
VISR User documentation

The S3A project team

Oct 29, 2018

CONTENTS

1 About 1

2 Getting started with the VISR framework: Overview 3
2.1 Python integration . 3

3 Basic tutorial 5

4 People 7

5 Getting VISR 9
5.1 Download . 9
5.2 Installing VISR . 9

5.2.1 Windows . 10
5.2.2 Mac OS X . 11
5.2.3 Linux . 11

5.3 Installation components . 13
5.4 Setting up Python . 13

5.4.1 Python distribution . 13
5.4.2 Configuration . 14

5.5 Verifying the installation . 16
5.5.1 Testing a standalone application . 16

5.6 Source Code . 17
5.7 Support and help . 17

6 VISR principles 19
6.1 Component-Based Audio processing . 19
6.2 VISR as a Rendering Framework . 19
6.3 Realtime and Offline Processing . 19
6.4 Prototyping versus mature signal processing code . 19

7 Using VISR 21
7.1 Using VISR standalone renderers . 21

7.1.1 Using standalone applications . 21
7.2 Using VISR with Python . 40
7.3 Using VISR audio workstation plugins . 40
7.4 Using Max/MSP externals . 40

8 Extending VISR 41
8.1 Creating signal flows from existing components in Python . 41
8.2 Writing atomic functionality in Python . 41
8.3 Implementing atomic components in C++ . 41
8.4 Creating composite components in C++ . 41

9 Object-Based Audio with VISR 43
9.1 Overview . 43

i

9.2 The VISR object model . 43
9.3 Predefined object-based rendering primitives and renderers . 43
9.4 Object-Based Reverberation . 43

10 VISR component reference 45
10.1 Standard rendering component library . 45
10.2 Binaural synthesis toolkit . 45
10.3 Dynamic range control library . 45

11 Old contents 47
11.1 Examples . 47
11.2 Tutorials . 47

ii

CHAPTER

ONE

ABOUT

The VISR framework is a collection of software for audio processing that forms the backbone for most of the
technology created in S3A. In this extensible software framework, complex audio algorithms can be formed by
interconnecting existing building blocks, termed components.

It can be used either interactively in the Python language, in custom applications (for instance in written C++, or
integrated into other applications, for instance as DAW plugins or Max/MSP externals. While the VISR provides
several renderers and building blocks for spatial and object-based audio, it is nonetheless a generic audio process-
ing framework that can be used in other applications, for example array processing or hearing aid prototypes. The
Python integration makes the system accessible, and enables easy algorithm development and prototyping.

1

VISR User documentation

2 Chapter 1. About

CHAPTER

TWO

GETTING STARTED WITH THE VISR FRAMEWORK: OVERVIEW

2.1 Python integration

3

VISR User documentation

4 Chapter 2. Getting started with the VISR framework: Overview

CHAPTER

THREE

BASIC TUTORIAL

This tutorial explains the first steps for using the VISR framework by creating and running an audio renderer. It is
based on the conference paper [].

5

VISR User documentation

6 Chapter 3. Basic tutorial

CHAPTER

FOUR

PEOPLE

7

VISR User documentation

8 Chapter 4. People

CHAPTER

FIVE

GETTING VISR

5.1 Download

The VISR framework can be obtained in diffeent forms. FOr most persons, however, downloading and installing
an installer package is the most convenient way to use this framework.

Installation packages can be downloaded from the S3A software download page .

Installation packages are available for the following platforms:

Windows (x86_64) Recent versions (Windows 8 and Windows 10) 64 Bit only

Mac OS X Version 10.11 and above, 64 Bit only

Linux Ubuntu 16.04 LTS and Ubuntu 18.04 LTS, 64 bit

Rasspberry Pi (ARM) Raspbian Stretch, 32 Bit

5.2 Installing VISR

Binary installation packages are the suggested way to uses the VISR framework. A binary installers enables all
uses of the framework, including

• Running standalone applications

• Using DAW plugins based on the VISR

• Using the Python interfaces and creating new functionality in Python

• Creating standalone applications and extension libraries in C++

Hint: Building the VISR from source is necessary only in these cases:

• Porting it to a platform where no binary installer exists

• Fixing or changing the internal workings of the framework.

Installation packages are available on the S3A Software download page.

Note: If you plan to use the Python integration of the VISR framework (see Python integration), you
need to select an installation package matching the Python version you are using, for example VISR-X.X.
X-python36-Windows.exe.

9

http://s3a-spatialaudio.org
http://s3a-audio.space

VISR User documentation

5.2.1 Windows

The graphical installer is provides as an .exe file and provides a dialog-based, component-enables installation.
Figure figure_windows_installer shows the component selection dialog of the installer. The choices are detailed
below in section Installation components.

Fig. 1: Graphical Windows installer.

An executable installer (.exe) with a graphical user interface and corresponding uninstall functionality. Supported
are 64-bit versions of Windows. If required, install the “Microsoft Visual C++ Redistributable for Visual Studio
2017”, package, for example from the Visual C++ downloads page.

On Windows, it is necessary to add the directory containing the VISR libraries (DLLs) as well as the directory
containing third-party libraries shipped with the VISR installer to the PATH variable. To this end, open the
environment variable editor (Settings -> System -> Advanced system settings -> Environment variables). The
environment variable on Windows 10 is depicted in figure windows_environment_variables_editor .

Append the value C:\Program Files\VISR-X.X.X\lib;C:\Program Files\VISR-X.X.X\3rd
if the standard installation location was used (Note: Replace X.X.X with the actual version number of VISR).
Depending on your system permissions and whether you VISR shall be used by all users of the computer, you can
either set the PATH user variable or the PATH system variable.

Note: Any applications used to access VISR (for example command line terminals, Python development envi-
ronments, or DAWs) must be closed and reopened before the changed paths take effect.

Append the path ‘’<install-directory>/lib” to the path variable, where ‘’install_diectory” is the directory specified
during the installation. For the default path, the setting would be c:\Program Files\VISR-N.N.N\lib,
where N.N.N is replaced by the actual version number. If the PATH variable is edited as a string, subsequent
paths are separated by semicolons.

Note: Future versions of the installer might adjust the paths automatically. However, as pointed out in NSIS Path
manipulation, this needs an extremely cautious implementation to avoid potential damage to users’ systems.

To use standalone applications (see section Using standalone applications), it may be useful to add the bin/
directory to the user or system path. For the default installation location, add c:\Program Files\VISR-N.
N.N\bin to the %PATH% environment variable.

10 Chapter 5. Getting VISR

https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
http://nsis.sourceforge.net/Path_Manipulation
http://nsis.sourceforge.net/Path_Manipulation

VISR User documentation

Fig. 2: Environment variable editor on Windows 10.

5.2.2 Mac OS X

An installer with a graphical user interface guides through the installation process and allows the selection of
optional components. Figure Component-based installer for Mac OS X. shows a screenshot of this installer. By
default, it installs the VISR into the directory /Applications/VISR-X.X.X/ where X.X.X denotes the
version number.

To access the component selection dialog, use the button “Customize” on the “Installation Type” screen (see figure
“Installation type” screen of Mac OS X installer. Use “Customize” to get to the component selection.)

To use the standalone applications from the command line, the bin/ subfolder of the installation directory, e.g.,
/Applications/VISR-X.X.X/bin. This can be done, for example, by adding

export PATH=$PATH:/Applications/VISR-X.X.X/bin

to the file $HOME/\.bash_profile. However, this works only for running standalone applications from a
shell (i.e., a terminal window). If you need this path also from applications that are not started from a shell, we
recommend the solution used in section Configuration.

5.2.3 Linux

For Linux, installation packages are provided as .deb (Debian) packages. At the moment, this package is mono-
lithic, i.e., it contains all components. They are installed via the command

sudo apt install VISR-<version>.deb

If this command reports missing dependencies, these can be installed subsequently with the command

sudo apt install --fix-broken

After that the framework is ready to use.

