
mask: application of the likely player location mask.
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Statistics of the bounding boxes

Detected player candidates in each frame of play shots:
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 singles 03
singles 03M
singles JP09
doubles 08
doubles 09
doubles 08d
doubles 08b

# play frames sngl03 dobl08 dobl09
25984 17737 33223
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Player detections over time
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Combining with visual saliency

Combining background subtraction with visual saliency maps from
(Walther and Koch, 2006) by thresholding both and using an OR
operation.

Bad idea!
Too many false positives.
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Ongoing work on player detection

Using parts-based person detector to locate players (Ramanan et al.,
2007)
Results training with a serve frame:
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(Ramanan et al., 2007)’s results training with walking
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More results with (Ramanan et al., 2007)

¨̂ Good to detect near players
_̈ Bad to locate arms
_̈ Joint localisation is not accurate
−̈ For training, a search through the scale is required
−̈ Training has to be done for each game and each player

individually
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3DHOG spatio-temporal descriptor (Kläser et al.,
2008)

Gives a 20f × 4x × 4y × 3t = 960D vector
Proven to be among the state-of-the-art descriptors in (Wang
et al., 2009)
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Action classification methods – STS

bounding
box

960D
vector

extract
3DHOG SVM

Spatio−Temporal Shape

σ of the RBF kernel was set to the average distance between every pair of
samples in the training set.
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Action classification methods – STS and LBoW

bounding
box

extract
3DHOGs

build
dense
grid

build
BoW

960D
vector

extract
3DHOG

SVM

SVM

934x960D
vectors

Spatio−Temporal Shape

Local Bag of visual Words

locations
up to 934 4000D

vector
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Bags of visual Words (Csurka et al., 2004)

Up to 934 feature vectors per player, per event
(we use a dense grid of 5s × 9y × 9x × 9t locations but sampling is
denser near the centre of the bounding box)
4000 visual words
We also evaluated spatio-temporal pyramid kernels (Choi et al., 2008)
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Primitive Actions Dataset

Footage length play shots serve hit non-hit
singles 03 35min 80 76 219 943

doubles 09 30min 34 46 167 1351
training set test set

serve hit non-hit serve hit non-hit
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Results

LBoW – mean AUC (%) with different spatio-temporal pyramid
kernels:

spatial split
temporal split 1x1 1x3 2x2 3x1 MK

x1 78.5 78.2 79.6 79.5 80.6
x3 84.4 82.3 82.8 84.4 84.5

The STS single feature method resulted in mean AUC of 90.3%.
STS confusion matrix for thresholds selected so that the true
positive rate is 77.62% and the false positive rate is 22.38%:

non-hit hit serve
non-hit 1068 182 117

hit 36 119 14
serve 2 3 41
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ROC curves

single feature STS LBoW MKx3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

 

 

non−hit
hit
serve

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate
T

ru
e 

po
si

tiv
e 

ra
te

 

 

non−hit
hit
serve

Teo de Campos (Univerisity of Surrey) Players action detection ACASVA 3 24 / 28



Outline

1 Player Detection

2 Action Recognition

3 Ongoing work

4 References

Teo de Campos (Univerisity of Surrey) Players action detection ACASVA 3 25 / 28



Ongoing work

1 Improve player detection and tracking methods
2 Compare STS and BoW-based methods using well known

datasets (de Campos et al., 2010)
3 Apply n-gram-like heuristics to filter action classification results
4 Separate near player from far player
5 Do experiments in larger datasets
6 Evaluate the bags of locally weighted features (de Campos et al.,

2010)
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