
VISR Code documentation

The S3A project team

Oct 29, 2018





CONTENTS

1 About 1

2 Development and Contribution 3

3 Libraries 7

i



ii



CHAPTER

ONE

ABOUT

1.1 About VISR

1.2 About this document

This is the code reference document for the VISR (Versatile Interactive Scene Renderer) software framework. It
describes the software architecture and modules, and provides the API documentation for the C++ and Python
interfaces. In addition, it details the software development process, including obtaining and compiling the source
code.

1



VISR Code documentation

2 Chapter 1. About



CHAPTER

TWO

DEVELOPMENT AND CONTRIBUTION

2.1 Source Code

Depending on the operating system you have, the following startup guides will be useful for creating a successful
build and/or using VISR for your own development. In a new terminal window, run the following:

git clone gitlab@gitlab.eps.surrey.ac.uk:s3a/VISR.git

2.1.1 osx

The choice of IDE for MacOS X is Xcode. You can see the full guide on developing with visr here at the .. ..
MacOS Setup Guide.

2.1.2 linux

To develop and contribute using VISR with a Linux-based IDE, have a look at the .. .. Linux Setup Guide.

2.1.3 windows

To develop and contribute using VISR with Windows and Visual Studio, have a look at the .. .. Windows Setup
Guide.

2.1.4 Raspberry Pi

2.2 VISR Git Workflow

This page documents the version control workflow followed by the VISR community when dealing with the
development of VISR. If you want to contribute, and/or already have code or bug fixes you would like to see in the
official repo, please follow these guidelines to make the life of the devs easier, minimize time needed for review,
and ensure speedy and efficient incorporation of your improvements into VISR.

2.2.1 VISR Git Workflow

The git workflow for openFrameworks is based on this article detailing a very good branching model. Read the
article first, it’s quite complete and nicely presented, no need to replicate everything here.

https://nvie.com/posts/a-successful-git-branching-model/

3

https://nvie.com/posts/a-successful-git-branching-model/


VISR Code documentation

2.2.2 Continuous Integration

All contributions that are merged together in the remote are tested before they are pushed. This is to ensure what
you contribute works and is tested on all operating systems. Sometimes, before you push, you might forget to
compile or test you code (we all make these mistakes sometimes), so the cvssp-servers at Surrey University will
run certain jobs to ensure that your code compiles and is built correcntly.

Every time a merge request from your feature/name-of-your-feature to the remote/origin/develop occurs, a pipeline
is triggered testing what you have done before it is merged. You should receive an email if it does not.

On a successful pipeline, other work is done to automatically update VISR’ WebAPI. Make sure you comment
what you have written!

2.3 Setting up a build environment

2.3.1 Standard build setup

2.3.2 Git

• On Linux git can be installed through the distribution’s package manager. On Ubuntu, Raspbian,
and Debian-based distribtution, the command is sudo apt install git.

• On Mac OS X 10.9 and above, the git command line tool is installed on its first invocation
(source: ‘GIT SCM book <)

• On Windows, we suggest the Git for Windows binaries.

Alternatively you can choose from a number of GUIs, for example <SourceTree <https://www.
sourcetreeapp.com/>‘_ or GitKraken, or the support in modern IDEs as Microsoft Visual Studio or
Apple XCode.

2.3.3 CMake

VISR uses CMake as a portable build tool The minimum required version is CMake 3.1.

CMake can be used as a command line tool but also provides a GUI (cmake-gui) for configuring builds.

• On Linux, install throught he distribution’s package manager. On Debian-based systems, the packages are
named cmake for the command line tools and cmake-qt-gui for the graphical user interface.

• On Windows and Mac OS X, download

• If you plan to use the machine for CI (continuous integration tasks), make sure you add it to the system path
(Windows: Select “Add CMake to the system PATH for all users”)

2.3.4 Documentation

The VISR documentation is mainly written as ReStructured text documents (using ‘Sphinx <>‘_ to create web
pages and PDF documents), whereas the code documentation pulled into these documents is generated through
Doxygen.

