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a b s t r a c t 

We present an efficient representation for sketch based image retrieval (SBIR) derived from a triplet loss 

convolutional neural network (CNN). We treat SBIR as a cross-domain modelling problem, in which a 

depiction invariant embedding of sketch and photo data is learned by regression over a siamese CNN 

architecture with half-shared weights and modified triplet loss function. Uniquely, we demonstrate the 

ability of our learned image descriptor to generalise beyond the categories of object present in our train- 

ing data, forming a basis for general cross-category SBIR. We explore appropriate strategies for training, 

and for deriving a compact image descriptor from the learned representation suitable for indexing data 

on resource constrained e. g. mobile devices. We show the learned descriptors to outperform state of 

the art SBIR on the defacto standard Flickr15k dataset using a significantly more compact (56 bits per 

image, i. e. ≈ 105KB total) search index than previous methods. Datasets and models are available from 

the CVSSP datasets server at www.cvssp.org . 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

The Internet is transforming into a visual content distribution

etwork, with Cisco predicting that by 2018 over 80% of traffic will

omprise visual media — two-thirds of which will be consumed on

obile devices ( Cicso, 2014 ). Gestural interfaces, such as sketch,

rovide a intuitive method for interacting with visual content on

uch touch-screen devices, motivating the development of sketch

ased image retrieval (SBIR) algorithms to make sense of this del-

ge of visual content. 

The principal contribution of this paper is to explore SBIR from

he perspective of a cross-domain modelling problem, in which

 low dimensional embedding is learned between the space of

ketches and photographs. The embedding is learned via regres-

ion using a convolutional neural network (CNN) with triplet ar-

hitecture. Such networks extend the idea of distance metric learn-

ng ( Weinberger and Saul, 2009 ), and are trained by exposure to

xemplar triplets comprising, in our case, a sketch accompanied by

oth a hard positive and negative example of a photograph corre-

ponding to that sketch. Convergence is encouraged using a non-

lassical triplet loss function that encourages sketches and pho-

ographs of the same object to map to similar locations in the
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earned embedding. Once trained, the branches of the network

orresponding to sketch and image input can be used to encode

rbitrary images (in a search corpus) and query sketches respec-

ively, yielding real-valued descriptors than may be compared us-

ng standard metrics (e. g. Euclidean distance) for the purpose of

anking images according to their relevance to a sketch at query

ime. 

Deeply learned triplet ranking models have been traditionally

pplied to face recognition ( Chopra et al., 2005; Hadsell et al.,

006 ) and to cross-domain problems including 3D pose estimation

mapping between images and pose space) and scene description

mapping between images and natural language spaces) ( Vinyals

t al., 2015 ). In such problems where domains vary significantly in

imensionality and statistical distribution, it is common for branch

eights of the CNN to be optimised independently (heterogeneous

r ‘unshared’ weights). Recently and most relevant to this work,

riplet ranking models have been explored for visual search of im-

ges, both for photographic queries by Wang et al. (2014) and for

ketched queries by Yu et al. (2016) . In these works the architec-

ure of each network branch is not only homogeneous, but also

ully shares weights with its peers (i. e. siamese design) reflecting

n assumption that a single learned function may optimally map

he two distinct input domains to a single metric embedding. Con-

equently a weakness of these two prior works is a restriction to

o called ‘fine-grained’ retrieval, in which search is constrained to

perate over only a single category of object experienced during
h-based image retrieval using a triplet loss convolutional neural 
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network training. Whilst this is effective in refining search with a

dataset containing a specific object class (e. g. a dataset of shoes

( Yu et al., 2016 )) the approach cannot generalise to more diverse

datasets, such as Internet images ‘in the wild’ of arbitrary sub-

ject. Such variations are exhibited in current SBIR benchmarks e. g.

Flickr15k ( Hu and Collomosse, 2013 ) which contain multiple ob-

ject classes, as well as exhibiting variation within each object class.

We address this limitation in our work by both adopting a par-

tially shared weighting strategy (only the deeper layers of our net-

work branches share weights) and modified triplet loss function.

We study the ability of our network to generalise beyond the cor-

pus of object classes exposed during training to learn an embed-

ding for measuring SBIR visual similarity that is capable of gener-

alising across categories. 

A further contribution of this paper is to report on strategies for

compactly representing the descriptors extracted from our learned

embedding, to enable efficient indexing of the dataset on resource

constrained platforms such as mobile devices. Compact representa-

tion of image descriptors has received considerable attention over

the past five years, largely focused upon shallow-learned Bag of

Visual Words (BoVW), VLAD ( Jegou et al., 2009 ) or Fisher repre-

sentations ( Perronnin et al., 2010 ). Such approaches often combine

dimensionality reduction with binary hashing ( Jegou et al., 2009;

2010 ), for example PCA (or even, counter-intuitively, random) pro-

jection and binarisation on sign and Product Quantisation ( Jegou

et al., 2011 ). For the first time, we explore such strategies for SBIR

showing that typical approaches do not operate optimally on our

representation and make recommendations for accuracy preserving

compaction of our descriptors. Ultimately we show that a twist on

Jegou et al. ’s PCA method ( Jegou et al., 2009 ) resulting in an en-

coding of less than one word (i. e. 56 bits) per image is sufficient

to yield an accuracy level exceeding state of the art SBIR systems

with a query time in the order of 10 −3 s for a dataset in order

of 10 4 images without indexing tricks (i. e. single thread, exhaus-

tive linear search). In practical terms, this leads to a mobile stor-

age footprint for a contemporary SBIR benchmark dataset of 15k

images in the order of one hundred kilobytes (Flickr15k ( Hu and

Collomosse, 2013 )). 