5.2. Installing VISR 11

VISR User documentation

Fig. 3: Component-based installer for Mac OS X.

Fig. 4: “Installation type” screen of Mac OS X installer. Use “Customize” to get to the component selection.

12 Chapter 5. Getting VISR

VISR User documentation

5.3 Installation components

With the dialog-based, component-enabled installers, parts of the framework can be chosen depending on the
intended use of the framework.

Shared Libraries The core VISR libraries. This component is mandatory and cannot be unselected.

Standalone applications. Renderers and small tools to be run as command-line applications.

Python externals Python modules that give access to the functionality of the framework from Python. Also
needed to run applications that use Python internally (e.g., the binaural synthesis toolkit or metadapter-
enabled rendering).

Python Packages VISR extensions implemented in Python. This group of components requires the component
“Python externals”.

Development files Header files and CMake build support - Needed to extend the VISR with components using
C++ or use the framework in external C++ applications.

Loudspeaker configurations A set of standard loudspeaker configuration files and additional example files from
actual locations.

Python templates A set of commented template files for different types of VISR components.

Documentation User and code reference documentation as PDF documents. The Doxygen code documenta-
tion covering the complete source code can be optionally selected. However, the latter documentation is
deprecated and will be contained in the code reference documentation in the future.

5.4 Setting up Python

As explained in section Python integration, the Python integration is an optional, albeit central, part of the VISR
framework that enables a number of its functionalities, for example:

• Using the framework interactively from a Python interpreter.

• Using application that use Python internally, for instance the Binaural Synthesis Toolkit or metadata adap-
tation processes using the metadapter.

• Creating new signal flows or algorithms in Python.

To use these functionalities, a Python 3 distribution must be installed on the computer, and some configuration
steps are required.

5.4.1 Python distribution

Depending on the system, we suggest different Python distributions:

Linux

Use the system-provided Python3 installation.

To install, use the package manager of your distribution, e.g.,

sudo apt install python3

5.3. Installation components 13

VISR User documentation

Windows and Mac OS X

We recommend Anaconda. Please make sure you install the Python3 / 64-Bit variant.

Note: Some Mac OS variants (for example 10.12) come with a pre-installed Python 3 variant in /Library/
Frameworks/Python.framework. In this case, care must be taken that it does not interferes with the chosen
Python distribution. In particular, the PYTHONHOME environment variable must be set correctly.

5.4.2 Configuration

Two environment variables must be set to ensure the working of the VISR Python subsystem.

• PYTHONPATH This variable is used to add the directory containing the VISR python modules to the system
path. To this end, the python/ subdirectory of the installation folder must be added to PYTHONPATH.

Note that other ways exist to add to the system path, for example

import sys
sys.path.append('<visr_installation_dir>/python')

However, we recommend setting PYTHONPATH and assume this in the examples throughout this document.

PYTHONHOME This variable is needed to locate the files and libraries of the Python distribution. This is
especially important if there are more than one distributions on the system, most often on Mac OS X. Strictly
speaking, this variable is required only if VISR Python code is executed from a C++ application, for instance
some DAW plugins, python_runner standalone application (section ??), or the visr_renderer with
metadata processing enabled. (see section VISR object-based loudspeaker renderer).

This variable has to be set to the root directory of the Python distribution, i.e., one level of hierarchy above
the bin/ folder conatining the Python interpreter. Depending on the platform and the distribution, the
correct value might be:

Windows with Anaconda C:\ProgramData\Anaconda3

Mac OS X with Anaconda $HOME/anaconda3/

Linux /usr

It is necessary to check whether these settings match with your directory layout.

If the Python distribution provides a python-config or python3-config binary, the command

python-config --prefix

or

python3-config --prefix

can be used to retrieve the required value for PYTHONHOME On Linux, setting PYTHONHOME is not neces-
sary in most cases, because there is only the system-provided Python installation available.

OPENBLAS_NUM_THREADS It is advisable, in many cases, to set the value of this environment variable
to 1. It controls how numpy numerical algebra functions are distributed to multiple CPU cores. numpy
is used by the VISR Python integration as well as in many Python-based VISR components performing
mathematical or DSP operations. For the matrix/vector sizes typically encountered in our code, the overhead
for distributing the work over multiple cores typically exceeds the potential gains. Multithreading is disabled
by setting the maximum number of cores (or threads) to 1:

OPENBLAS_NUM_THREADS = 1

This setting is optional. However, if you encounter excessive processor loads, for example a constant 100%
load in the real-time thread, this setting can help to resolve the problem.

14 Chapter 5. Getting VISR

https://www.anaconda.com/download/

VISR User documentation

Depending on the operating system, these variables can be set as follows:

Linux Append the lines

export PYTHONPATH=$PYTHONPATH:/usr/share/visr/python
export OPENBLAS_NUM_THREADS=1

to $HOME/.profile.

Windows Add PYTHONPATH entries either as a user or system variable as described in Windows section. The
corrects setting are (assuming the default installation directory and the Anaconda distribution):

PYTHONPATH=c:\Program Files\VISR-X.X.X\python
PYTHONHOME=c:\ProgramData\Anaconda3
OPENBLAS_NUM_THREADS=1

Note that if there is already a PYTHONPATH variable, the recommended value should be appended, using a
semicolon as a separator.

Mac OS X In order to set the environment variables system-wide, without requiring that the applications in ques-
tion is started from a shell, (e.g., a command-line terminal), we recommend a custom launchd property
list file, as detailed, e.g., in this StackExchange thread.

Note: For convenience, the installers create a pre-configured VISR-X.X.X.plist file in the etc subdirectory
of the installation directory (e.g., /Applications/VISR-X.X.X/etc/VISR-X.X.X.plist). This file
can be either loaded directly or copied to the LaunchAgents/ directory first. Please check the values in this
file first and adjust them accordingly.

The VISR-X.X.X.plist will have this contents:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
→˓PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>my.startup</string>
<key>ProgramArguments</key>
<array>

<string>sh</string>
<string>-c</string>
<string>
launchctl setenv PYTHONPATH /Applications/VISR-X.X.X/python
launchctl setenv OPENBLAS_NUM_THREADS 1
launchctl setenv PYTHONHOME <BASE_DIRECTORY_OF_PYTHON_INSTALLATION>
</string>

</array>
<key>RunAtLoad</key>
<true/>

</dict>
</plist>

By convention, these files are stored in /Users/<loginname>/Library/LaunchAgents/. To activate
the settings, call

launchctl load <path-to-file>/VISR-X.X.X.plist

To take effect, all applications using these settings (e.g., terminals, Python interpreters, DAWs) must be quit and
reopened.

These settings are preserved if the machine is restarted. To deactivate them, the property list file must be unloaded:

5.4. Setting up Python 15

https://apple.stackexchange.com/questions/106355/setting-the-system-wide-path-environment-variable-in-mavericks

VISR User documentation

launchctl unload <path-to-file>/VISR-X.X.X.plist

If you made changes to the settings, you have to perform the unload command followed by a load.

5.5 Verifying the installation

We suggest some basic tests to verify that the VISR framework has been correctly installed and configured.

5.5.1 Testing a standalone application

This test is to ensure that that the installation is successful, and that the VISR shared libraries can be located and
are compatible with the system. When using the component-enabled installers, the component Standalone
applications must have been selected in order to perform this check.

In a terminal (Linux shell, Mac OS Terminal application, Windows command line cmd), execute this command:

<visr-installation-dir>/bin/matrix_convolver --version

For the different platforms, the full commands are (assuming the default installation directory) Windows

"c:\Program Files\VISR-X.X.X\bin\matrix_convolver.exe" --version

Note that the quotes are necessary to cope with the space in the path.