In order to create the user and API documentation, the following software tools must be installed:

• Doxygen: On Windows and Mac OS X, we recommend downloading binary packages from the Doxygen
download page and installing them. On Linux, installing via the distribution-specific package manager (e.g.,
‘‘sudo apt install doxygen’‘. Note that the XML output generation needed for subsequent build stages is
quite buggy in older Doxygen releases, it might therefore be advisable to upgrade to a recent Doxygen
release or to build from source (especially on Linux, where the version provided by the package manager
could be rather dated).

4 Chapter 2. Development and Contribution

htps://git-scm.com/download/win
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://www.gitkraken.com/
http://www.cmake.org/
https://www.doxygen.nl
https://www.doxygen.nl/download.html
https://www.doxygen.nl/download.html


VISR Code documentation

• LaTeX: Both the Doxygen documentation and the PDF generation of Sphinx require a LaTeX system to be
installed. We recommend the following LaTeX distributions:

– Linux: The system-provided LaTeX (installed, e.g., through ‘‘sudo apt install texlive-full” ‘‘sudo apt install texlive” on Ubuntu)

* Mac OS X: ‘MacTeX <http://www.tug.org/mactex/‘_

* Windows: ‘MikTeX <http://www.miktex.org‘_

Note that - unless you install a “full” distribution - LaTeX packages might be missing and would need to be
installed as needed. So look out for error messages when running the documentation generation for the first
time, and use the distribution’s package manager to install the missing packages as needed.

After installing LaTeX and running the CMake configuration stage with the option BUILD_DOCUMENTATION enabled, check for errors and for missing binary paths. In particular, if PDFLATEX_COMPILER is not found, fix it as follows:

– Windows: Set the CMake variable ‘‘MIKTEX_BINARY_PATH” to the directory containing the
MikTeX binaries, e.g., ‘‘C:/Program Files/MiKTeX 2.9/miktex/bin/x64’‘

– Mac OS X: Set PDFLATEX_COMPILER to the result of the shell command which
pdflatex''. On a recent MacTeX installation, this yields ``/
Library/TeX/texbin\pdflatex/

• Sphinx: Sphinx is typically bundled with the Python distribution you are using and should therefore be
installed through the package management system of this distribution.

– Linux: use the package manager of the Linux distribution, e.g., sudo apt install python3-sphinx.

* Anaconda (recommended distribution on Windows and Mac OS X): use conda install
sphinx.

Alternatively, the generic Python package manager pip can be used.

• Breathe: Breathe is needed by sphinx to render source code generation for languages other than Python. As Breathe is a Python package, the package management system of the Python distribution should be used.

– Linux: use the package manager of the Linux distribution, e.g., sudo apt install python3-breathe.

* Anaconda (recommended distribution on Windows and Mac OS X): use conda
install -c conda-forge breathe. Note that breathe is not contained in the
standard package repository but the additional repository conda-forge.

2.3.5 Installer package generation

Installation packages are created using CPack, which is integrated into the CMake build software. On Linux and
Mac OS X, no external build software is needed.

Windows

Download and install the NSIS installer system (‘https://sourceforge.net/projects/nsis/‘_). It will be automati-
cally recognized if you create the installer packages.

2.3.6 Setup as Gitlab runner

To provide a

2.3. Setting up a build environment 5

https://conda-forge.org
https://cmake.org/cmake/help/latest/module/CPack.html


VISR Code documentation

6 Chapter 2. Development and Contribution



CHAPTER

THREE

LIBRARIES

3.1 VISR API

3.1.1 Architecture

3.1.2 API reference

Class Component

class Component
Base class for processing components. Components may contain ports to exchange data (either audio signal
or parameter) with other components or with the exterior. A component may have a parent, that is, a
composite component it is contained in. If the parent is null it is a top-level component. Components also
have a name, which must be unique within a containing composite component.

Subclassed by visr::AtomicComponent, visr::CompositeComponent

Public Functions

Component(SignalFlowContext const&context, char const *componentName, CompositeCom-
ponent *parent)

Constructor, constructs a component.

Parameters

• context: Configuration object containing basic execution parameters (such as sampling
frequency and period (block length))

• componentName: The name of the component. If this component is contained in a higher-
level parent component, the name must be unique within that parent component

• parent: Pointer to the containing composite component, if there is one. Otherwise, that is,
if the present component is at the top level, pass nullptr.