The remainder of this paper is organised as follows. We re-

view related sketch based visual search literature, focusing upon

image retrieval, in Section 2 . We present our network design, con-

figuration and training methodology in Sections 3.1 –3.3 and com-

paction strategy in Section 3.4 . We evaluate the performance of our

SBIR algorithm both in terms of accuracy and storage footprint in

Section 4 , concluding in Section 5 . 

2. Related work 

Sketch based image retrieval (SBIR) began to gain momentum

in the early nineties with the color-blob based query systems of

Flickner et al. (1995) and Kato (1992) that matched coarse at-

tributes of color, shape and texture using region adjacency graphs

defined over local image structures (blobs). More efficient match-

ing schemes for blob based queries, using spectral descriptors (e. g.

Haar Wavelets ( Jacobs et al., 1995 ) or Short-Time Fourier Trans-

form ( Sciascio et al., 1999 )) were subsequently proposed. This early

wave of SBIR systems was complemented in the late nineties by

several algorithms that accept line-art sketches, more closely re-

sembling the free-hand sketches casually generated by lay users in

the act of sketching a throw-away query. Since line-art depictions

of objects are often stereotyped and subject to non-linear defor-

mation ( Collomosse et al., 2008 ), robust edge matching algorithms

are required deliver usable results. Early approaches adopted opti-

misation strategies that sought to deform a model of the sketched

query to fit candidate images, ranking these according of their sup-

port for the sketch. Models explored by these approaches include
Please cite this article as: T. Bui et al., Compact descriptors for sketc

network, Computer Vision and Image Understanding (2017), http://dx.d
lastic contour ( Bimbo and Pala, 1997 ) and super-pixel aggregation

 Collomosse et al., 2009 ). However, model fitting approaches scale

t best linearly with dataset size with each comparison often tak-

ng seconds leading to poor scalability. 

SBIR enjoyed a resurgence of interest in the late 20 0 0s yield-

ng several approaches to extract real-valued feature descriptors

or matching spatial structures between sketches and photograph.

itz et al. (2009) partitioned the image into a spatial grid, comput-

ng and concatenating the structure tensor from each grid cell to

orm a efficient index representation, scalable to thousands of im-

ges with interactive speeds. Gradient domain features ( Dalal and

riggs, 2005 ) were further exploited by Hu et al. (2010) who trans-

erred the popular ‘bag of visual words’ (BoVW) paradigm to SBIR

mproving scalability and affording greater robustness to affine de-

ormation. Notably this work introduced the Gradient Field His-

ogram of Gradient (GF-HoG) descriptor for encoding spatial struc-

ure within the BoVW representation using Laplacian smoothness

onstraint. GF-HOG was later robustified through extension to mul-

iple scales ( Hu and Collomosse, 2013 ) and evaluated over the

lickr15k benchmark which remains the largest fully annotated

ataset for SBIR evaluation. The BoVW framework of Eitz et al.

lternatively proposed sparse S-HOG and SPARC descriptors ( Eitz

t al., 2011 ) for encoding local edge structure in the codebook,

hich were later combined with SVM classification for sketch

ased object recognition ( Eitz et al., 2012 ), yielding also the first

arge scale dataset of sketched objects (TU-Berlin). Qi et al. demon-

trated that perceptual edge extraction during pre-processing can

oost performance of HOG-BoVW pipelines, maintaining the state

f the art position on Flickr15k of 18% mAP ( Qi et al., 2015 )

ut with query times of minutes. The GF-HoG framework was ex-

ended to multiple modalities (including motion) by James and

ollomosse (2014) and a detailed study of its extension to color

BIR was made by Bui and Collomosse (2015) , who also adapted

he technique of inverse-indexing to SBIR for large-scale search (3

illion images in a few hundred milliseconds). Edgel based index

epresentations for SBIR were explored by Cao et al. ’s MindFinder

 Cao et al., 2011 ) and were exploited in the assisted sketching in-

erface ShadowDraw ( Lee et al., 2011 ). A mid-level representation

ombining edgels into ’key shapes’ was also explored by Saavedra

nd Bustos (2014) and Saavedra and Barrios (2015) . 

Deep convolutional neural networks (CNNs) have revolu-

ionised Computer Vision, providing a unified framework for

earning descriptor extraction and classification that yield major

erformance gains over pipelines based upon prescriptive gradient

eatures ( Krizhevsky et al., 2012 ). CNNs have similarly impacted

ketch. The Sketch-A-Net CNN architecture introduced by Yu et al.

2015) improved upon the accuracy of Eitz et al. ’s BoVW-SVM

ramework ( Eitz et al., 2012 ), mirroring human level performance

t object categorisation over TU-Berlin. Similar to the architecture

f our proposed system, Yu et al. (2016) very recently adapted

ketch-A-Net into a triplet loss siamese architecture to effect SBIR

ithin a single object class (e. g. shoe search). In this paper we

se a deep convolutional network that uses a triplet loss function

n order to learn a cross-domain mapping between sketches and

dge maps obtained from natural images ( Arbelaez et al., 2011 ),

apable of generalising SBIR across hundreds of object categories.

everal aspects of our design are novel to SBIR; unlike the mul-

iple stage training process of Li et al. (requiring independent

raining, fine-tuning and integration of branches of the siamese

etwork) we learn a depiction invariant representation as a single

egression across the triplet CNN. We introduce a partial weight

haring scheme and novel triplet loss function to encourage

onvergence when learning our cross-domain embedding; a dif-

culty also observed in Wohlhart and Lepetit (2015) inherent to

ross-domain matching. Further, we show that our partial weight

haring scheme – in effect, the learning of separate functions for
h-based image retrieval using a triplet loss convolutional neural 
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ach domain – outperforms fully shared (siamese) strategies, both

n triplet and contrastive loss ( Qi et al., 2016 ) networks as very

ecently proposed. 

