
LiveSketch: Query Perturbations for Guided Sketch-based Visual Search

John Collomosse1 2, Tu Bui1, and Hailin Jin2

1Centre for Vision Speech and Signal Processing, University of Surrey
2Creative Intelligence Lab, Adobe Research

Abstract

LiveSketch is a novel algorithm for searching large image
collections using hand-sketched queries. LiveSketch tackles
the inherent ambiguity of sketch search by creating visual
suggestions that augment the query as it is drawn, making
query specification an iterative rather than one-shot process
that helps disambiguate users’ search intent. Our technical
contributions are: a triplet convnet architecture that incor-
porates an RNN based variational autoencoder to search
for images using vector (stroke-based) queries; real-time
clustering to identify likely search intents (and so, targets
within the search embedding); and the use of backpropaga-
tion from those targets to perturb the input stroke sequence,
so suggesting alterations to the query in order to guide the
search. We show improvements in accuracy and time-to-task
over contemporary baselines using a 67M image corpus.

1. Introduction
Determining user intent from a visual search query re-

mains an open challenge, particularly in sketch based image
retrieval (SBIR) over millions of images where a sketched
shape can yield plausible yet unexpected matches. For exam-
ple, a user’s sketch of a dog might return a map of the United
States that ostensibly resembles the shape (structure) drawn,
but is not relevant. Free-hand sketches are often incomplete
and ambiguous descriptions of desired image content [8].
This limits the ability of sketch to communicate search in-
tent, particularly over large image datasets.

This paper proposes LiveSketch; a novel interactive SBIR
technique in which users iterate to refine their sketched
query, selecting and integrating sketch embellishments sug-
gested by the system in order to disambiguate search in-
tent and so improve the relevance of results (Fig. 1). A core
novelty of our approach lies within the method by which
visual suggestions are generated, exploiting the reversibility
of deep neural networks (DNNs) that are commonly used
to encode image features to create the search index in vi-
sual search systems [26, 13, 7, 6]. By identifying clusters
of likely target intents for the user’s search, we reverse the
DNN encoder to explain how such clusters could be gen-

Figure 1. LiveSketch helps disambiguate SBIR for large datasets,
where a shape sketched from scratch (top left) can yield results
that do not match the users’ search intent. LiveSketch iteratively
suggests refinements to users’ sketched queries to guide the search
(Iter.1-3), based on the user indicating relevant clusters of results
(right). This interaction disambiguates and quickly guides the
search towards results that match users’ search intent (subsec. 4.3).

erated by adapting the query. We are inspired by adversar-
ial perturbations (APs); that use backpropagation to gen-
erate ‘adversarial’ image examples [12] that induce object
mis-classification [24, 2, 23] to a targeted category. In our
context of visual search, we similarly backpropagate to per-
turb the sketched query from its current state toward one (or
more) targets identified in the search embedding by the user.
As such, the query becomes a ‘living sketch’ on the can-
vas that reacts interactively to intents expressed by the user,
forming the basis for subsequent search iterations. The use
of a single, live sketch to collaboratively guide the search dif-
fers from prior approaches such as ShadowDraw [22] that
ghost hundreds of top results on the canvas. We propose
three technical contributions:
1) Vector Queries for Sketch based Image Retrieval. We
learn a joint search embedding that unifies vector graphic
and raster representations of visual structure, encoded by
recurrent (RNN) and convnet (CNN) branches of a novel
triplet DNN architecture. Uniquely, this embedding enables

1

the retrieval of raster (e.g. photo) content using sketched
queries encoded as a sequence of strokes. This higher level
representation is shown to not only enhance search accuracy
(subsec. 4.1) but also enables perturbation of the query to
form suggestions, without need for pixel regularization.
2) Guided Discovery of Search Intent. We make use of an
auxiliary (semantic) embedding to cluster search results into
pools, each representing a candidate search intent. For exam-
ple, a circle on a stick might return clusters corresponding
to balloons, signs, mushrooms. Deriving query suggestions
from sketches drawn from these pools guides the user toward
relevant content, clarifying intent by supplying contextual
information not present in the query.
3) Query Perturbation. We propose an iterative strategy
for SBIR query refinement in which the users’ query sketch
is perturbed to incorporate the appearance of search intent(s)
indicated by the user. We cast this as a search for a query
perturbation that shifts the encoded query within the search
embedding closer toward those selected intent(s), encoding
that vector as a loss (in the spirit of APs) that is backpropa-
gated through the DNN to update the sketch.