Component(SignalFlowContext const &context, std::string const &componentName, Compos-
iteComponent *parent)

Constructor. Convenvience function, accepts a standard string instead of a C chararacter pointer.

Parameters

• context: Configuration object containing basic execution parameters (such as sampling
frequency and period (block length))

• componentName: The name of the component. If this component is contained in a higher-
level parent component, the name must be unique within that parent component.

• parent: Pointer to the containing composite component, if there is one. Otherwise, that is,
if the present component is at the top level, pass nullptr.

7



VISR Code documentation

Component(Component const&)
Deleted copy constructor to avoid copy construction of this and derived classes.

Component(Component&&)
Deleted move constructor to avoid moving of this and derived classes.

Component &operator=(Component const&)
Deleted assignment operator to prohibit (copy) assignment of this and derived classes.

Component &operator=(Component&&)
Deleted assignment operator to prohibit move assignment of this and derived classes.

~Component()
Destructor (virtual)

std::string const &name() const
Return the ‘local’, non-hierarchical name.

std::string fullName() const
Return the full, hierarchical name of the component.

void status(StatusMessage::Kind status, char const *message)
Signal informational messages or the error conditions. Depending on the value of the status pa-
rameter, this might result in a message conveyed to the user or abortion of the audio processing.

Parameters

• status: The class of the status message

• message: An informational message string.

template <typename ... MessageArgs>
void status(StatusMessage::Kind status, MessageArgs... args)

Signal informational messages or the error conditions where the message string is constructed from an
arbitrary sequence of arguments. Depending on the value of the status parameter, this might result
in a message conveyed to the user or abortion of the audio processing.

Template Parameters

• MessageArgs: List of argument types to be printed. Normally they are automatically
determined by the compiler, so there is no need to specify them.

Parameters

• status: The class of the status message

• args: Comma-seprated list of parameters with unspecified types. The main requirement is
that all types support an “<<” operator.

bool isComposite() const
Query whether this component is atomic (i.e., a piece of code implementing a rendering functionality)
or a composite consisting of an interconnection of atomic (or further composite) components.

AudioPortBase &audioPort(char const *portName)

AudioPortBase const &audioPort(char const *portName) const

AudioPortBase &audioPort(std::string const &portName)

AudioPortBase const &audioPort(std::string const &portName) const

ParameterPortBase &parameterPort(char const *portName)

ParameterPortBase const &parameterPort(char const *portName) const

ParameterPortBase &parameterPort(std::string const &portName)

8 Chapter 3. Libraries



VISR Code documentation

ParameterPortBase const &parameterPort(std::string const &portName) const

SamplingFrequencyType samplingFrequency() const
Return the sampling frequency of the containing signal flow.

std::size_t period() const
Return the period of the containing signal processing graph, i.e., the number of samples processed in
each invocation of the process function of the derived audio components. This methods can be called
at any point of the lifetime of the derived component, i.e., for instance in the constructor.

bool isTopLevel() const
Query whether the component is at the top level of a signal flow.

Note Not needed for user API

impl::ComponentImplementation &implementation()
Provide a pointer to an external implementation object. The type of this implementation object is
opaque, i.e., not visible from the public VISR API.

Note This method is not supposed to be called in user code. It is public because it is is used by the
VISR runtime system.

impl::ComponentImplementation const &implementation() const
Provide a pointer to an external implementation object, constant version. The type of this implemen-
tation object is opaque, i.e., not visible from the public VISR API.

Note This method is not supposed to be called in user code. It is public because it is is used by the
VISR runtime system.

Public Static Functions

std::string const &nameSeparator()
Separator used to form hierarchical names.

Protected Functions

Component(impl::ComponentImplementation *impl)
Constructor that receives the internal implementation object. This overload has to be called by the
other constructors (including those of subclasses) to make sure that the implementation object is in-
stantiated. The motivation for this constructor is to provide different implementation objects for dif-
ferent subclasses.

Class AtomicComponent

class AtomicComponent : public visr::Component
Base class for atomic components. These components are at the lowest level in the hierarchy and implement
runtime functionality as C++ code. Abstract base class, derived classes must override the virtual method
process().