Mac OS X

/Applications/VISR-X.X.X/bin/matrix_convolver --version

Linux

/usr/bin/matrix_convolver --version

If you added the bin/ directory as described above, calling

matrix_convolver --version

is sufficient.

In any case, the call should generate a statement like

VISR Matrix convolver utility 0.10.0

If there is an error message about a missing shared library (or DLL), you should consult the respective section
about installation. In particular this applies Windows, where the PATH variable needs to be set accordingly.

Testing the interactive Python integration

This test ensures that the VISR framework can be used interactively from Python interpreters.

First start a Python 3 interpreter (for example python or ipython). Depending on the system, the binaries
might be called python3 or ipython3, respectively It must be the interpreter of the Python distribution you
intend to use (e.g., Anaconda).

In the interpreter, try to import the visr modules

import visr

16 Chapter 5. Getting VISR

VISR User documentation

This command should return without an error message. In this case, you can check whether the module is loaded
from the correct location:

getattr(visr, '__file__')

The directory of the resulting file path should be <visr-installation-dir>/python. For example, on
Windows this returns C:\Program Files\VISR 0.10.0\\python\\visr.pyd.

5.6 Source Code

Alternatively, the VISR framework can be installed and build from source code. It is hosted at the GitLab reposi-
tory https://gitlab.eps.surrey.ac.uk:s3a/VISR.git

To retrieve the source code, clone the repository with

git clone https://gitlab.eps.surrey.ac.uk:s3a/VISR.git

Setting up a build environment, including the required software tools, and compiling the source code is detailed
in the VISR API documentation.

5.7 Support and help

Sopport for installing and using the VISR is available through several ways.

First, you should check the FAQ section of the website (TODO: Insert link here)

Second, the mailing list (insert link to the registration page of the 3a-software list here).

Third, problems and supected bugs can be reported on (insert link to issues page of GitLab repository / later
GitHub repo).

5.6. Source Code 17

https://gitlab.eps.surrey.ac.uk:s3a/VISR.git
http://s3a-spatialaudio.org

VISR User documentation

18 Chapter 5. Getting VISR

CHAPTER

SIX

VISR PRINCIPLES

6.1 Component-Based Audio processing

6.2 VISR as a Rendering Framework

6.3 Realtime and Offline Processing

6.4 Prototyping versus mature signal processing code

19

VISR User documentation

20 Chapter 6. VISR principles

CHAPTER

SEVEN

USING VISR

7.1 Using VISR standalone renderers

7.1.1 Using standalone applications

The VISR framework provides a number of standalone real-time rendering applications for some of its audio
processing functionality.

If a component-aware installer is used (see Section Installation components), then the component “Standalone
applications” has to be selected during installation.

The standalone applications are started as command line applications, and configured through a number of com-
mand line options or a configuration file.

Common options

All standalone applications provided with the VISR provide a common set of command line options:

–version or -v Returns a short description of the tool and its version information.

–help or -h Returns a list of supported command line options with brief descriptions.

–option-file <filename> or @<filename> Pass a configuration file containing a set of command line options to
the applications. This options allows to store and share complex sets of command line options, and to
overcome potential command line length limitations.

A typical option file has the format

-i 2
-o 2
-f 48000
-c "/usr/share/visr/config/generic/stereo.xml"

where,by convention, one option is stored per line.

–sampling-frequency or -f The sampling frequency to be used for rendering, as an integer value in Hz. Typically
optional. If not given, a default value (e.g., 48000 Hz) will be used.

–period or -p The period, or blocksize, or buffersize to be used by the audio interface.

In most cases, the period should be a power of 2, e.g., 64, 128, 256, 512, . . . , 4096. Lower values mean
lower audio latency, but typically higher system load and higher susceptibility to audio underruns.

Typically an optional argument. If not given, a default value (e.g., 1024) is used.

–audio-backend or -D Specify the audio interface library to be used.

This option is mandatory.

The audio interfaces depend on the operating system and the configuration of the user’s system. The most
common options are “PortAudio” (all platforms) and “Jack” (Linux and Mac OS X). Note that additional

21

VISR User documentation

libraries (or backends) can be available for a specific platform, and new backends might be added in the
future.

-audio-ifc-options A string to provide additional options to the audio interface.

This is an optional argument, and its content is interface-specific.

By convention, the existing audio interfaces expect JSON (JavaScript Object Notation) strings for the
backend-configuration.

To pass JSON strings, the whole string should be enclosed in single or double quotes, and the quotes required
by JSON must be escaped with a backslash. For example, the option might be used in this way:

visr_renderer ... -audio-ifc-options='{ \"hostapi\": \"WASAPI\" }'

Section Interface-specific audio options below explains the options for the currently supported audio inter-
faces.

-audio-ifc-option-file Provide a interface-specific option string within a file.

This can be used to avoid re-specifying complex options strings, to author them in a structured way, and to
store and share them.

In addition, it avoids the quoting and escaping tricks needed on the command line. For example, the option
shown above could be specified in a file portaudio_options.cfg as

{
"hostapi": "WASAPI"

}

and passed as

visr_renderer ... -audio-ifc-option-file=portaudio_options.cfg

Note: The options –audio-ifc-options and –audio-ifc-option-file are mutually exclusive, that means other none
or one of them can be provided.

VISR object-based loudspeaker renderer

These renderers facilitate object-based rendering to arbitrary loudspeaker setups. They use the VISR audio object
model and the corresponding JSON format described in Section Predefined object-based rendering primitives and
renderers.

Note that there are two binaries for loudspeaker rendering: visr_renderer and baseline_renderer. The provision
of these separate binaries has technical reasons - mainly their dependency on a compatible and configured Python
installation, as explained below.

The two binaries provided are:

visr_renderer This is the full object-based renderer, including a powerful metadata adaptation engine for intelli-
gent object-based rendering - the Metadapter - implemented in Python. This metadapter is integrated into
the rendering binary as an optional part, and is used if the option –metadapter-config is specified. The
binary itself, however, needs a Python istallation to start at all, irrespective whether this option is set.

baseline_renderer This is the legacy object-based loudspeaker renderer. At the time being, it provides the same
functionality as the visr_renderer, but without the optional integrated metadapter component. In this way,
the binary is independent of a Python distribution on the user’s computer.

In general, we recommend to use visr_renderer if possible, and to use baseline_renderer on systems where the
Python features of the VISR framework are not available.

The command line arguments supported by the visr_renderer application are:

22 Chapter 7. Using VISR

https://www.json.org/

VISR User documentation

$> visr_renderer.exe --help
-h [--help] Show help and usage information.
-v [--version] Display version information.
--option-file arg Load options from a file. Can also be used

with syntax "@<filename>".
-D [--audio-backend] arg The audio backend.
-f [--sampling-frequency] arg Sampling frequency [Hz]
-p [--period] arg Period (blocklength) [Number of samples per

audio block]
-c [--array-config] arg Loudspeaker array configuration file
-i [--input-channels] arg Number of input channels for audio object

signal
-o [--output-channels] arg Number of audio output channels
-e [--object-eq-sections] arg Number of eq (biquad) section processed for

each object signal.
--reverb-config arg JSON string to configure the object-based

reverberation part, empty string (default) to
disable reverb.

--tracking arg Enable adaptation of the panning using visual
tracking. Accepts the position of the tracker
in JSON format"{ "port": <UDP port number>,
"position": {"x": <x in m>, "y": <y im m>,
"z": <z in m> }, "rotation": { "rotX": rX,
"rotY": rY, "rotZ": rZ } }" .

-r [--scene-port] arg UDP port for receiving object metadata
-m [--metadapter-config] arg Metadapter configuration file. Requires a

build with Python support. If empty, no
metadata adaptation is performed.