2. Related Work
Visual search is a long-standing problem within the com-

puter vision and information retrieval communities, where
the iterative presentation and refinement of results has been
studied extensively as relevance feedback (RF) [29, 21, 20]
although only sparsely for SBIR [16]. RF is driven by in-
teractive markup of results at each search iteration. Users
tag results as relevant or irrelevant, so tuning internal search
parameters to improve results. Our work differs in that we
modify the query itself to affect subsequent search iterations;
queries may be further augmented by the user at each itera-
tion. Recognizing the ambiguity present in sketched queries
we group putative results into semantic clusters and propose
edits to the search query for each object class present.

Query expansion (QE) is a automated technique to im-
prove search accuracy from a single, one-off visual query
[19, 39, 33, 27] by recursively submitting search results as
queries. LiveSketch contrasts with QE as it is an interactive
system in which query refinements are suggested, and op-
tionally incorporated by the user to help disambiguate search
intent; so communicating more information than present in
a single, initial sketched query.

Deep learning, specifically CNNs (convnets), have been
rapidly adopted for SBIR and more broadly for visual search
outperforming classical dictionary learning based models
(e.g. bag of words) [30, 3]. Wang et al [34] were arguably
the first to explore CNNs for sketched 3D model retrieval
via a contrastive loss network mapping sketches to ren-
dered 2D views. Qi et al. [25] similarly learned correspon-
dence between sketches and edge maps. Fine-grained SBIR
was explored by Yu et al. [38] and Sangkloy et al. [28]
who used a three-branch CNN with triplet loss for learn-
ing the cross-domain embedding. Triplet loss models have
been used more broadly for visual search e.g. using pho-
tographic queries [35, 26, 13]. Bui et al. [4, 6] perform

cross-category retrieval using a triplet model and currently
lead the Flickr15k [15] benchmark for SBIR. Their system
was combined with a learned model of visual aesthetics [36]
to constrain SBIR using stylistic cues in [7]. All of these
prior techniques learn a deep encoder function that maps
an image into a point in a metric search embedding where
the distance between an image pair correlates to its similar-
ity. Such embeddings can be binarized (e.g. via PQ [18])
for scalable search. In prior work search embeddings were
learned using rasterized sketches i.e. images, rather than vec-
tor representations of sketched strokes. In our approach we
adopt the a vector representation for sketches, building upon
the SketchRNN variational auto-encoder of Eck et al. pre-
viously applied to blend [14] and match [37] sketches with
sketches. Here we adapt SketchRNN in a more general form
for both our interactive search of photographs, and for gener-
ating search suggestions, training with the Quickdraw50M
dataset [1].

Our work is aligned to ShadowDraw [22] in which ghosts
(edge-maps derived from top search results) are averaged
and overlaid onto the sketch canvas (similarly, [40] for photo
search). However our system differs both in intent and in
method. ShadowDraw is intended to teach unskilled users
to sketch rather than as a search system in its own right [22].
The technical method also differs - our system uses deep neu-
ral networks (DNNs) both for search and for query guidance,
and hallucinates a single manipulable sketch rather than a
non-edittable cloud of averaged suggestions. This declut-
ters presentation of the suggestions and does not constrain
suggestions to the space of existing images in the dataset.
Our method produces query suggestions by identifying des-
tination points within the search embedding and employing
backpropagation through the deep network (with network
weights fixed) in order to update the input query so that it
maps to those destination points. The manipulation of in-
put imagery with the goal of affecting change in the output
embedding is common in the context of adversarial perturba-
tions (APs) where image pixels are altered to change the clas-
sification (softmax) output of a CNN [24, 2]. We are inspired
by FGSM [12] which directly backpropagates from classifi-
cation loss to input pixels in order to induce noise that, whilst
near-imperceptible, causes mis-classification with high con-
fidence. Although we also backpropagate, our goal differs in
that we aim for observable changes to the query that guide
the user in refining their input. Our reimagining of APs for
interactive query refinement in visual search is unique.

3. Methodology
LiveSketch accepts a query sketch Q in vector graphics

form (as a variable length sequence of strokes), and searches
a large (� 108) dataset of raster images I = fI1; :::; INg.
Our two-stream network architecture (Fig. 2) unifies both
vector and raster modalities via a common search embedding
(S). Sketch and image content are encoded via RNN and
CNN branches respectively, unified via 4 fully connected
(fc) layers; final layer activations yield S 2 <256. The end-
to-end RNN and CNN paths through the network describe