Previous studies using of triplet networks for cross-domain

atching include FaceNet ( Schroff et al., 2015 ) which learns a map-

ing from face images to a space in which distances directly corre-

pond to a measure of face similarity. A similar method was used

lso by Wang et al. (2014) to learn a ranking function for image

etrieval. The triplet loss concept has more widely been used for

ross-domain mapping between text (skip-gram features ( Mikolov

t al., 2013 )) and images ( Frome et al., 2013 ) and in the context

f RGB-D 3D data ( Wohlhart and Lepetit, 2015 ), in order to learn

 descriptor that includes both the 3D object identification and its

ose, allowing to classify the object and its pose at the same time.

n the latter authors evaluated the method in a dataset with 15

lasses and accurate ground truth for the training stage. Recently, a

agnet loss was proposed by Rippel et al. (2016) to consider mul-

iple examples at a time for the classification task with focus on

he fine-grained classification, which does not suit the SBIR task.

iamese triplet networks have been applied for video classification,

earning from unlabelled videos by finding positive pairs through

bject tracking ( Wang and Gupta, 2015 ). 

This paper also explores efficient representations for encoded

he learned embedding for SBIR. Compact feature descriptors have

een extensively studied for large-scale visual search using photo-

raphic queries where feature quantisation via binarization ( Jegou

t al., 2009 ) and either PCA or random basis projection ( Jegou

t al., 2010; Perronnin et al., 2010 ), as well as Product Quanti-

ation (PQ) ( Jegou et al., 2011 ). We compare and contrast these

pproaches for our proposed SBIR representation, and propose an

daptation of one for efficient search on resource constrained de-

ices such as mobile tablets. 

. Learning a compact representation for SBIR 

We approach SBIR as a regression problem, in which an embed-

ing is learned via a triplet neural network with partially shared

eights using a modified loss function that promotes better con-

ergence of the network. We first outline the architecture of our

etwork in Section 3.1 and describe the loss function in 3.3 . We

hen outline the network training process in Section 3.2 , including

n account of the data acquisition and pre-processing necessary to

erform this training. In the final step of our process a quantisation

ased on PCA projection is performed to obtain a compact repre-

entation, discussed in Section 3.4 . 

.1. Triplet network architecture 

Single-branch discriminative networks CNNs (e. g. AlexNet

 Krizhevsky et al., 2012 )) have delivered transformational perfor-

ance gains in visual concept detection. These successes have

een mirrored in the sketch domain, notably in ( Yu et al., 2015 )

ork where the Sketch-A-Net CNN was shown to parallel human

erformance on sketched object recognition over the TU-Berlin

ataset. Recent work indicates that more modest gains can be ob-

ained through fusion of classifiers (e. g. SVMs) with features ex-

racted in fully connected (fc7) network layers ( Razavian et al.,

014 ). One might naïvely hope that such layers might also pro-

ide learnable features for visual search. However such approaches

eneralise poorly to imagery beyond the training set domain, mo-

ivating many to employ triplet CNN network designs ( Wang et al.,

014; Wang and Gupta, 2015 ). Rather than forcing all input data to

onverge to a single point in the CNN output space (as implied in a

oftmax loss), the triplet loss constrains only relative distance be-

ween the anchor, and the positive and negative exemplars ( Fig. 2 a

nd b). In our case the triplet comprises a sketched query for the
Please cite this article as: T. Bui et al., Compact descriptors for sketc

network, Computer Vision and Image Understanding (2017), http://dx.d
nchor branch, and positive and negative exemplars derived from

dge maps of photographs ( Section 3.2.3 ). 

In contrast to prior work ( Li et al., 2015; Wang et al., 2014 )

hat incorporates three identical and siamese CNN branches into

heir triplet networks, we propose a “half-sharing” scheme across

etwork branches which we argue better fits the problem of gen-

ral SBIR ( Fig. 1 , left). The network design comprises an adapted

orm of Yi et al. ’s Sketch-A-Net, duplicated across the three net-

ork branches and unified in a final fully connected layer of low

imensionality (we use � 

100 for all experiments reported) to en-

ode the embedding. The positive and negative branches that ac-

ept photo images are identical, whilst the anchor branch accept-

ng sketched input shares only the 4 top layers with the other

ranches. Whilst similar in dimensionality, sketch and image edge-

aps encode very different domains, thus their visual feature ex-

raction frameworks (encapsulated within the first few layers of

he CNN) should not be the same. This assumption is borne out in

ig. 1 (right), where the first layer of 64 filters has been visualised

rom the sketch and photo branches of the CNN showing clear dif-

erences between the pair of domains. Although we explored con-

guring the anchor branch to be completely independent of the

ther two branches, our experiments conclude (c.f. Section 4 that

ver-relaxing the CNN model in this manner easily leads to

ver-fitting. 

.2. Training and data acquisition 

We learn the sketch-photo embedded by training our CNN us-

ng exemplar triplets comprising a free-hand sketch (the anchor),

nd two photographs corresponding to a positive search results

i. e. matching the object class of the sketch) and a negative search

esult (i. e. any other object class). We now outline this process in

etail. 

.2.1. Datasets 

We used two public sketch datasets in order to run our exper-

ments: the TU-Berlin classification dataset ( Eitz et al., 2011 ) and

he SBIR Flickr15K dataset for visual search ( Hu and Collomosse,

013 ): 

• The TU-Berlin classification dataset, used in the training stage

only, comprises 250 categories of sketches and 80 sketches per

category. Because these were crowd-sourced from 1350 differ-

ent non-expert subjects, the drawing styles are diverse. In ad-

dition to the sketches available in this dataset, our method

requires photographs images to match the sketch categories.