--low-frequency-panning Activates frequency-dependent panning gains
and normalisation

--audio-ifc-options arg Audio interface optional configuration
--audio-ifc-option-file arg Audio interface optional configuration file

The arguments for the baseline_renderer application are identical, except that the --metadapter-config
option is not supported as explained above.

--audio-backend or -D The audio interface library to be used. See section Common options.

--audio-ifc-options: Audio-interface specific options, section Common options.

--audio-ifc-option-file: Audio-interface specific options, section Common options.

--sampling-frequency or -f: Sampling frequency in Hz. Default: 48000 Hz. See section Common op-
tions.

--period or -p: The number of samples processed in one iteration of the renderer. Should be a power of 2
(64,128,. . . ,4096,. . .) . Default: 1024 samples. See section Common options.

--array-config or -c: File path to the loudspeaker configuration file. Path might be relative to the current
working directory. Mandatory argument. The XML file format is described below in Section Loudspeaker
configuration file format.

--input-channels or -i: The number of audio input channels. This corresponds to the number of single-
waveform objects the renderer will process. Mandatory argument. A (case-insensitive) file extension of
.xml triggers the use of the XML format for parsing.

--output-channels or -o: The number of output channels the renderer will put write to. If not given, the
number of output channels is determined from the largest logical channel number in the array configuration.

--object-eq-sections: The number of EQs (biquad sections) that can be specified for each object audio
signal.

Default value: o, which deactivate EQ filtering for objects.

--low-frequency-panning: Switches the loudspeaker panning between standard VBAP and a dual-
frequency approach with separate low- and high-frequency panning rules.

7.1. Using VISR standalone renderers 23

VISR User documentation

Admissible values are true and false. The default value is false, corresponding to the standard VBAP
algorithm.

--reverb-config: A set of options for the integrated reverberation engine for the RSAO
(PointsourceWithReverb) object (see section Object-Based Reverberation). To be passed as a
JSON string. The supported options are:

numReverbObjects: The number of RSAO objects that can be rendered simultaneously. These objects
may have arbitrary object ids, and they are automatically allocated to the computational resources
avalable.

To be provided as a nonnegative integer number The default value is 0, which means that the reverber-
ation rendering is effectively disabled.

lateReverbFilterLength: Specify the length of the late reverberation filters, in seconds.

Provided as a floating-point value, in seconds. Default value is zero, which results in the shortest
reverb filter length that can be processed by the renderer, typically one sample.

lateReverbDecorrelationFilters: Specifies a multichannel WAV file containing a set of decor-
relation filters, one per loudspeaker output. The number of channels must be equal or greater than the
number of loudspeakers, channels that exceed the number of loudspeakers are not used.

To be provided as a full file path. The default value is empty, which means that zero-valued filters are
used, which effectively disables the late reverb.

discreteReflectionsPerObject: The maximum number of discrete reflections that can be ren-
dered for a single RSAO object.

Given as a nonnegative integer number. The default value is 0, which means that no discrete reflections
are supported.

maxDiscreteReflectionDelay: The maximum discrete reflection delay supported. This allows a
for tradeoff between the computational resources, i.e., memory required by the renderer and a realistic
upper limit for discrete reflection delays.

To be provided as a floating-point number in seconds. Default value is 1.0, i.e., one second.

lateReverbFilterUpdatesPerPeriod Optional argument for limiting the number of filter up-
dates in realtime rendering. This is to avoid processing load peaks, which might lead to audio un-
derruns, if multiple RSAO objects are changed simultaneously. The argument specifies the maximum
number of objects for whom the late reverb filter is calculated withon one period (audio buffer). If
there are more pending changes than thix number, the updates are spread over multiple periods. This
is a tradeoff between peak load and the timing accuracy and synchronity of late reverb updates.

Optional value, default value is 1, meaning at most one update per period

An example configuration is:

--reverb-config='{ \"numReverbObjects\": 5, \"lateReverbFilterLength\": 4.0,
\"lateReverbDecorrelationFilters\": "/home/af5u13/tmp/decorr.wav\",
\"discreteReflectionsPerObject\": 10 }'

--tracking Activates the listener-tracked VBAP reproduction, which adjust both the VBAP gains as well
as the final loudspeaker gains and delays according to the listener position. It takes a non-empty string
argument containing a JSON message of the format: { "port": <UDP port number>,
"position": {"x": <x in m>, "y": <y im m>, "z": <z
in m> }, "rotation": { "rotX": rX, "rotY": rY, "rotZ": rZ } }".
The values are defined as follows:

24 Chapter 7. Using VISR

VISR User documentation

ID Description Unit Default
port UDP port number unsigned int 8888
position.x x position of the tracker m 2.08
position.y y position of the tracker m 0.0
position.z z position of the tracker m 0.0
rotation.rotX rotation the tracker about the x axis, i.e., y-z plane degree 0.0
rotation.rotY rotation the tracker about the y axis, i.e., z-x plane degree 0.0
rotation.rotZ rotation the tracker about the z axis, i.e., x-y plane degree 180

Note: The option parsing for --tracking not supported yet, default values are used invariably. To activate
tracking, you need to specify the --tracking option with an arbitrary parameter (even --tracking=false
would activate the tracking.

--scene-port The UDP network port which receives the scene data in the VISR JSON object format.

--metadapter-config An optional Metadapter configuration file in XML format, provided as a full path to
the file. If specified, the received metadata are passed through a sequence of metadata adaptation steps that
are specified in the configuration file. If not given., metadata adaptation is not performed, and objects are
directly passed to the audio renderer.

This option is not supported by the baseline_renderer application.

Loudspeaker configuration file format

The loudspeaker configuration has to be specified in an XML file. It is used primarily for the loudspeaker render-
ers.

An example is given below.

<panningConfiguration>
<loudspeaker id="M+000" channel="1" eq="highpass">
<cart x="1.0" y="0.0" z="0"/>

</loudspeaker>
<loudspeaker id="M-030" channel="2" eq="highpass">
<polar az="-30.0" el="0.0" r="1.0"/>

</loudspeaker>
<loudspeaker id="M+030" channel="3" eq="highpass">
<polar az="30.0" el="0.0" r="1.0"/>

</loudspeaker>
<loudspeaker id="M-110" channel="4" eq="highpass">
<polar az="-110.0" el="0.0" r="1.0"/>

</loudspeaker>
<loudspeaker id="M+110" channel="5" eq="highpass">
<polar az="110.0" el="0.0" r="1.0"/>

</loudspeaker>
<loudspeaker id="U-030" channel="6" eq="highpass">
<polar az="-30.0" el="30.0" r="1.0"/>

</loudspeaker>
<loudspeaker id="U+030" channel="7" eq="highpass">
<polar az="30.0" el="30.0" r="1.0"/>

</loudspeaker>
<loudspeaker id="U-110" channel="8" eq="highpass">
<polar az="-110.0" el="30.0" r="1.0"/>

</loudspeaker>
<loudspeaker id="U+110" channel="9" eq="highpass">
<polar az="110.0" el="30.0" r="1.0"/>

</loudspeaker>
<virtualspeaker id="VoS">

(continues on next page)

7.1. Using VISR standalone renderers 25

VISR User documentation

(continued from previous page)

<polar az="0.0" el="-90.0" r="1.0"/>
<route lspId="M+000" gainDB="-13.9794"/>
<route lspId="M+030" gainDB="-13.9794"/>
<route lspId="M-030" gainDB="-13.9794"/>
<route lspId="M+110" gainDB="-13.9794"/>
<route lspId="M-110" gainDB="-13.9794"/>