Subclassed by visr::apps::audio_network_streamer::AudioNetworkEncoder,
visr::impl::test::TestAtom, visr::python::visr::AtomicComponentWrapper, visr::rcl::Add,
visr::rcl::BiquadIirFilter, visr::rcl::CAPGainCalculator, visr::rcl::ChannelObjectRoutingCalculator,
visr::rcl::CrossfadingFirFilterMatrix, visr::rcl::DelayMatrix, visr::rcl::DelayVector,
visr::rcl::DiffusionGainCalculator, visr::rcl::FirFilterMatrix, visr::rcl::GainMatrix,
visr::rcl::GainVector, visr::rcl::HoaAllRadGainCalculator, visr::rcl::InterpolatingFirFilterMatrix,
visr::rcl::ListenerCompensation, visr::rcl::NullSource, visr::rcl::ObjectGainEqCalculator,
visr::rcl::PanningCalculator, visr::rcl::PositionDecoder, visr::rcl::ScalarOscDecoder,
visr::rcl::SceneDecoder, visr::rcl::SceneEncoder, visr::rcl::SignalRouting, visr::rcl::SparseGainMatrix,

3.1. VISR API 9



VISR Code documentation

visr::rcl::TimeFrequencyInverseTransform, visr::rcl::TimeFrequencyTransform,
visr::rcl::UdpReceiver, visr::rcl::UdpSender, visr::reverbobject::LateReverbFilterCalculator,
visr::reverbobject::ReverbParameterCalculator, visr::rrl::SignalRoutingInternal< SampleType >

Public Functions

AtomicComponent(SignalFlowContext const &context, char const *name, CompositeCom-
ponent *parent = nullptr)

Constructor.

Parameters

• context: a signal flow context structure containing general parameters, e.g., sampling rate
and block size of computation.

• name: Null-terminated character string containing the name. Name must be unique within
the containing composite component (if there is one).

• parent: A composite component to contain this atom, If it is a null pointer (the default),
then this component is at the top level.

AtomicComponent(AtomicComponent const&)
Deleted copy constructor to avoid copying.

AtomicComponent(AtomicComponent&&)
Deleted move constructor to avoid move construction.

~AtomicComponent()
Destructor (virtual). Atomic components are destined to be instantiated and managed polymorphically,
thus requiring virtual destructors.

virtual void process() = 0
Pure virtual process() function. The overriding methods of base classes are called in regular intervals,
each processing a fixed number (context.period()) number of samples.

Class CompositeComponent

class CompositeComponent : public visr::Component
Base class for processing components that are composed of other components (atomic and composite). In
this way, processing components can be structured hierarchically. Composite components store the con-
tained sub-components, external audio and parameter ports, and conenctions between the ports.

Subclassed by visr::apps::audio_network_streamer::SignalFlow, visr::apps::feedthrough::Feedthrough,
visr::apps::scene_decoder::SignalFlow, visr::audiointerfaces::test::Feedthrough,
visr::mex::feedthrough::SignalFlow, visr::python::visr::CompositeComponentWrapper,
visr::pythoncomponents::Wrapper, visr::reverbobject::ReverbObjectRenderer,
visr::signalflows::BaselineRenderer, visr::signalflows::BunchRenderer, visr::signalflows::CoreRenderer,
visr::signalflows::DelayVector, visr::signalflows::GainMatrix, visr::signalflows::TimeFrequencyFeedthrough,
visr::signalflowspython::VisrRenderer

Unnamed Group

using ChannelRange = visr::ChannelRange
Making the types for defining audio connections known inside CompositeConponent and derived
classes These are convenience aliases to make the syntax in derived signal flows more concise.

Note : This also means that we include the ChannelList/ChannelRange definition in this header, as
these classes become part the CompositeComponent interface.

using ChannelList = visr::ChannelList

10 Chapter 3. Libraries



VISR Code documentation

Public Functions

CompositeComponent(SignalFlowContext const &context, char const *name, Composite-
Component *parent = nullptr)

Constructor.

Parameters

• context: Reference to a signal flow context object providing basic runtime parameters as
period length or sampling frequency.

• name: “the name of the component. Used to address the component inside other components
and for status reporting.

• parent: Reference (pointer) to a parent component if the present object is part of a contain-
ing signal flow. If nullptr is passed, this component is the top level.