Those images were obtained from the Internet as described in

Section 3.2.2 . 
• The Flickr15K, used for testing , has labels for 33 categories of

sketches and 10 sketches per category. It also has a different

number of real images per category totalling 15,024 images. The

Flickr15K dataset has few shared categories with the TU-Berlin

dataset (only “swan”, “flowers”, “bicycle” and “airplane”). The

two datasets also conflict in a few categories, for example TU-

Berlin has a general “bridge” category while Flickr15K distin-

guishes “London bridge”, “Oxford bridge” and “Sydney bridge”.

In addition to the limited category overlap, the datasets differ

in their sketch depiction (only a few commonalities exist in ob-

jects with simple structure, such as circles depicting the moon).

This challenge motivates a need for good generalisation beyond

training. 

.2.2. Internet photo acquisition 

To generate the training triplets we automatically generated

ets of photographs corresponding to each TU-Berlin object cate-

ory by downloaded content from the Internet. For each category,
h-based image retrieval using a triplet loss convolutional neural 

oi.org/10.1016/j.cviu.2017.06.007 

http://dx.doi.org/10.1016/j.cviu.2017.06.007


4 T. Bui et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–11 

ARTICLE IN PRESS 

JID: YCVIU [m5G; July 13, 2017;9:55 ] 

Anchor L1 (Sketch)

Branch L1 (Photo)

Fig. 1. Left: The proposed “half-sharing” triplet CNN architecture for SBIR. The query sketch is fed to the anchor network while a pair of photographic images are directed 

to the right positive/negative nodes. Right: Visualisation of the 64 filters within the first layer of the anchor (sketch) and shared branches (photograph). The green and red 

boxes highlight single and double edge filters. These are highlighted within the sketch and photo edgemap branches respectively — the composition of the filter banks of 

each branch are quite different, supporting independent learning of the early stage layers in our half-share framework. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Left (a-b): Triplet loss minimises the distance between an anchor and a positive exemplar (same category) and maximises the distance between an anchor and a 

negative exemplar (any other category). Right: Comparing (c) conventional triplet loss function, and (d) proposed weighed-anchor triplet loss function for a fixed value of 

a = 0 . 5 . 
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we queried the Flickr API using the category name as the search

term, limiting results to the most relevant 100 images on the basis

that larger result sets were frequently polluted with non-relevant

images. For a few unusual categories that are unpopular on Flickr

(e. g. human brain, tooth, human skeleton, ...) we downloaded im-

ages using the Bing and Google Images APIs. Specifically, the Flickr

API was used to download images from 184 categories, with the

search engines covering the remainder of content. 

3.2.3. Image pre-processing 

Prior to using the harvested photos as input to CNN training,

the images are pre-processed. First, images are resized maintain-

ing aspect ratio such that longest side (height or width) of the im-

age is 256 pixels. This may introduce white space into the image.
Please cite this article as: T. Bui et al., Compact descriptors for sketc

network, Computer Vision and Image Understanding (2017), http://dx.d
econd, a ‘soft’ edge map is computed from the resized image us-

ng the state of the art gPb contour detection method ( Arbelaez

t al., 2011 ). The soft edge map is converted into a binary edge

ap by thresholding to retain the 25% strongest edge pixels, and

emoving the weakest 25%. Edge following (hysteresis threshold-

ng) is applied to the remaining pixels as per the Canny edge

etection algorithm to detect the edge points connected to the

strong edges” and remove the isolated edge pixels. The resulting

dgemap is padded with non-edge pixels to achieve a fixed dimen-

ion of 256 × 256 pixels. 

Prior to using the TU-Berlin sketches as input to the CNN train-

ng, skeletonisation is performed ( Lam et al., 1992 ). As an arte-

act of the capture technology used in TU-Berlin, sketches in that

ataset consist of thick strokes whereas edge maps obtained from
h-based image retrieval using a triplet loss convolutional neural 

oi.org/10.1016/j.cviu.2017.06.007 
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Fig. 3. Pre-processing of images for triplet exemplars. Insets (c–e) in the last row are a failure case of gPb ( Arbelaez et al., 2011 ) due to strong edges detected in background. 
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he images exhibit pixel-thin contours. The skeletonisation process

rings the two domains closer into alignment. 

Fig. 3 summarises the image and sketch pre-processing steps

pplied. 

.2.4. Triplet selection and training 

We train the CNN for 10,0 0 0 epochs using stochastic gradi-

nt descent (SGD) implemented in PyCaffe ( Jia et al., 2014 ), step-

ecreasing the learning rate at epoch 60 0 0, 80 0 0 and 90 0 0. During

raining, a triplet is formed by randomly matching a sketch with an

mage’s edge map of the same class as a positive pair, and a ran-

om image’s edge map of a different class as a negative pair. We

se a batch-size of 200 triplets, each containing 20 classes sampled

t random from those available in the data (up to 250 classes, as

er TU-Berlin). Although randomly selected, we ensure even sam-

ling across the 20 classes within each mini-batch (we found this

etail important to promote convergence). 

.3. Weighed-anchor triplet loss function 

The conventional triplet loss function is defined as: 

 (a, p, n ) = 

1 

2 N 

N ∑ 

i =1 

max 
[
0 , m + | a i − p i | 2 − | a i − n i | 2 

]
, (1)

here m is the distance margin. However, in our experiments

ith large number of categories, the training quickly converges

o a global loss of m /2. This typically occurs when the differ-

nces | a − p| and | a − n | produced low values at the same time

or a given input triplet. Instead of learning to pull the positive

mage closer to the anchor, whilst pushing the negative image

way, the network effectively draws all 3 points closer together in

he learned embedding. Consequently, the gradient with respect to

he three inputs collapses to zero and the network stops learning

 Fig. 5 a). 