Figure 2. Overview of the proposed SBIR framework. A query
sketch (Q, vector graphics form) and images (I , raster form) are
encoded into the search embedding S via RNN and CNN branches,
unified via four inner product layers. Images are encoded via SI(:);
the image branch of [6]. Query sketches are encoded via SQ(:);
the encoder stage of Fig. 3. An auxiliary semantic embedding Z
clusters results to help the user pick search target(s) T in the search
embedding. In the spirit of adversarial perturbation, the strokes Q
are adjusted to minimize jjSQ(Q)�Tijj2 and so evolve the sketch
toward the selected target(s).

the pair of encoding functions SQ(Q) and SI(Ii) for encod-
ing the visual structure of sketches, and of images, respec-
tively; the process for learning these functions is described
in subsec. 3.1. Once learned, the image dataset is indexed
(offline) by feeding forward all Ii 2 I through SI(:). At
query time, results for a given Q are obtained by ranking on
jjSQ(Q)� SI(Ii)jj2 where jj:jj2 is the L2 norm.

Fig. 2 provides an overview of our interactive search.
Given an initial query Q, images embedded in S proximate
to SQ(Q) are returned. Whilst these images share the visual
structure of Q, the inherent ambiguity of sketch typically re-
sults in semantically diverse content, only a subset of which
is relevant to the user’s search intent. We therefore invite
the user to disambiguate their sketch intent via interaction.
Search results are clustered within an ‘auxiliary’ semantic
embedding Z . The user assigns relevance weights to a few
(m = 3) dominant clusters. For each cluster fC1; :::; Cmg in
Z , a search target fT1; :::; Tmg is identified in S (process de-
scribed in subsec. 3.3). The targets receiving high weighting
from the user represent visual structures that we will evolve
the existing query sketch Q toward, in order to form a query
suggestion (Q0) to guide the next search iteration.

Our query is represented in vector graphics form to en-
able suggestions to be generated via direct modification of
the stroke sequence encoded by Q, avoiding the need for
complex pixel-domain regularization. LiveSketch updates
Q 7! Q0 such that SQ(Q0) is closer to targets fT1; :::; Tmg
than SQ(Q). Treating the weighted distances between those
targets and SQ(Q0) as a loss, we fix SQ(:) and propagate
gradients back via the RNN branch to perturb the input se-
quence of strokes (subsec. 3.4) and so suggest the modified

R 2 <256 Raster embedding [6]*
V 2 <512 Vector graphics embedding*
S 2 <256 Joint search embedding (structure)
Z 2 <2048 Auxiliary embedding (semantic)

Table 1. Summary of the feature embeddings used in LiveSketch;
* indicates intermediate embeddings not used in the search index.

sketch query. Q0 may be further augmented by the user, and
submitted for a further iteration of search.

3.1. Cross-modal Search Embedding (S)
We wish to learn a cross-modal search embedding in

which a sketched query expressed as a variable length se-
quence of strokes, and an image indexed by the system (e.g.
a photograph) containing similar visual structure, map to
similar points within that embedding. We learn this repre-
sentation using a triplet network (Fig. 4) comprising an RNN
anchor (a) and siamese (i.e. identical, shared weights) posi-
tive and negative CNN branches (p/n). The RNN and CNN
branches encode vector and raster content to intermediate
embeddings V and R respectively; we describe how these
are learned in subsecs 3.1.1-3.1.2. The branches are unified
by 4 fully-connected (fc) layers, with weight-sharing across
all but the first layer to yield the common search embedding
S . Thus the fc layers encode two functions mapping V 7! S
and R 7! S respectively; we write these FV (:) and FR(:)
and in subsec. 3.1.3 describe incorporation of these into the
pair of end-to-end encoding functions SQ(:) and SI(:) for
our network (Fig. 2).

3.1.1 Sketch Variational Autoencoder

The RNN branch is a forward-backward LSTM encoder
comprising the front half of a variational autoencoder (v.a.e.)
for sketch encoding-decoding, adapted from the SketchRNN
network of Eck et al. [14]. In the SketchRNN v.a.e., a de-
terministic latent representation (z0) is learned, alongside
parameters of multi-variate Gaussian from which a non-
deterministic (n.d.) representation (batchz) is sampled to
drive the decoder and reconstruct the sketch through recur-
rence conditioned on batchz. The representation is learned
via a combination of reconstruction loss (and a regulariza-
tion ‘KL loss’ [17] over the multi-variate parameters), but as
proposed [14] can represent only up to a few object classes
making it unsuitable for web-scale SBIR.

Figure 3. Modified SketchRNN [14] (changes, blue) used to en-
code/decode stroke sequences via addition of 512-D latent repre-
sentation and classification loss. Integrates with Fig. 2 (anchor).