</virtualspeaker>
<triplet l1="VoS" l2="M+110" l3="M-110"/>
<triplet l1="M-030" l2="VoS" l3="M-110"/>
<triplet l1="M-030" l2="VoS" l3="M+000"/>
<triplet l1="M-030" l2="U-030" l3="M+000"/>
<triplet l1="M+030" l2="VoS" l3="M+000"/>
<triplet l1="M+030" l2="VoS" l3="M+110"/>
<triplet l1="U+030" l2="U-030" l3="M+000"/>
<triplet l1="U+030" l2="M+030" l3="M+000"/>
<triplet l1="U-110" l2="M-030" l3="U-030"/>
<triplet l1="U-110" l2="M-030" l3="M-110"/>
<triplet l1="U+110" l2="U-110" l3="M-110"/>
<triplet l1="U+110" l2="M+110" l3="M-110"/>
<triplet l1="U+030" l2="U-110" l3="U-030"/>
<triplet l1="U+030" l2="U+110" l3="U-110"/>
<triplet l1="U+030" l2="U+110" l3="M+110"/>
<triplet l1="U+030" l2="M+030" l3="M+110"/>
<subwoofer assignedLoudspeakers="M+000, M-030, M+030, M-110, M+110, U-030, U+030,

→˓ U-110, U+110"
channel="10" delay="0" eq="lowpass" gainDB="0"
weights="1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0"
/>

<outputEqConfiguration numberOfBiquads="1" type="iir">
<filterSpec name="lowpass">

<biquad a1="-1.9688283" a2="0.96907117" b0="6.0729856e-05" b1="0.
→˓00012145971" b2="6.0729856e-05"/>

</filterSpec>
<filterSpec name="highpass">

<biquad a1="-1.9688283" a2="0.96907117" b0="-0.98447486" b1="1.9689497"
→˓b2="-0.98447486"/>

</filterSpec>
</outputEqConfiguration>

</panningConfiguration>

Format description

The root node of the XML file is <panningConfiguration>. This root element supports the folloring
optional attributes:

isInfinite Whether the loudspeakers are regarded as point sources located on the unit sphere (false) or as
plane waves, corresponding to an infinite distance (true). The default value is false.

dimension Whether the setup is considered as a 2-dimensional configuration (value 2) or as three-dimensional
(3, thedefault). In the 2D case, the array is considered in the x-y plane , and the z or el attributes of the
loudspeaker positions are not evaluated. In this case, the triplet specifications consist of two indices only
(technically they are pairs, not triplets).

Within the <panningConfiguration> root element, the following elements are supported:

<loudspeaker> Represents a reproduction loudspeaker. The position is encoded either in a <cart> node
representing the cartesian coordinates in the x, y and z attributes (floating point values in meter), or a
<polar> node with the attributes az and el (azimuth and elevation, both in degree) and r (radius, in
meter).

The <loudspeaker> nodes supports for a number of attributes:

26 Chapter 7. Using VISR

VISR User documentation

• id A mandatory, non-empty string identification for the loudspeaker, which must be unique across all
<loudspeaker> and <virtualspeaker> (see below) elements. Permitted are alpha-numeric
characters, numbers, and the characters “@&()+/:_-“. ID strings are case-sensitive.

• channel The output channel number (sound card channel) for this loudspeaker. Logical channel
indices start from 1. Each channel must be assigned at most once over the set of all loudspeaker and
subwoofers of the setup..

• gainDB or gain Additional gain adjustment for this loudspeaker, either in linear scale or in dB
(floating-point values. The default value is 1.0 or 0 dB. gainDB or gain are mutually exclusive.

• delay Delay adjustment to be applied to this loudspeaker as a floating-point value in seconds. The
default value is 0.0).

• eq An optional output equalisation filter to be applied for this loudspeaker. Specified as a non-empty
string that needs to match an filterSpec element in the outputEqConfiguration element
(see below). If not given, no EQ is applied to for this loudspeaker.

<virtualspeaker> An additional vertex added to the triangulation that does not correspond to a physical
loudspeaker. Consist of a numerical id attribute and a position specified either as a <cart> or a <polar>
node (see <loudspeaker> specification).

The <virtualspeaker> node provides the following configuration options:

• A mandatory, nonempty and unique attribute id that follows the same rules as for the
<loudspeaker> elements.

• A number of route sub-elements that specify how the energy from this virtual loudspeaker is routed
to real loudspeakers. The route element has the following attributes: * lspId: The ID of an
existing real loudspeaker. * gainDB: A scaling factor with which the gain of the virtual loudspeaker
is distributed to the real loudspeaker.

In the above example, the routing specification is given by

<virtualspeaker id="VoS">
<polar az="0.0" el="-90.0" r="1.0"/>
<route lspId="M+000" gainDB="-13.9794"/>
<route lspId="M+030" gainDB="-13.9794"/>
<route lspId="M-030" gainDB="-13.9794"/>
<route lspId="M+110" gainDB="-13.9794"/>
<route lspId="M-110" gainDB="-13.9794"/>

</virtualspeaker>

That means that the energy of the virtual speaker "vos" is routed to five surrounding speakers, with
a scaling factor of 13.97 dB each.

<subwoofer> Specify a subwoofer channel. In the current implementation, the loudspeaker are weighted and
mixed into an arbitray number of subwoofer channels. The attributes are:

• assignedLoudspeakers The loudspeaker signals (given as a sequence of logical loudspeaker IDs) that
contribute to the subwoofer signals. Given as comma-separated list of loudspeaker index or loudspeaker
ranges. Index sequences are similar to Matlab array definitions, except that thes commas separating the
parts of the sequence are compulsory.

Complex example:

assignedLoudspeakers = "1, 3,4,5:7, 2, 8:-3:1"

• weights Optional weights (linear scale) that scale the contributions of the assigned speakers to the sub-
woofer signal. Given as a sequence of comma-separated linear-scale gain values, Matlab ranges are also
allowed. The number of elements must match the assignedLoudspeakers index list. Optional value,
the default option assigns 1.0 for all assigned loudspeakers. Example: “0:0.2:1.0, 1, 1, 1:-0.2:0”.

• gainDB or gain Additional gain adjustment for this subwoofer, either in linear scale or in dB (floating-
point valus, default 1.0 / 0 dB). Applied on top of the weight attributes to the summed subwoofer signal.
See the <loudspeaker> specification.

7.1. Using VISR standalone renderers 27

VISR User documentation

• delay Delay adjustment for this (floating-point value in seconds, default 0.0). See the <loudspeaker>
specification.

<triplet> Loudspeaker triplet specified by the attributes l1, l2, and l3. The values of l1, l2, and l3
must correspond to IDs of existing real or virtual loudspeakers. In case of a 2D setup, only l1 and l2 are
evaluated.

Note: At the time being, triplet specifications must be generated externally and placed in the configuration
file. This is typically done by creating a Delaunay triangulation on the sphere, which can be done in Matlab
or Python.

Future versions of the loudspeaker renderer might perform the triangulation internally, or might not require
a conventional triangulation at all. In these cases, is it possible that the renderer ignores or internally adapts
the specified triplets.

outputEqConfiguration This optional element must occur at most once. It provides a global specification
for equalisation filters for loudspeakers and subwoofers.

<outputEqConfiguration type="iir" numberOfBiquads="1">
<filterSpec name="lowpass">

<biquad a1="-1.9688283" a2="0.96907117" b0="6.0729856e-05" b1="0.
→˓00012145971" b2="6.0729856e-05"/>
</filterSpec>
<filterSpec name="highpass">

<biquad a1="-1.9688283" a2="0.96907117" b0="-0.98447486" b1="1.9689497" b2=
→˓"-0.98447486"/>
</filterSpec>

</outputEqConfiguration>

The attributes are:

• type: The type of the output filters. At the moment, only IIR filters provide as second-order sections
(biquads) are supported. Thus, the value "iir" must be set.

