Kernel Methods in ACASVA

Fei Yan

ACASVA Project Meeting June 27, 2011 Queen Mary, University of London, London

(日)

Kernel Methods

Multiple Kernel Learning (MKL) Large Scale MKL Experiments on Player Action Data Other Potential Applications of Kernel Methods

Kernel Methods

• Powerful tool for machine learning

- In a nutshell:
 - Embed data implicitly in high dimensional space
 - Apply linear methods
- Why do they work?
 - In high dimensional space, linear functions extremely rich while remain easy to regularise
 - Theoretically well founded in statistical learning theory
- Numerous applications

Multiple Kernel Learning (MKL)

Multiple Kernel Learning (MKL)

- Kernel function plays critical role
 - Embedding determined by the kernel function
- Ideally should be learnt from data
- A relaxed version: learning combination of kernels
 - Given *n* kernels K_1, \cdots, K_n , each $m \times m$
 - Find β such that $K = \sum_{j=1}^{n} \beta_j K_j$ optimal
 - Constraints: $\beta_j \ge 0, ||\beta||_p \le 1$
- p controls the sparsity of weights
 - $p \rightarrow 1$: most weights 0
 - $p \to \infty$: most weights 1

Large Scale MKL

MKL can be expensive in memory and time

- *n* kernels stored in memory: $O(nm^2)$
- n = 50, m = 8000, double precision: 24G memory
- Multiclass problems could take days to train
- Reason: wrapper algorithm
 - lpha step: solve a single kernel problem
 - Slow to solve the complete problem
 - Need access to complete kernel matrices
 - β step: find optimal kernel weights

Large Scale MKL

Large Scale MKL

- We propose an interleaved algorithm
- Inspired by sequential minimal optimisation (SMO)
 - lpha step: optimise over a minimal subset
 - Generate enough gradient in the ${\boldsymbol{\beta}}$ direction
 - β step as before
- Do not need access to whole kernel matrices, only 2 rows
 - Compute kernel on-the-fly, much less memory needed
- Each α step much cheaper, but much more steps
 - Overall improvement: 1-2 orders of magnitude faster

Large Scale MKL

Experiments on Player Action Data

Experiments on Player Action Data

- MKL for feature selection
 - One kernel each dimension, more flexibility
 - Large scale MKL makes it tractable
 - Recall that *p* controls sparsity
- Player action recognition data
 - Training: single's game, 1277 examples
 - Test: double's game, 1582 examples
 - Feature dimension = 960: 960 kernels
 - 3 (unbalanced) classes: idle, hit, serve
 - $\bullet\,$ Speed improvement: several days vs. ~ 1 hour

Experiments on Player Action Data

Experiments on Player Action Data

Figure: Average accuracy and sparsity of learnt weights

Experiments on Player Action Data

Experiments on Player Action Data

Figure: AUC and sparsity of learnt weights

Other Potential Applications of Kernel Methods

Other Potential Applications of Kernel Methods

- Apply almost everywhere where learning takes place
- In particular, structured output learning (SOL)
 - Generalises kernel methods to structured output
 - ... such as sequences, graphs, rankings
 - Natural language processing, computational biology, computer vision
 - E.g. $\mathcal{X} \colon$ sentences $\rightarrow \mathcal{Y} \colon$ parse trees / sentences in another language
 - Sports video annotation as SOL?