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Transductive Transfer Learning

Arnold et. al’s domain adaptation model
and its modifications

Data

Input Dsrc = {(xsrc
i), ysrc

i}, Dtrg = {xtrg
i} and KLDA classification

parameters
Output P(y trg | xtrg)

Algorithm
1 Estimation of posterior probability for each target sample using

source model
2 Compute the transformation matrix for source space
3 Transform the source domain and retrain on this new source

space
4 Predict the target labels using the retrained classifier
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Transductive Transfer Learning

Scaling
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The transformation parameters are derived as: ∀i = 1 : Nsrc
train, G(xi

j ) = xi
j

Etrg
Λsrc

[xj ,yi ]

Esrc [xj ,yi ]

where the xi
j is the jth feature of sample xi and Λsrc is the classification model learned using source samples and Etrg

Λsrc
is computed by:

Etrg [xj , y ] ≈ Etrg
Λsrc

[xj , y ] =

∑Ntrg
test

i=1 xi
j PΛsrc (y|xi )

∑Ntrg
test

i=1 PΛsrc (y|xi )

A smoothing factor θ has been introduced to control the degree to which we use the target conditional estimates to alter the source
conditionals:

G′(xi
j ) = (1 − θ)xi

j + θG(xi
j )
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Translating and Scaling
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The transformation parameters will be estimated by:

∀i = 1 : Nsrc
train, G(xi

j ) =
xi
j−Esrc [xj ,yi ]

σsrc
j,yi

σ
trg
j,yi

+ Etrg
Λsrc

[xj , yi ]

where σsrc
j,yi

is the standard deviation of the feature xj of the source samples xk labeled as yi and:

σ
trg
j,yi

=

√√√√√√√√
∑Ntrg

test
k=1 (xk

j −Etrg
Λsrc

[xj ,yi ])2PΛsrc (yi |xk )

∑Ntrg
test

k=1 PΛsrc (yi |xk )
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Experimental Datasets

Source domain datasets: Badminton and Aus2003 Tennis
Singles
Target Domain datasets: Aus2003 Tennis Singles, Aus2003 men
Tennis Singles, Japan2009 Singles, Aus2009 Tennis Doubles

label sport gender number competition year non-hit hit serve
TWSA03 Tennis Women Singles Australian 2003 944 214 72
TMSA03 Tennis Men Singles Australian 2003 1881 469 123
TWDA09 Tennis Women Doubles Australian 2009 1064 135 36
BMSB08 Badminton Men Singles Beijing 2008 706 458 8
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Experimental results on Tennis Singles vs. Tennis
Doubles

Train: Singles, Test: Doubles Train: Doubles, Test: Singles
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Experimental results on Badminton vs. Tennis Singles

Baseline accuracy results and results with two methods for DA: reweight|trans+scale, in ‰

source target accuracy per class (‰) macro
adaptation test non-hit hit serve average

a TWSA03 – TWDA09 996 149 571 572
b TWSA03 test set TWDA09 939|939 418|433 857|886 738|752
c TWDA09 – TWSA03 978 305 986 756
d TWDA09 test set TWSA03 870|912 676|634 972|972 839|839

e TWSA03 – TMSA03 981 248 549 592
f TWSA03 test set TMSA03 975|973 427|442 852|902 751|772
g BMSB08 – TMSA03 359 779 0 379
h BMSB08 test set TMSA03 327|393 886|852 0|0 404|415
i BMSB08+TWSA03 – TMSA03 940 357 500 599
j BMSB08+TWSA03 test set TMSA03 975|917 427|547 852|942 767|802
k BMSB08 TWSA03 TMSA03 245|330 983|908 0|0 394|413

Results obtained by swapping TMSA03 and TWSA03

source target accuracy per class (‰) macro
adaptation test non-hit hit serve average

a TMSA03 – TWSA03 971 427 931 776
b TMSA03 test set TWSA03 931|917 610|671 972|986 838|858
c BMSB08 – TWSA03 391 883 0 425
d BMSB08 test set TWSA03 362|440 930|873 0|0 431|438
e BMSB08+TMSA03 – TWSA03 966 488 887 781
f BMSB08+TMSA03 test set TWSA03 921|851 709|803 958|972 862|875
g BMSB08 TMSA03 TWSA03 300|369 945|939 0|0 416|436
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Discussion

Pros
A straight-forward and fast method
Satisfying level of enhancement in the case of transferring from
Tennis Singles to Tennis Doubles

Cons
Obtaining poorer results in the case of transferring from
Badminton to Tennis Singles in comparison with the Tennis
Singles to Doubles
The transformation model is too simple
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Testing our approach on the public routers data set
The taxonomy for improving our system is as followed:

1 Use a semi-supervised decision forest to estimate an initial
posterior probability for target samples

2 Use this prediction to compute the transformation for source space
3 Train a decision forest classifier on the transformed source domain
4 Predict the labels for the target data points
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Time Complexity Comparison

No Transfer No re-training O(Kersrc + Classsrc )

No Transfer Added Labeled samples
on target

O(Labeling) + O(Kersrc+trg + Classsrc+trg )

Transfer Unsupervised 2 × O(Kersrc + Classsrc ) + O(transfer)
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