• numberOfBiquads: This value is specific to the "iir" filter type.

The filters are described in filterSpec elements. These are identifed by a name attribute, which must be
an non-empty string unique across all filterSpec elements. For the type iir, a filterSpec element
consists of at most numberOfBiquad nodes of type biquad, which represent the coefficients of one
second-order IIR (biquad) section. This is done through the attributes a1, a2, b0, b1, b2 that represent the
coefficients of the normalised transfer function

𝐻(𝑧) =
𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2

The matrix convolver renderer

The matrix convolver renderer is a multiple-input multiple-output convolution engine to be run as a command line
application.

It implements uniformly partitioned fast convolution for arbitrary routing points between input and output files.

Basic usage

$> matrix_convolver --help
-h [--help] Show help and usage information.
-v [--version] Display version information.
--option-file arg Load options from a file. Can also be used

with syntax "@<filename>".

(continues on next page)

28 Chapter 7. Using VISR

VISR User documentation

(continued from previous page)

-D [--audio-backend] arg The audio backend. JACK_NATIVE activates the
native Jack driver insteat of the PortAudio
implementation.

--audio-ifc-options arg Audio interface optional configuration
--audio-ifc-option-file arg Audio interface optional configuration file
--list-audio-backends List the supported audio backends that can be

passed to the the "--audio-backend" ("-D")
option.

--list-fft-libraries List the supported FFT implementations that
can be selected using the "--fftLibrary"
option.

-f [--sampling-frequency] arg Sampling frequency [Hz]
-p [--period] arg Period (block length): The number of samples

per audio block, also the block size of the
partitioned convolution.

-i [--input-channels] arg Number of input channels for audio object
signal.

-o [--output-channels] arg Number of audio output channels.
--filters arg Initial impulse responses, specified as

comma-separated list of one or multiple WAV
files.

--filter-file-index-offsets arg Index offsets to address the impulses in the
provided multichannel filter files. If
specified, the number of values must match
the number of filter files.

-r [--routings] arg Initial routing entries, expects a JSON array
consisting of objects "{"inputs": nn,
"outputs":nn, "filters":nn ("gain":XX)

-l [--max-filter-length] arg Maximum length of the impulse responses, in
samples. If not given, it defaults to the
longest provided filter,

--max-routings arg Maximum number of filter routings.
--max-filters arg Maximum number of impulse responses that can

be stored.
--fft-library arg Specify the FFT implementation to be used.

Defaults to the default implementation for
the platform.

Operation

The matrix convolver consists of the following elements:

• A number of input channels.

• A set of FIR filter, which can be reused multiple times.

• A set of output channels.

• A set of routings, which defines that a given input is filtered through a specific filter (with an optional gain),
and the result is routed to a given output channels. All filtering results that are routed to a given output are
summed together.

This interface allows for several different operation modes, for example:

• Multi-channel filtering where each input is filtered with one filter to give produce the same number of output
channels.

• Filtering to produce multiple, different copies of the same input signal.

• Filtering multiple signals and adding them together, as, for example, in filter-and-sum beamforming.

• MIMO filtering with complete matrices, where a filter is defined for each input-output combination.

7.1. Using VISR standalone renderers 29

VISR User documentation

• MIMO filtering with sparse matrices, corresponding to sophisticated routings between inputs and outputs.

Detailed option description

--help or -h:

--version or -v : Standard options, described in Common options

--option-file: Standard options, described in Common options

--audio-backend or -D: Standard options, described in Common options

--audio-ifc-options: Standard options, described in Common options

--audio-ifc-option-file: Standard options, described in Common options

--sampling-frequency or -f Standard options, described in Common options

--period or -p: Standard options, described in Common options

--input-channels or -i: The number of input channels. Must not exceed the number of capture channels
of the sound card.

-o or --output-channels: The number of output channels. Must be less or equal than the number of sound
card output channels.

--filters The filters, specified as a comma-separated list of WAV files. WAV files can be multichannel, in
this case, every channel is handled as a separate filter.

All filters are combined into a single array, where each filter is associated to a unique index (starting from
zero if not specified otherwise.)

This argument is optional. If not provided, all filters are zero-initialised. Note that if the filters argument
is not provided, then the option max-routings must be provided.

--filter-file-index-offsets Specify the start filter index for each WAV file specified by the
--filters argument. To be provided as a comma-separated list of nonnegative filter entries, one for
each file in the filters argument. This argument is optional. If not provided, the start index of the first
file is 0, and the start offset af all subsequent filter files follows the end index of the previous filter file. This
facility can be used to decouple the number of filters in the WAV files from the indexing scheme used to
define the routings.

Example:

--filters ="filters_2ch.wav, filters_6ch.wav, filters_4ch.wav"
--filter-file-index-offsets="2, 8, 16"

Here, three WAV files are provided: filters_2ch.wav, filters_6ch.wav, and filters_4ch.
wav, with 2, 6, and 4 channels respectively. The filter offsets “2, 8, 16” mean that the filters of
filters_2ch.wav will be associated to the indices 2 and 3, that of filters_6ch.wav by indices
8-13, and that of filters_4ch.wav by the indices 16-19.

Any filters below, between, or above the initialized filter channels (here, indices 0-1, 4-7, 14-15, and >=20)
will be zero-initialised.

If the --filter-file-index-offsets hadn’t been provided in this example, the start offsets for the
filter sets from the three files would have been 0,2,8.

--routings or -r Provide a list of routings points. This is to be specified as a JSON string. A routing
defines a filter being applied between a specific input channel and a specific output channels. The JSON
representation for a single entry is

{ "input": "<i>", "output": "<o>", "filter": "<f>", "gain": "<g>" }

30 Chapter 7. Using VISR

VISR User documentation

Here, <i> is the index of the input channel, <o> is the channel index of the output, and <f> is the index
of the filter (see above). All indices are zero-offset. The gain specification ,"gain": <g> is optional,
with <g> representing a linear-scale gain value.

A routing list is a JSON array of routing entries, for example

[{"input":"0", "output":"0", "filter":"2" },
{"input":"0", "output":"1", "filter":"1" },
{"input":"0", "output":"2", "filter":"0" }]

A routing entry can define multiple multiple routings using a Matlab-like stride syntax for <i>, <o>, <f>,
or several of them. If an index is a stride sequence, then the routing entry is duplicated over all values of
the stride sequence. If more than one index in the routing entry are strides, then all of them must have the
same length, and each of the duplicated routing entries contains the respective value of the respective stride
sequence. For example, the strided routing entry

{"input":"3", "output":"0:3:9", "filter":"1" }

routes input 3 to the outputs 0, 3, 6, and 9, using the filter indexed by 1 for each routing. In contrast.

{"input":"0", "output":"0:2", "filter":"2:-1:0" }

is equivalent to the routing list shown above.

[{"input":"0", "output":"0", "filter":"2" },
{"input":"0", "output":"1", "filter":"1" },
{"input":"0", "output":"2", "filter":"0" }]

--max-filter-length or -l: Define the maximum length of the FIR filters. If the --filters option is
provided, this argument is optional. In this case, admissible filter length is set to the largest length of all
specified filter. an error is reported if any specified filter exceeds the admissible length. If --filters and
--max-filter-length are both provided, then an error is generated if the length of any specified filter
exceeds the value of --max-filter-length.

--max-routings : Define the maximum number of routings. If the --routings options is present, this ar-
gument is optional, and the maximum number of permissible routings is set to the number of routing entries
in the --routing argument. If routings and --max-routings are both specified, the number of
entries in --routings must not exceed the value of --max-routings.

--max-filters: Define the maximum number of filter entries. This parameter is optional if the argument
--filters is provided. In this case, the maximum filter number is set to the number of filters generated
by the --filters argument.