A common tactic to discourage gradient collapse is to con-

ider L2 normalisation of the output layer prior to evaluation of
Please cite this article as: T. Bui et al., Compact descriptors for sketc

network, Computer Vision and Image Understanding (2017), http://dx.d
q. (1) i. e. to enforce the two domains to lie upon the unit sphere.

owever, in this case we are not dealing with loss spiking and col-

apsing to zero, but rather to oscillate then flatten to m /2 ( Fig. 5 a).

ohlhart and Lepetit (2015) observed similar difficulties in their

wn cross-domain learning, and proposed a new triplet loss func-

ion where the margin and anchor-negative distance are moved to

 denominator of the loss function. However, we found this func-

ion to be unstable for our sketch-photo mapping. Moreover we

ound that manual initialisation with several margin values or tun-

ng of the learning rate, batch-size and filter parameters was un-

elpful. We instead propose a modification of the conventional loss

unction in order to aid convergence by weighing the anchor vector

ith a k factor as follows: 

 (a, p, n ) = 

1 

2 N 

N ∑ 

i =1 

max 
[
0 , m + | ka i − p i | 2 − | ka i − n i | 2 

]
. (2)

The gradient for the backpropagation is given by the derivatives

f this weighed-anchor loss function for positive loss with respect

o each term: 

∂L 

∂a 
= − k 

N 

[ p − n ] , 

∂L 

∂ p 
= 

1 

N 

[ p − ka ] , (3) 

∂L 

∂n 

= − 1 

N 

[ n − ka ] . 

Fig. 2 c and d visualises the two loss functions T (a, p, n ) and

 (a, p, n ) varying ( p, n ) for a fixed value of a = 0 . 5 and showing

hat T (a, p, n ) is prone to developing a saddle point. This example

onsiders the anchor, positive and negative as scalars analogous to

he scalars generated when computing the differences in the lat-

er two terms of each loss function. The plots indicate that relative

ifferences between the positive and negative vectors can develop

 surface exhibits a saddle, in which convergence is hampered. By
h-based image retrieval using a triplet loss convolutional neural 
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Fig. 4. Heatmaps showing a fixed search region distorted by increasing the weight of the anchor on the proposed loss function. Here the anchor vector a and the axis 

represent different relative values for p and n . 

Fig. 5. (a) Illustrating collapse of the gradient with the classical triplet loss, and (b) training with our new loss function. Note the effects of decreasing the learning rate at 

epoch 60 0 0. At epoch 80 0 0 and 90 0 0, the learning rate is already too small to have a significant impact. Plotting training loss (train loss) and validation mAP (val mAP). 
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increasing the weight of the anchor via the parameter k , the func-

tion is warped, yielding a surface with more defined slope, so aid-

ing convergence of the optimisation and mitigating the problem.

This effect is visualised using real triplet data in Fig. 4 for a fixed

search region and different values of k . Note that for higher values

of k the saddle is removed from the search region and that there

is a clearer slope in the resulting surface that resembles a linear

function. The SGD is now encouraged to fit the sketch output fea-

ture as k times the image feature. This behaviour can be verified

empirically by examining the first non-shared layers of the trained

anchor branch, as its learned convolutional weight range is around

1/ k of the image’s counterpart. At test time, when extracting a de-

scriptor within the embedding for a query sketch, we simply mul-

tiply the output of the anchor branch with k . This must be done

prior to using the anchor point as a basis for measuring Euclidean

distance in the space to assess visual similarity for SBIR. We later

explore the sensitivity of retrieval performance, and of convergence

time to parameters m and k ( Section 4.2 ). 

3.4. Embedding dimensionality, PCA-Q and PQ 

Having trained the CNN, the convolutional weights are fixed

and the sketch (anchor) and photograph branches extracted to pro-

vide a pipeline for feature extraction. At test time, the query sketch

and all photographs within the dataset are passed through the re-

spective branches to obtain 100-D descriptors (for the latter this

is performed once during content ingestion and indexing). In our

experiments, the Euclidean (L2) Distance is used to exhaustively

compare the query and image descriptors using the distance as a

ranking metric for relevance. More sophisticated indexing strate-

gies that scale sub-linearly with dataset size are commonly found

in the information retrieval literature (e. g. clustered retrieval via

hierarchical K-means ( Nister and Stewenius, 2006 ) or kd-trees ( Hu
Please cite this article as: T. Bui et al., Compact descriptors for sketc

network, Computer Vision and Image Understanding (2017), http://dx.d
nd Collomosse, 2013 )) however such engineering is outside the

cope of this paper’s contribution, which focusses on the feature

epresentation itself. 

The use of a triplet architecture and the loss layer on our

NN makes the learning task more similar to a regression than

 classification. Therefore the output dimensionality can be seen

s a hyperparameter of the system. It was shown by Schroff et al.

2015) that the dimensionality does not affect the final accuracy

n a statistically relevant manner, provided it is high enough to

ncompass the output space variance. With that in mind, we se-

ected 100 as our output dimensionality, which provides an effi-

ient training time while maintaining the capability of represent-

ng descriptors of varying complexity. To evaluate our choice two

imensionality reduction methods were used: a Product Quantisa-

ion (PQ) and a Principal Component Analysis based Quantisation

PCA-Q). In the case of PCA-Q, we have the following steps (i) com-

ute PCA and explore dimensionality reduction using the first prin-

ipal components (PCs); (ii) perform quantisation on PCs, in terms

f number of bits used to represent each dimension ( Ponti et al.,

016 ). 

