Event Classification with Structured Output Learning

Fei Yan

ACASVA Project Meeting January 20, 2012 University of East Anglia, Norwich

▲ 同 ▶ → 三 ▶

Structured Output Learning

Structured Output Learning

- Binary classification: $\{x_i, y_i\}_{i=1}^m$, $x_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$.
 - well studied, logistic regression, SVM, etc.
- Multiclass classification: $y_i \in \{A, B, C\}$
 - single variate output, decomposable
- What if multiple interdependent output variables?
 - classifying independently: ignoring output structure
 - better solution: joint embedding $\phi(x_i, y_i)$ + linear classifiers
- Structured output learning (SOL) techniques:
 - conditional random fields, structured SVM, etc.

イロト イポト イラト イラト

Structured Output Learning

Structured Output Learning

- Structured SVM optimisation problem
 - joint embedding into \mathbb{R}^d using $\phi(x_i, y_i)$
 - $\bullet\,$ find projection w maximising the margin
 - $\bullet~\ell_2$ regularisation as in standard SVM

s.t.
$$\begin{split} \min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^m \xi_i \\ \mathbf{w}^T \phi(x_i, y_i) - \mathbf{w}^T \phi(x_i, y) \geq \Delta(y_i, y) - \xi_i, \quad \forall y \in \mathcal{Y} \setminus y_i, \forall i \\ \xi_i \geq 0 \quad \forall i \end{split}$$
(1)

Event Classification as SOL

Event Classification as SOL

Figure: An example of ball tracking and ball event detection results.

< 日 > < 同 > < 三 > < 三 >

э

Event Classification as SOL

Event Classification as SOL

• Joint embedding defined implicitly:

$$<\phi(x_{i}, y_{i}), \phi(x_{j}, y_{j}) >$$

$$= \sum_{s=2}^{o_{i}} \sum_{t=2}^{o_{j}} [\![y_{i}^{s-1} = y_{j}^{t-1}]\!] [\![y_{i}^{s} = y_{j}^{t}]\!] + \eta \sum_{s=1}^{o_{i}} \sum_{t=1}^{o_{j}} [\![y_{i}^{s} = y_{j}^{t}]\!] \mathcal{K}(x_{i}, x_{j})$$
(2)

- Find the optimal ${f w}$ by solving Eq. (1)
- Discriminative approach:
 - interested in P(Y|X) rather than P(X, Y)
- Generative approach:
 - hidden Markov model (HMM), modelling P(X, Y)

< ロ > < 同 > < 回 > < 回 >

Simulation with an Artificial Court Game

Simulation with an Artificial Court Game

- Artificial court game with 4 types of events:
 - serve, bounce, hit, net
- Initial probabilities: 0.80, 0.10, 0.05, 0.05
- Transitional probabilities:

			0.20		
0	0.20	0.60	0	0.20	
0	0.65	0.15	0.15	0.05	
0 /	0	0	0	1.00	Ϊ

Simulation with an Artificial Court Game

Simulation with an Artificial Court Game

- Observation for 4 events:
 - exp. A: Gaussian densities; exp. B: uniform densities
 - 10 dimensional vectors, same covariance, different means
 - $\bullet\,$ parameter $\gamma\,$ controlling separation
- 1000 training sequences, 1000 test sequences
- Performance metrics: per token error and per label error
- Compare generative HMM and discriminative SOL
 - in HMM Gaussian observation density assumed: valid in exp. A while invalid in exp. B

Simulation with an Artificial Court Game

Simulation with an Artificial Court Game

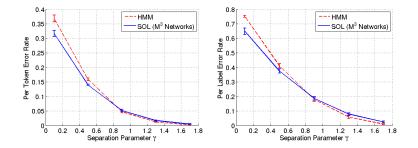


Figure: Left: token error. Right: label error. Normal observation density.

3

Simulation with an Artificial Court Game

Simulation with an Artificial Court Game

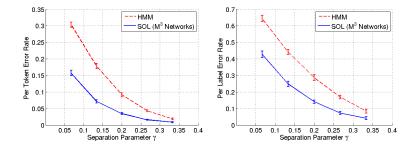


Figure: Left: token error. Right: label error. Uniform observation density.

→ 3 → < 3</p>

_ ₽ ▶

Results with Real World Tennis Games

Results with Real World Tennis Games

- Two real world tennis games
 - Australian Open 2003 women's singles, 71 play shots
 - Australian Open 2008 women's doubles, 163 play shots
- Ball tracking and key event detection fully automatic
- Observation features:
 - acceleration + velocity + position
 - acceleration + velocity
- Leave-one-out evaluation
- Compare generative HMM and discriminative SOL

- 4 同 1 4 日 1 4 日

Results with Real World Tennis Games

Results with Real World Tennis Games

Table: Australian 2003 Singles

	Per token error rate		Per label error rate	
	HMM	SOL	HMM	SOL
Without ball positions	0.1529	0.1449	0.6761	0.6338
With ball positions	0.1210	0.1051	0.6338	0.5211

Table: Australian 2008 Doubles

	Per token error rate		Per label error rate	
	HMM	SOL	HMM	SOL
Without ball positions	0.2206	0.1832	0.8589	0.8098
With ball positions	0.1656	0.1531	0.8589	0.8160

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3

Conclusions and Future Work

Conclusions and Future Work

- Event classification is a structured problem
 - output structure: sequence
- Traditionally done with generative HMM
- SOL vs. HMM: fewer assumptions, better classification performance
- Overall performance still low
 - other modalities as observation: audio, player action
 - learning their importance in MKL setting

・ 同 ト ・ ヨ ト ・ ヨ