Note: If combined with --filter-file-index-offsets, this automatically computed number of
filters includes any gaps in the generated filter set.

If --filters and max-filters are both provided, then the number of filter entries created by
--filters must not exceed the value of --max-filters.

--fft-library: Select a FFT implementation from the set of available FFT libraries. The admissible values
(strings) can be obtained through the --list-fft-libraries option.

Note: The current implementation accepts only a static configuration.

Future versions, however, will provide runtime control through a network command interface.

Some arguments or argument combinations do not make sense at the moment, but will do when combined with
runtime control. Examples include the ability to provide empty routings, zero-valued filters, or to specify values
for --max-routings or --max-filters that are larger than the currently set values.

7.1. Using VISR standalone renderers 31

VISR User documentation

Examples

A channel-wise multichannel convolution can be performed as

$> matrix_convolver -i 2 -o 2 -p 512 -D PortAudio -f 48000 --filters="filters.wav"
-r '[{\"input\": \"0:1\", \"output\":\"0:1\", \"filter\":\"0:1\"}]'

Note: The quoting is necessary when started from the command line.

The following example shows a convolution with binaural room impulse responses, where a 9-loudspeaker multi-
channel signal is routed to 9x2 BRIRs that are summed to form two ear signals.

$> matrix_convolver -i 9 -o 2 --max-filters=18 --max-routings=18
-r "[{\"input\":\"0:8\", \"output\":\"0\", \"filter\":\"0:2:16\"},

{\"input\":\"0:8\", \"output\":\"1\", \"filter\":\"1:2:17\"}]"
--filters="bbcrdlr9ch_brirs.wav"
-D Jack -f 48000 -p 512

Here, the file bbcrdlr9ch_brirs.wav contains the 18 BRIRs, with the first nine channels for the left and the
remaining channels for the right ear filters.

The python_runner application

This standalone application is an alternative way to run arbitrary VISR components in real-time.

Compared to instantiating the processing from a Python interpreter, this can be easier to control, for example
within a script or when running a device in ‘headless mode’.

For obvious reasons, this application requires an installed and correctly configured Python distribution, as de-
scribed in Section Configuration.

Usage

The supported options are displayed when started with the --help or -h option:

$> python_runner --help
-h [--help] Show help and usage information.
-v [--version] Display version information.
--option-file arg Load options from a file. Can also be used

with syntax "@<filename>".
-D [--audio-backend] arg The audio backend.
-f [--sampling-frequency] arg Sampling frequency [Hz]
-p [--period] arg Period (blocklength) [Number of samples per

audio block]
-m [--module-name] arg Name of the Python module to be loaded

(without path or extension).
-c [--python-class-name] arg Name of the Python class (must be a

subclass of visr.Component).
-n [--object-name] arg Name of the Python class (must be a

subclass of visr.Component).
-a [--positional-arguments] arg Comma-separated list of positional options

passed to the class constructor.
-k [--keyword-arguments] arg Comma-separated list of named (keyword)

options passed to the class constructor.
-d [--module-search-path] arg Optional path to search for the Python

module (in addition to the default search
path (sys.path incl. $PYTHONPATH). Provided as

→˓a

(continues on next page)

32 Chapter 7. Using VISR

VISR User documentation

(continued from previous page)

comma-separated list of directories.
--audio-ifc-options arg Audio interface optional configuration.
--audio-ifc-option-file arg Audio interface optional configuration file.

If the processing is correctly started, a message is displayed on the command line:

VISR Python signal flow runner. Press "q<Return>" to quit.

To terminate the python_runner, press the “q” key followed by <Return>.

Note: On Linux and Mac OS X, the standard program termination via <Ctrl-C> does not work at the moment.
Instead, this key combination is ignored, and Python exception message is shown if the program is later terminated
via “q<Return>”. See issue https://gitlab.eps.surrey.ac.uk/s3a/VISR/issues/23 .

Detailed option description

The standard options --help, --version, --audio-backend, sampling-frequency, :code:–period‘,
:code:–audio-ifc-options‘, and :code:–audio-ifc-option-file‘ are described in Section Common options.

The remaining options are:

--module-name or -m: Specify the name of a Python module that contains the VISR component to be exe-
cuted. That is, use the module name that would need to be imported in an interactive Python session. The
module name must be provided without the file extension. It can be specified either with a full file path,
or as a pure module name. In the latter case, the directory containing the module must be on the Python
module search path or included in the --module-search-path option.

The module can be in one of several forms:

• A Python file (normally with extension .py) that contains the component class. The module name
must be specified without the extension.

• A directory containing a multi-file package.

• Compiled extension modules implemented in C++. Typical file extesnions are .so (Linux and Mac
OS X) or .pyc (Windows). The module name must be specified without the extension.

This is a mandatory argument.

--python-class-name or -c: The name of the Python class to be instantiated, without the leading names-
pace name. This class must be derived from visr.Component and must be defined in the module
module-name.

Note: At the moment, only classes in the top-level namespace are supported. That is, classes of the form
moduleName.submodule.className cannot be used.

This argument is mandatory.

--object-name or -n: Set a name for the top-level component. This name is used, for example, in error
messages and warnings emitted from the component.

This argument is optional. If not provided, a default name is used.

-a --positional-arguments: Provide a sequence of parameters to the component’s constructor as posi-
tional arguments.

The fixed first three arguments to a component constructor, i.e., context, name and parent, do not need
top be specified. That means the first value of the sequence is passed to the fourth argument, the second
value to the fifth argument, and so on.

7.1. Using VISR standalone renderers 33

https://gitlab.eps.surrey.ac.uk/s3a/VISR/issues/23

VISR User documentation

The parameters are passed as a Python tuple. See, e.g., the Python documentation on tuples. Following
these conventions, the arguments can be specified as follows:

• A comma-separated list of values, for example

-a "3, 2.7,'foobar'"

Note that the enclosing double quotes are required to separate the argument to -a from other options
on the command line. They are strictly necessary only if the parameter sequence contains spaces, but
we recommend to use double quotes for consistency.

If the parameter sequence consists of a single value, a training comma is required. That is, a single
positional argument is specified as

-a "3,"

If two or more arguments are provided, the trailing comma is optional.

• A comma-separated list of values, enclosed in parentheses. Apart from the additional parentheses,
the syntax is identical to the comma-separated lists above. That is, the argument list above would be
specified as

-a "(3, 2.7,'foobar')"

As above, single arguments require a trailing comma.

-a "(3,)"

• A tuple constructed using the tuple() keyword, that is

-a "tuple(3, 2.7,'foobar')"

and in the single-parameter case

-a "tuple(3)"

That is, no trailing comma is required in this case.

The --positional-arguments option is optional. If it is not provided, no positional arguments are
passed to the component’s constructor.

--keyword-arguments or -k: A set of keyword arguments to be passed to the component’s constructor. To
be provided as a Python dictionary, for example:

-k "{ 'argument1': value1, 'argument2': value2, ..., 'argumentN': valueN }"

Hint: As in case of positional arguments, we suggest to enclose the complete argument in double quotes.
When following this convention, single quotes can be used for the keywords as 'argument1' and string
parameters without the need for escaping quotes.

Following Python conventions, keyword arguments must not be provided for arguments already handled by
the --positional-arguments option. Likewise, keyword arguments must not be provided for the
fixed first three constructor arguments of a component: context, name and parent.

This argument is optional; no keyword arguments are passed to the component if it is not given.

--module-search-path or -d: Specifies additional search paths for Python modules.

To be specified as a comma-separeted list of directory path.