~CompositeComponent()
Destructor.

std::size_t numberOfComponents() const
The number of contained components (not including the composite itself). This method considers only
atomic and composite components at the next level, i.e., not recursively.

impl::CompositeComponentImplementation &implementation()
Return a reference to the internal data structures holding ports and contained components. From the
user point of view, these data structure is opaque and unknown.

impl::CompositeComponentImplementation const &implementation() const
Return a reference to the internal data structures holding ports and contained components, const ver-
sion. From the user point of view, these data structure is opaque and unknown.

void parameterConnection(char const *sendComponent, char const *sendPort, char
const *receiveComponent, char const *receivePort)

Register a connection between parameter ports (both real ports of contained components or external
placeholder ports).

Parameters

• sendComponent: The name of the component holding the send port (local name, not the
fully qualified name). When specifiying an external port of a composite component, use an
empty string or "this".

• sendPort: The local (not fully qualified) name of the send port.

• receiveComponent: The name of the component holding the receive port (local name,
not the fully qualified name). When specifiying an external port of a composite component,
use an empty string or "this".

• receivePort: The local (not fully qualified) name of the receive port.

Exceptions

• std::invalid_argument: if a specified component or port does not exist.

void parameterConnection(ParameterPortBase &sender, ParameterPortBase &receiver)
Register a connection between parameter ports (both real ports of contained components or external
placeholder ports).

Parameters

• sender: Reference to the sendig port (retrieved, for example using
Component::parameterPort() )

• receiver: Reference to the sendig port (retrieved, for example using
Component::parameterPort() )

3.1. VISR API 11



VISR Code documentation

void audioConnection(char const *sendComponent, char const *sendPort, ChannelList
const &sendIndices, char const *receiveComponent, char const
*receivePort, ChannelList const &receiveIndices)

Register an audio connection between a sending and a receiving audio port. This overload uses C
strings to denote both the names of the components holding the ports and the output ports itself.
Lists of channel indices are to be specified for the sending and the receiving port. The sizes of these
lists must be identical, and the contained indices must not exceed the width of the send and receive
port, respectively. Empty lists for both the send and receive indices are permitted and result in no
connection.

See ChannelList for the syntax to specify the channel index lists.

Parameters

• sendComponent: Name of the component holding the sending audio port. If the send port
is an external input of this component, use “” or “this”

• sendPort: The name of the sending port.

• sendIndices: A list of channel indices denoting the send channels of the sending side.

• receiveComponent: Name of the component holding the receiving audio port. If the
receive port is an external output of the present component, use “” or “this”

• receivePort: The name of the receiving port.

• receiveIndices: A list of channel indices denoting the receive channels within the re-
ceiver port.

Exceptions

• std::invalid_argument: if a specified component or port does not exist.

void audioConnection(AudioPortBase &sendPort, ChannelList const &sendIndices, Audio-
PortBase &receivePort, ChannelList const &receiveIndices)

Register an audio connection between a sending and a receiving audio port. This overload uses audio
ports (either directly referencing external in- and output of this components or retrieving ports of
contained components using the Component::audioPort() method). Lists of channel indices are to be
specified for the sending and the receiving port. The sizes of these lists must be identical, and the
contained indices must not exceed the width of the send and receive port, respectively. Empty lists for
both the send and receive indices are permitted and result in no connection.

See ChannelList for the syntax to specify the channel index lists.

Parameters

• sendPort: The send port object.

• sendIndices: A list of channel indices denoting the send channels of the sending side.

• receivePort: The receive port object.

• receiveIndices: A list of channel indices denoting the receive channels within the re-
ceiver port.

void audioConnection(AudioPortBase &sendPort, AudioPortBase &receivePort)
Register an audio connection between all channels of a sending and a receiving audio port. This
overload uses audio ports (either directly referencing external in- and output of this components or
retrieving ports of contained components using the Component::audioPort() method). It establishes
one-to-one connections between the channels of the sender and the receiver.

Parameters

• sendPort: The send port object.

• receivePort: The receive port object.

Exceptions

• std::invalid_argument: if the port widths do not match.