Practically, it is useful to have a compact representation for

oth retrieval and classification tasks to enable efficient storage

nd transmission of the search index e. g. for mobile devices.

trategies for compact representation of visual search descriptors

ave been explored extensively for classical (i. e. photo query) vi-

ual search. The PQ-based approach is able to obtain compression

ut the space of parameters is large, and therefore it is harder to

nd the optimal values, as we show in the following section. In

ddition to PQ, we investigated a feature compressing method by

erforming PCA projection of the features as in Sun et al. (2014) ,

lso exploring subsequent quantisation of each dimension into a n -

it fixed point integer. For our SBIR representation we found that

ompaction without significant loss of accuracy can be achieved
h-based image retrieval using a triplet loss convolutional neural 
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Table 1 

SBIR results comparison (mAP) against state-of-the-art alternatives. 

Methods Feature size (bits) mAP (%) 

Proposed approach 3200 24.45 

Proposed approach (compact) 56 22.03 

Contrastive loss ( Qi et al., 2016 ) 2048 19.54 

PeceptualEdge ( Qi et al., 2015 ) – 18.37 

Triplet full-share ( Yu et al., 2016 ) 3200 18.36 

Color gradient ( Bui and Collomosse, 2015 ) 160,0 0 0 18.20 

PeceptualEdge-proximity ( Qi et al., 2015 ) – 16.02 

GF-HOG ( Hu and Collomosse, 2013 ) 112,0 0 0 12.22 

HOG ( Dalal and Triggs, 2005 ) 96,0 0 0 19.93 

SIFT ( Lowe, 2004 ) 32,0 0 0 9.11 

SSIM ( Shechtman and Irani, 2007 ) 16,0 0 0 9.57 

ShapeContext ( Belongie et al., 2002 ) 112,0 0 0 8.14 

StructureTensor ( Eitz et al., 2009 ) 16,0 0 0 7.98 

PeceptualEdge-continuity ( Qi et al., 2015 ) – 7.89 
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ia this combination of PCA projection and independent quantisa-

ion of descriptor elements. 

. Experiments and results 

We report experiments exploring both the accuracy and stor-

ge overhead of an evaluation SBIR system constructed over our

earned representation base upon an exhaustive linear comparison

f the dataset using Euclidean distance. We begin by describing the

xperimental setup and significant parameters to performance in

ection 4.1 . We explore the accuracy of the learned representation

n Section 4.2 without any compaction. In particular we charac-

erise our system’s ability to generalise to category-level SBIR in

he Flickr15k dataset, from a limited and distinct set of object cat-

gories observed during training. In Section 4.3 we compare our

escriptor compaction approach to classical approaches, exploring

he effect of storage overhead and accuracy. 

.1. Datasets and experimental settings 

We trained our network on a single NVidia Titan-X GPU hosted

ithin an Intel i7 5930K CPU Server with 128GB RAM. Having

rained the embedding, we run our visual search experiments

n an Intel Xeon E5-2643 CPU Server with 200 GB RAM. It is

n the latter machine that our timings in ( Section 4.3 ) are re-

orted. All training was performed on the TU-Berlin dataset aug-

ented with creative-commons Internet imagery, as outlined in

ection 3.2.1 . During the test phase the Flickr15k SBIR bench-

ark was used to obtain mAP and precision-recall statistics, as

his was the largest available SBIR dataset of fully annotated im-

ges (15,024 photographs) for 330 individual sketch queries ( Hu

nd Collomosse, 2013 ). 

Unless otherwise noted, we fixed the triplet margin value m =
 . 0 and loss scale factor k = 3 ( Eq. (2) ) for all experiments reported

ere. Training time depended on the experiment, for instance typ-

cal time to train a 250-category triplet model for 10k epochs with

atch size 200 was 6 days. That is less than a minute for one pass

hrough the sketch (anchor) training dataset. We used SGD for op-

imisation in all experiments. We used a multi-step learning rate

uring training, initially set to 10 −2 ; Fig. 5 provides a representa-

ive example of the effect of learning rate on convergence. 

In order to compensate for the limited sketch data available for

raining (a difficulty for all contemporary sketch CNN research) and

o combat the over-fitting problem, we apply data augmentation.

n addition to standard mean-image (here, mean-edge) subtraction,

ketch and photograph edge maps are randomly cropped, mirrored

nd rotated within a range of [ −5,5] degrees. Additionally, we cre-

ted new sketches by randomly discard strokes from the original

VG sketches in TU-Berlin dataset, considering drawing order as

oted in Yu et al. (2015) . The augmentation process was imple-

ented on-the-fly via a custom data-layer to reduce storage space.

.2. Evaluation of generalisation 

A series of experiments were conducted to investigate the abil-

ty of the triplet ranking model to generalise beyond its training

ata for category-level SBIR. We constructed training sets with dif-

erent number of categories: 20, 40, 80, 130 and 250 sampled arbi-

rarily at random from the TU-Berlin dataset. We also varied num-

er of training sketches per category: 20, 40, 60 and the whole 80

ketches/category were randomly sampled for training. Addition-

lly, we experimented with different sharing levels between sketch

nd edge-map branches. We start from sharing the whole branch

full-share), then unlock sharing each layer from bottom to top and

nally not sharing any layer at all. Having trained the CNN, mAP

ver the Flickr15k test dataset was evaluated, in order to measure
Please cite this article as: T. Bui et al., Compact descriptors for sketc

network, Computer Vision and Image Understanding (2017), http://dx.d
ow well the embedding was able to generalise to unseen cate-

ories. 

We successfully trained the triplet networks with loss Eq. (2) .

he imbalance in the loss function enables the sketch branch to

orrectly bias the other branches helping to overcome the collaps-

ng gradient problem (see Section 3.3 ) and the training loss de-

reases rapidly after the first few hundred epochs ( Fig. 5 ). Fig. 6 a

xplores the effect of varying the sharing policy between branches

uring training. We observe that partially sharing the weights

ields superior performance over the full-share and no-share con-

gurations. A gain of ≈ 3% mAP is obtained after the first convolu-

ional layer is released from sharing, allowing the bottom layers to

earn distinct functions for their respective domains. The best half-

hare design is performance is obtained when sharing from layer

. 

