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Detecting player foreground

Mosaic, built per shot

- -
Input image: de-
interlaced field with
radial distortion cor-
rected, registered with
the mosaic

= =
Moving blobs, filtered
with a morphological
opening operation
(erosion → dilation)
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Processing foreground blobs for player detection

Algorithm

1 Background subtraction

2 Morphological opening

3 Fit bounding boxes to all continuous blobs: 119 red boxes

4 Merge nearby boxes: 32 cyan boxes

5 Apply geometric constraints: area, aspect ratio, ratio area/BB area: 8
dashed magenta boxes

6 Apply temporal constraint: 7 dashed green boxes

7 Apply foreground mask: 5 dotted yellow boxes

Player location pdf computed from a 35 minutes
footage of singles
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Player detections over time
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Player count anomaly measures

Plan: compute a player count histogram per shot and compare with a
“normal” histogram using these measures:

City block (l1)

χ2(x, x̂) = 1
2
∑K

k=1
[xk−x̂k ]

2

xk+x̂k

Kolmogorov-Smirnov test
Difference of modes: found anomaly in 34 shots out of 49
(Australia2008a video, |d | > 1)

T. de Campos (Surrey) Player analysis UEALondon – 13 Jan 2011 7 / 15



Outline

1 Player detection

2 Action recognition

3 Transfer learning

4 Plan

T. de Campos (Surrey) Player analysis UEALondon – 13 Jan 2011 8 / 15



A comparison of two approaches for action recognition
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A comparison of two approaches for action recognition
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A comparison of two approaches for action recognition

Although STS is more appropriated for actions that are well
defined in time and space, it gives competitive results on non-local
actions.
We evaluated versions of BoW based on the use of constraints in
space or time (SBoW and LBoW).
We did experiments on 4 datasets: tennis, Weizmann, KTH,
UCFsports.

STS outperformed BoW-based methods in all datasets where the
background is not relevant.
In UCF sports, SBoW lead to the best result.
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Transfer learning

  

 

Transfer 
Learning

Multi-task 
Learning

Transductive 
Transfer Learning

Unsupervised 
Transfer Learning
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Transfer Learning

Domain 
Adaptation

Sample Selection 
Bias /Covariance Shift

Self-taught 
Learning

Labeled data are available in 
a target domain

Labeled data are 
available only in a 

source domain

No labeled data in 
both source and 
target domain

No labeled data in a source domain
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Case 1
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Source and 

target tasks are 
learnt 
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different 
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single task

Assumption: single domain 
and single task

An overview of An overview of 
various settings of various settings of 
transfer learningtransfer learning

T. de Campos (Surrey) Player analysis UEALondon – 13 Jan 2011 13 / 15



Outline

1 Player detection

2 Action recognition

3 Transfer learning

4 Plan

T. de Campos (Surrey) Player analysis UEALondon – 13 Jan 2011 14 / 15



Plan

Evaluate anomaly detection via player count
Improve player detection and tracking using [Kalal et al
CVPR2010]
Apply transfer learning from one sport to another
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