We adapt SketchRNN as follows (Fig. 3). We retrain from
scratch using 3.5M sketches from Quickdraw50M (QD-
3.5M; see Sec. 4) adding a low-dimensional (512-D) bot-
tleneck afterz0 from whichbatchz is sampled. We add soft-
max classi�cation loss to that bottleneck, weighted equally
with the original reconstruction and KL loss terms. Dur-
ing training we reduce below10� 2 the covariance of the
n.d. variate. A query sketch (Q) is coded as a sequence of
3-tuplesQ = [q1; q2; :::; qn] whereqi = (�x; �y; l) repre-
senting relative pen movements inx; y 2 < 2 and whether
the pen is liftedl = [0 ; 1]; an abbreviated form of the 5-
tuple coding in [14]. The intermediate embedding available
at the bottleneck (V 2 < 512) is capable of reconstructing
sketches across diverse object classes (c.f. Sec.4.2). The
encoder forms the anchor of the proposed triplet network
(Fig. 4); we denote the encoding and decoding functions as
VE (Q) 7! V andVD (V) 7! Q.

3.1.2 Raster Structure Encoder

To encode raster content, we adopt the architecture of Buiet
al. [6] for the CNN branch. Their work employs a triplet net-
work with GoogLeNet Inception backbone [32] that uni�es
sketches (in raster form) and images within a joint search
embedding. One important property is the partial sharing of
weights between the sketch CNN branch (anchor) and the
siamese image CNN (+/-) branches of their triplet network.
Once trained, these branches yield two functions:RS (:) and
RI (:), that map sketched and image content to a joint search
embedding. Full details on the multi-stage training of this
model are available in [6]; we use their pre-trained model
in our work and incorporate their joint embedding as the in-
termediate embeddingR 2 < 256 in our work. Speci�cally,
RS (:) is used to train our model (Fig. 4, p/n).

3.1.3 Training the Joint Search Embedding

The end-to-end triplet network (Fig. 4) is trained using
sketches only; 3.5M sketches (10K� 345 object classes)
sampled from the public Quickdraw50M dataset [1] (sim-
pli�ed via RDP [9], as in [14]) and rasterized by rendering
pen movements as anti-aliased lines of width 1 pixel on a
256� 256px canvas. The stroke sequence and the rendering
of that sequence are fed through the anchor (a) and positive
(p) branches, and a randomly selected rasterized sketch of
differing object class to negative branch (n). Weights are
optimized via ADAM using triplet loss computed over acti-
vations available from the �nal shared fc layer (the search
embeddingS):

L train(a;p;n) = [m + jjSQ (a) � FR (RS (p)) j j2
2 �

jjSQ (a) � FR (RS (n)) j j2
2]+ (1)

wherem = 0 :2 is a margin promoting convergence, and[x]+
indicates the non-negative part ofx. Training yields weights
for the fully connected (fc) layers – recall these are partially
shared across the vector (a) and raster (p/n) branches, yield-
ing FV (:) andFR (:). The end-to-end functions mapping a

Figure 4. Training the LiveSketch network; an encoder that maps
raster and vector content to a common search embedding. The
search embedding is trained using raster and vector (stroke se-
quence) content sampled from QD-3.5M. During training, the CNN
branches (p/n) areRS (:) i.e. the sketch branch of [6]. However
branchRI (:) is used at inference time (Fig. 2).

sketched queryQ to our common search embeddingS is:

SQ (Q) = FV (VE (Q)) : (2)

Fig. 5a shows the resulting embedding; raster and vector
content representing similar visual structures mix withinS
but distinct visual structures form discriminative clusters.

3.2. Search Implementation

Once trained,SQ (:) forms the RNN path within our
search framework (Fig. 2, green) for encoding a vector
sketch queryQ. The CNN pathSI (:) (Fig. 2, blue) used
to index images for search, adopts theimagebranch of [6]
(subsec. 3.1.2):

SI (I) = FR (RI (I)) : (3)

Note substitution of the sketch branchRS (:) that was used
during training (eq.1) for the image branchRI (:). Both func-
tions map to the same intermediate embeddingR, however
we index images rather than sketches for SBIR.

3.3. Disambiguating Search Intent

Given a search queryQ, a k-NN lookup withinS is per-
formed to identify a set of resultsJ = [I 1; :::; I k] where
J � I minimising jjSQ (Q) � SI (I i)jj2; in practice,jj :jj2
is approximated via product quantization (PQ) [18] for scal-
ability and up tok = 500 results are returned. The results
are clustered into candidate search intents, and presented to
the user for feedback. Clustering is performed within an aux-
iliary embedding (Z) available from �nal layer activations
of a ResNet50/ImageNet pre-trained CNN. We write this
functionZ (I i), pre-computed8I i 2 I during indexing.