We also evaluated the effect of scale factor k in Eq. (2) ( Fig. 6 b)

n term of performance (mAP) and learning speed (measured by

ut-off epoch, which is the epoch number where the training loss

valanches to 1 / 
√ 

2 of the initial loss, or m/ (2 
√ 

2 ). Within the

orking range [2.0, 6.0], best performance and convergence speed

as achieved at k = 3 . 0 . The training does not converge beyond k

 2.0 and k > 6.0. We experimented within a working range of

argin m = [0 . 5 , 1 . 5] observing negligible change in mAP or con-

ergence time. Beyond this range, a small margin leads to an easy

ask where the training converges early to a suboptimal solution

the triplet condition is satisfied too easily). In contrast, a large

argin inhibits training convergence. 

Fig. 7 b and c illustrates the near-linear improvement of mAP as

he category count and sketch-per-category count increase. Overall,

e achieve ≈ 2.5 × increase in retrieval precision when expand-

ng the training database from 20 to 250 categories. At 250 cate-

ories, a boost of 2–4% mAP was achieved when increasing number

f training sketches per category from 20 to 80. Fig. 8 visualises

he distribution of the first 6 categories in the Flickr15k dataset

hose embedding features are extracted from 20 and 250 category

rained models respectively. A qualitative improvement in inter-

lass separation is observable using the larger number of training

ategories, mirroring the performance gains observed in mAP as

ategory count increases. Quantitatively after increasing the num-

er of training categories from 20 to 250, the inter-class distance

f the embedding features is pushed further away by 33%, while

he average intra-class distance is reduced by 10%. 

Table 1 compares our approach with contemporary SBIR al-

orithms, over the Flickr15k dataset. We compare our proposed

pproach and its compact version ( Section 4.3 ) with two recent

eep-learning baselines ( Qi et al., 2016; Yu et al., 2015 ) (note: our

riplet full-share version is analogous to Yu et al. (2016) ) and 10

ther approaches using shallow features. We exceed state of the art
h-based image retrieval using a triplet loss convolutional neural 
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Fig. 6. Exploring training meta-parameters. (a) Plotting the performance impact (mAP) for various degrees of weight sharing between branches, from full-share to no-share. 

(b) Plotting the effect of scale factor k on performance (mAP) and time to training convergence (epochs) under Eq. (2) . 

Fig. 7. Relative performance (mAP) of a fully shared, no share, and partially shared (from layer 3) network: (a) Precision-Recall (PR) curve showing our state of the art 

result; (b) The generalisation capability of our model across test categories as number of the training categories increases; (c) the impact of increasing the number of 

training sketches. 

Fig. 8. T-SNe visualisation of the Flickr15k dataset’s data distribution, projected on the 3 major Eigen vectors, viewed at the same angle, for the training with (a) 20 classes 

and (b) 250 classes. Each color represents a semantic class in Flickrk15k. 
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accuracy on the Flickr15K dataset by 5%. The precision-recall (PR)

curve is depicted in Fig. 7 (a). 

We observe little performance difference when searching with

sketches of categories within the semantic overlap between

Flickr15k and TU-Berlin, and those non-overlapping (the major-

ity of Flickr15k categories). Fig. 9 shows the retrieval results for

several query examples. Example queries from categories “bicycle”
Please cite this article as: T. Bui et al., Compact descriptors for sketc

network, Computer Vision and Image Understanding (2017), http://dx.d
nd “horse” (shared by both TU-Berlin and Flickr15K datasets), to-

ether with “Arc de Triomphe” and “Eiffel tower” (unseen cate-

ories), “London bridge” and “Sydney bridge” (related to the con-

icting “bridge” category under the TU-Berlin dataset) return ex-

ellent results. At the same time, a query from the shared category

tree” (row second from bottom) is among the worst results. This

rovides further evidence for generalisation in the trained model. 
h-based image retrieval using a triplet loss convolutional neural 
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Fig. 9. Top retrieval results for several query examples. Top rows are examples of the good results while bottom rows are the bad ones. Non-relevant images are marked 

with a red bounding box. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Run-time of our proposed system for a single 

sketch query over the Flickr15k dataset, tabu- 

lated for multiple quantisation setups on the 250 

category configuration. 

PCs \ nBits 4 8 16 

4 14.6 ms 17.3 ms 17.9 ms 

8 14.3 ms 17.5 ms 17.9 ms 

12 14.0 ms 17.7 ms 18.7 ms 
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.3. Evaluation of compact representation 

The ‘raw’ 100 dimensional embedding output by the triplet net-

ork yields a best-case performance when trained over 250 cate-

ories of the TU-Berlin dataset, achieving a mean average precision

mAP) of 24.45%. 

Two approaches were tested in order to obtain a compact rep-

esentation, the first based on Product Quantisation (PQ) ( Jegou

t al., 2011 ) and the second based on PCA. We tested PQ

ith various parameters for the clustering algorithm as follows:

 = 16 , 32 , 64 , 128 , 256 , 512 (coarse), m = 2 , 5 , 10 , 20 , 30 and K 

′ =
6 , 32 , 64 , 128 , 256 , 512 (fine) – these parameters are discussed

ully in Jegou et al. (2011) . For the PCA approach, we explore vari-

tion in the number of principal components m = 6 , 7 , · · · , 14 and

uantisation of the PCA projected values into n = 4 , 5 , · · · , 10 bits.

he relative performance of these configurations is summarised in

ig. 10 . 