12 Chapter 3. Libraries



VISR Code documentation

Class AudioPortBase

class AudioPortBase
Base class for audio ports. Audio ports can form part of the external interface of components and denote start
and end points od audio signal connections. An audio port is characterised by a sample type (fundamental
integral and floating-point data type as well as complex floating-point types), the width, that is, the number
of elementary audio signals represented by this port.

Subclassed by visr::AudioInputBase, visr::AudioOutputBase

Protected Functions

void *basePointer()
Return the data pointer to fir first (technically zeroth) channel. The type of this pointer is char and
needs to be casted in derived, typed port classes.

void const *basePointer() const
Return the data pointer to fir first (technically zeroth) channel, costant versiob The type of this pointer
is char and needs to be casted in derived, typed port classes.

Private Members

impl::AudioPortBaseImplementation *mImpl
Pointer to the private, opaque implementation object.

Class AudioInputBase

class AudioInputBase : public visr::AudioPortBase
Base class for audio input ports. This base class is not intended to be used by API users. This class itself
cannot be instantiated, because it is not associated with a specific sample type. Only derived classes may
actually be instantiated.

Subclassed by visr::AudioInputT< SampleType >, visr::AudioInputT< DataType >

Template class AudioInputT

template <typename DataType>
class AudioInputT : public visr::AudioInputBase

Class template for concrete audio inputs holding samples of a specific type.

Template Parameters

• DataType: The sample type used by this audio port type.

Alias class AudioInput

Non-template of the visr::AudioInputT port template specialised for the default sample type.

using visr::AudioInput = typedef AudioInputT<SampleType>
Alias for audio input ports using the default datatype (typically float)

3.1. VISR API 13



VISR Code documentation

3.2 Builtin component library (rcl)

3.3 Runtime library

3.3.1 Purpose

3.3.2 Main classes

class AudioSignalFlow
Base class for signal flows, i.e., graphs of connected audio components which perform an audio signal
processing operation. This base class provides the infrastructure for setting up the graphs and for transferring
the input and output samples. For the audio processing, this class provides a callback interface that must be
called in regular intervals (i.e., for a fixed number of samples consumed and generated, respectively).

Subclassed by visr::mex::gain_matrix::SignalFlow, visr::mex::gain_matrix::SignalFlow,
visr::mex::late_reverb_filter_calculator::SignalFlow

3.3.3 Checking functions

3.3.4 Internal classes and functions

3.4 Object model library

3.4.1 Purpose

3.4.2 API reference

namespace objectmodel
The documentation for the namespace objectmodel. Detailed description follows here.

Typedefs

using visr::objectmodel::ObjectId = typedef unsigned int

using visr::objectmodel::GroupId = typedef unsigned int

using visr::objectmodel::LevelType = typedef float
Type use for level (gain, volume) settings, linear scale

using visr::objectmodel::ObjectTypeIntegerRepresentation = typedef std::uint8_t

Enums

enum ObjectTypeId
A numeric id to uniquely describe object types.

Values:

PointSource = 0
Simple point-like source (monopole)

PlaneWave = 1
Straight plane-wave source type

DiffuseSource = 2
Totally diffuse source type

14 Chapter 3. Libraries



VISR Code documentation

PointSourceWithDiffuseness = 3
Point-source-like audio object with an addditional “diffuseness” attribute controlling the fraction
of the source that is reproduced diffusely.

ExtendedSource = 4
Source type with controllable extent, i.e. width and height.

PointSourceWithReverb = 5
Point source with reverberation

PointSourceExtent = 6
Point source with explicit spatial extent.

HoaSource = 7
Higher Order Ambbisonics object, sound field representation based on spherical harmonics

ChannelObject = 8
Source type representing a single or multiple channels routed to a set of loudspeaker channels.

Functions

std::string const &objectTypeToString(ObjectTypeId type)
Convert an object type id into its string representation

Parameters

• type:

Exceptions

• std::logic_error: Happens only in case of an internal inconsistency, i.e., if the type is
not found in the lookup table.

ObjectTypeId stringToObjectType(std::string const &typeString)

Return The object id of the type correspoonding to the string representation

Parameters

• typeString:

Exceptions

• std::invalid_argument: If typeStr does not correspond to an existing object type.