Reducing the descriptor storage footprint further, from a float-

ng point representation (32–64 bits) to n bits per dimension, is

ritical for deployment of SBIR on resource constrained devices or

or scalability to a large search corpus. We explored quantisation

f the real-valued space into a n bit fixed point representation for

he PCA for the 250-category i. e. best case embedding. In the case

f PQ and its parameters, the resulting representation requires a

umber of bits proportional to 1 · log 2 (K) + m · log 2 (K 

′ ) , while in

CA-Q the bit size is number of bits times number of principal

omponents, i.e. n · m . 

To the best of our knowledge, no compact representations have

reviously been explored for SBIR. Fig. 10 (right) plots the results

f PQ against our PCA-Q approach. Significant performance im-

rovements are yielded under our proposed method i. e. PCA +
Please cite this article as: T. Bui et al., Compact descriptors for sketc

network, Computer Vision and Image Understanding (2017), http://dx.d
yte quantisation, which is more stable than the PQ when varying

he parameters for different byte sizes. We considered as optimal

he use of 56 bits using PCA-Q — 14 PCs quantized to 4 bits each

since it yields 22.03% mAP (only 2% less than the full model),

hile the PQ result for the same 56 bits ( K = 64 , m = 10 , k ′ = 32 )

s 19.52% mAP. Additionally, PCA-Q is more stable, easier to tune

nd implement, while PQ requires a larger parameter search. Al-

hough not significant to scalability there is also a small constant

verhead of K · 64 + m · k · 64 bits for the PQ codebook. 

In addition to reduced storage overhead, compact representa-

ions for visual search are often faster to compare at query-time

han real-valued representations, and this is important for deploy-

ent on resource constrained devices. Table 2 reports observed

un-times (time to perform one query against Flickr15k) obtained

rom our quantised representation under a single-threaded Matlab

mplementation. Whilst the original non-quantised (floating point)

escriptor the runtime of a query is 29.8 ms , retrieval using quan-

ised descriptor with the optimal setup (56 bit, PCA-Q) reduces

he runtime by approximately 41% . A machine-level implementa-

ion using extended instruction sets on modern CPUs (e. g. SSE3)
h-based image retrieval using a triplet loss convolutional neural 
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Fig. 10. Comparing performance (mAP) for different compact representation strategies. Left: Relative performance of PCA-Q for various numbers of principal components 

(PCs) and bit quantisations of the projected dimensions. Right: Retrieval results comparing PQ to PCA-Q highlighting that our choice of using principal components and bit 

quantisation is compact with consistent performance over different bit sizes. This plot was obtained by averaging chunks of 16 bits in order to smooth out noise in the 

parameter space. Performance levels out at 56 bits motivating selection of this bit length at the winning strategy. 
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could compare each image in a single instruction cycle given the

size of descriptor is less than one word (64 bits). 

5. Conclusions 

We have presented a compact representation for sketch based

image retrieval (SBIR) suitable for deployment on resource con-

strained mobile devices. Tackling SBIR from the perspective of a

cross-domain modelling problem, we developed a triplet ranking

CNN to learn a low dimensional embedding between the space

of sketches and photographs. The CNN was trained using exem-

plar triplets comprising sketches from a public 250 object category

sketch dataset (TU-Berlin) and corresponding photographs sourced

from the Internet (via the FlickR API). Evaluating the trained CNN

over a challenging SBIR benchmark (Flickr15k) yielded a significant

performance boost to 24% mAP (or 22% in the compact represen-

tation), an improvement over previously reported results (12% ( Hu

and Collomosse, 2013 ), 18% ( Qi et al., 2015 ), 19% ( Qi et al., 2016 )),

using a regular distance measure (L2 norm) within the learned

embedding. Notwithstanding this improvement, this work is also

the first triplet ranking CNN for SBIR that is not constrained to so

called ‘fine grain retrieval i. e. restricted to the same single ob-

ject category exposed to the CNN during training. Rather, we have

demonstrated the ability to generalise beyond objects experienced

during training (category level retrieval) and explored this ability

over a range of training object categories. We also showed that a

combination of PCA and dimension quantisation can dramatically

reduce storage footprint of the search index by 98% (from 3200

bits to 56 bits) with virtually no loss of accuracy. To the best of

our knowledge no prior work has addressed the compact repre-

sentation of descriptors for SBIR, with previous bag of visual words

based SBIR system requiring between 3–10k bits per image. 

Future work could explore alternative data augmentation strate-

gies during training to further mitigate over-fitting on the rel-

atively small free-hand sketch datasets currently available (e. g.

adopting the stroke omission policy of Yi Li , QMUL ) and alterna-

tive strategies for cleaning and decluttering the Internet sourced

images for the triplets. Triplet ranking models perform optimally

when a wide margin is present between positive and negative ex-

emplars, and more sophisticated strategies for triplet proposal may

hold value. A popular technique explored also in photo-based vi-

sual search has been the use of hard negative examples to fur-

ther refine triplet performance ( Gordo et al., 2016; Radenovi ́c et al.,

2016 ). We have explored a similar approach, for our cross-domain

problem; bootstraping the CNN using the embedding trained in a

previous epoch to retrieve positive and negative images from the

training set. So far this has met with limited success; possibly due
Please cite this article as: T. Bui et al., Compact descriptors for sketc

network, Computer Vision and Image Understanding (2017), http://dx.d
o the cross-modality of the problem causing greater spread be-

ween anchor and positive/negatives in the embedding, or due to

igh levels of clutter in some edge maps. It appears that naïve

pplication of hard negative mining is inappropriate for a sketch-

hoto regression, reducing overall model performance – or if us-

ng semi-hard negatives yielding negligible improvement to overall

AP. On that basis it would also be elegant to learn rather than

rescribe the pre-processing (edge extraction) step, perhaps reduc-

ng clutter in doing so. We note that virtually all prior SBIR work

dopts such an edge extraction step, and so this is likely a fruitful

rea for experimentation. 
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