Variables

InstantiateObjectFactory const cInstantiationHelper
Object which is used to initialise the object factory.

struct InstantiateObjectFactory
A helper class with whole purpose is to register the different object types in the factory.

class Object
#include <object.hpp> Subclassed by visr::objectmodel::ChannelObject,
visr::objectmodel::DiffuseSource, visr::objectmodel::HoaSource, visr::objectmodel::PlaneWave,
visr::objectmodel::PointSource

class ObjectParser
#include <object_parser.hpp>

Subclassed by visr::objectmodel::ChannelObjectParser, visr::objectmodel::DiffuseSourceParser,
visr::objectmodel::HoaSourceParser, visr::objectmodel::PlaneWaveParser,
visr::objectmodel::PointSourceParser

3.4. Object model library 15



VISR Code documentation

class ObjectVector
#include <object_vector.hpp> A class representing a set of audio objects of potentially different types.

Subclassed by visr::pml::ObjectVector

class PointSource : public visr::objectmodel::Object
#include <point_source.hpp> Subclassed by visr::objectmodel::PointSourceWithDiffuseness,
visr::objectmodel::PointSourceWithReverb

class PointSourceParser : public visr::objectmodel::ObjectParser
#include <point_source_parser.hpp> Subclassed by visr::objectmodel::PointSourceWithDiffusenessParser,
visr::objectmodel::PointSourceWithReverbParser

class PointSourceWithDiffuseness : public visr::objectmodel::PointSource
#include <point_source_with_diffuseness.hpp> Subclassed by visr::objectmodel::PointSourceExtent

class PointSourceWithDiffusenessParser : public visr::objectmodel::PointSourceParser
#include <point_source_with_diffuseness_parser.hpp> Subclassed by
visr::objectmodel::PointSourceExtentParser

class PointSourceWithReverb : public visr::objectmodel::PointSource
#include <point_source_with_reverb.hpp> Audio object representing a monopole point source with
corresponding object-based reverberation. Derived from PointSource.

namespace python

Functions

void exportChannelObject(pybind11::module &m)

void exportDiffuseSource(pybind11::module &m)

void exportHoaSource(pybind11::module &m)

void exportObject(pybind11::module &m)

void exportObjectType(pybind11::module &m)

void exportObjectVector(py::module &m)

void exportObjectVector(pybind11::module &m)

void exportPointSource(pybind11::module &m)

void exportPointSourceExtent(pybind11::module &m)

void exportPointSourceWithDiffuseness(pybind11::module &m)

void exportPointSourceWithReverb(pybind11::module &m)

void exportPlaneWave(pybind11::module &m)

namespace test

Functions

BOOST_AUTO_TEST_CASE(ParsePointSource)

BOOST_AUTO_TEST_CASE(ParsePlaneWave)

BOOST_AUTO_TEST_CASE(UpdateSceneSameIdSameType)

16 Chapter 3. Libraries



VISR Code documentation

BOOST_AUTO_TEST_CASE(UpdateSceneSameIdDifferentType)

BOOST_AUTO_TEST_CASE(ParseMultiChannelObject)

BOOST_AUTO_TEST_CASE(ParseObjectEq)

BOOST_AUTO_TEST_CASE(ReencodeObjectEq)

BOOST_AUTO_TEST_CASE(ParseChannelObject)

BOOST_AUTO_TEST_CASE(WriteChannelObject)

BOOST_AUTO_TEST_CASE(InstantiatePointSources)

BOOST_AUTO_TEST_CASE(ObjectVectorAssign)

BOOST_AUTO_TEST_CASE(ParsePointSourceWithReverb)

BOOST_AUTO_TEST_CASE(SerialisePointSourceWithReverb)

BOOST_AUTO_TEST_CASE(InstantiateRenderer)

3.5 Elementary functions Library

3.5.1 Purpose

The efl library provides a common interface for arithmetic functions commonly used in DSP. These are mainly
vector and matrix arithmethic functions. These

3.5.2 Numeric container classes

3.5.3 Arithmetic functions

template <typename T>
ErrorCode visr::efl::vectorCopy(T const *const source, T *const dest, std::size_t numEle-

ments, std::size_t alignment)

3.5. Elementary functions Library 17


	About
	Development and Contribution
	Libraries