These search paths can be used to locate the module containing the component to be run, unless a direc-
tory path is passed to the --module-name option. In addition, the search paths are evaluated to locate
transitive dependencies of the module to be loaded. For example, the path to VISR Python externals can

34 Chapter 7. Using VISR

https://docs.python.org/3.7/library/stdtypes.html#typesseq-tuple

VISR User documentation

be specidied in this way, thus avoiding the use of the PYTHONPATH environment variable, as described in
section Configuration. The additional search paths are added to the Python search path sys.path before
the main module specified by the -m option is loaded.

This argument is optional, no additional search paths are added if the option is not provided.

Examples

In this example we use a simple Python-based VISR component PythonAdder.

class PythonAdder(visr.AtomicComponent):
""" General-purpose add block for an arbitrary number of inputs"""
def __init__(self, context, name, parent, numInputs, width):
...

that implements generic addition with numInputs signals to be added with width signals each. Here, the
component class PythonAdder is contained in a source file pythonAtoms.py.

The python_runner can be invoked using positional arguments through

$> python_runner -D PortAudio -f 48000 -p 512
-m $HOME/VISR/src/python/scripts/pythonAtoms -c PythonAdder -a "3,2"

which creates a PythonAdder component with three inputs and a width of two.

The same component is constructed with the keyword argument option as

$> python_runner -D PortAudio -f 48000 -p 512
-m $HOME/VISR/src/python/scripts/pythonAtoms -c PythonAdder -k "{'width':2,

→˓'numInputs':3}"

Positional and keyword arguments can also be mixed, as long as the corresponding Python rules are observed:

$> python_runner -D PortAudio -f 48000 -p 512
-m $HOME/VISR/src/python/scripts/pythonAtoms -c PythonAdder -a "3," -k "{'width

→˓':2}"

Note the trailing comma for the positional option.

So far, the examples specified the path to the module explicitly. If this path ($HOME/VISR/src/python/
scripts in the example) is contained in the default Python search path, i.e., sys.path, then the pure module
name suffices

$> python_runner -D PortAudio -f 48000 -p 512
-m pythonAtoms -c PythonAdder -a "3," -k "{'width':2}"

Another way to locate the module is to provide the path through the module-search-path option.

$> python_runner -D PortAudio -f 48000 -p 512
-m pythonAtoms -c PythonAdder -a "3," -k "{'width':2}"
--module-search-path $HOME/VISR/src/python/scripts

Finally, the option --module-search-path can also be used to locate modules needed by the main module.
For example, the path to the core VISR modules can be specified in this way, thus eradicating the need to add
them to the default Python search path, for example by adding them to the PYTHONPATH variable.

$> python_runner -D PortAudio -f 48000 -p 512
-m pythonAtoms -c PythonAdder -a "3," -k "{'width':2}"
--module-search-path
$HOME/VISR/src/python/scripts,/usr/share/visr/python

7.1. Using VISR standalone renderers 35

VISR User documentation

Interface-specific audio options

This section described the audio-interface-specific options that can be passed through the
--audio-ifc-options or --audio-ifc-option-file arguments.

PortAudio interface

The interface-specific options for the PortAudio interface are to be provided as a JSON file, for example:

{
"sampleformat": "...",
"interleaved": "...",
"hostapi" : "..."

}

Note: When used on the command line using the --audio-ifc-options argument, apply the quotation and
escaping as described in Section Common options.

The following options are supported for the PortAudio interface:

sampleformat Specifies the PortAudio sample format. Possible values are:

• signedInt8Bit

• unsignedInt8Bit

• signedInt16Bit

• unsignedInt16Bit

• signedInt24Bit

• unsignedInt24Bit

• signedInt32Bit

• unsignedInt32Bit

• float32Bit .

interleaved: Enable/disable interleaved mode, possible values are true, false.

hostapi: Used to specify PortAudio backend audio interface. Possible values are:

• default: This activates the default backend

• WASAPI : Supported OS: Windows.

• ASIO : Supported OS: Windows.

• WDMKS: Supported OS: Windows.

• DirectSound : Supported OS: Windows.

• CoreAudio : Supported OS: MacOs.

• ALSA : Supported OS: Linux.

• JACK : Supported OSs: MacOs, Linux.

PortAudio aupports a number of other APIs. However, they are outdated or refer to obsolete plat-
forms and therefore should not be used: - SoundManager (MacOs) - OSS (Linux) - AL - BeOS -
AudioScienceHPI (Linux)

This configuration is an example of usage of PortAudio, with Jack audio interface as backend.

36 Chapter 7. Using VISR

VISR User documentation

{
"sampleformat": "float32Bit",
"interleaved": "false",
"hostapi" : "JACK"

}

Jack audio interface

The following options can be provided when using Jack as our top level component’s Audio Interface:

clientname: Jack Client name for our top level component.

servername: Jack Server name. If not provided, the default Jack server is used.

autoconnect: Globally enable/disable the automatic connection of ports. Admissible values are true and
false. This setting can be overridden specifically for capture and playback ports in the port configuration
section described below.

portconfig: Subset of options regarding the configuration and connection of Jack Ports, see following section.

Port Configuration

The port configuration section allows to individually set properties for the capture, i.e., input, and the playback,
i.e., output, ports of an application.

capture: Specifies that the following options regard the top level component’s capture ports only

• autoconnect : Enable/disable auto connection to an external jack client’s input ports, possible values
are true, false

• port: Jack ports specification

– basename: Common name for all top level component’s capture ports

– indices: list of port numbers to append to top level component’s capture port name. It is possible
to use Matlab’s colon operator to express a list of numbers in a compact fashion (es.”0:4” means
appending numbers 0 to 3 to port names)

– externalport: Specification of an external jack client to connect to if autoconnect is enabled.

* client: Name of an external jack client to use as input for our top level component (es.
“system”)

* portname: Common name for all external jack client input ports

* indices: List of port numbers that together with :code:‘ portname‘ describe existing ex-
ternal jack client input ports. It is possible to use Matlab’s colon operator to express a list of
numbers.

playback: Specifies that the following options regard the top level component’s playback ports only.

• autoconnect : Enable/disable auto connection to an external jack client’s output ports, possible values
are true, false

• port: Jack ports specification

– basename: Common name for all top level component’s playback ports

– indices: list of port numbers to append to top level component’s playback port name. It is
possible to use Matlab’s colon operator to express a list of numbers in a compact fashion (es.”0:4”
means appending numbers 0 to 4 to port names)

– externalport: Specification of an external jack client to connect to if autoconnect is enabled.

7.1. Using VISR standalone renderers 37

VISR User documentation

* client: Name of an external jack client to use as output for our top level component (es.
“system”)

* portname: Common name for all external jack client output ports

* indices: List of port numbers that together with :code:‘ portname‘ describe existing
external jack client output ports. It is possible to use Matlab’s colon operator to express a
list of numbers.

Simple Example

This configuration example shows how to auto-connect the Jack input and output ports of an application to the
default jack client (system), specifying which range of ports to connect.

{
"clientname": "BaseRenderer",
"autoconnect" : "true",
"portconfig":
{
"capture":
{

"port":
[{ "externalport" : {"indices": "1:4"} }]

},
"playback":
{

"port":
[{ "externalport" : {"indices": "5:8"} }]

}
}

}

Fig. 1: Jack audio complex configuration example.

38 Chapter 7. Using VISR

VISR User documentation

Complex Example

Follow a more complex example where auto-connection of ports is performed specifying different jack clients and
the ranges of ports to be connected are described both for the top level component and for external clients.

{
"clientname": "VisrRenderer",
"servername": "",
"autoconnect" : "true",
"portconfig":
{
"capture":
{

"autoconnect" : "true",
"port":
[

{
"basename" : "Baseinput_" ,
"indices": "0:1",
"externalport" :
{

"client" : "REAPER",
"portname": "out",
"indices": "1:2"

}
},
{
"basename" : "Baseinput_" ,
"indices": "2:3",
"externalport" :
{

"indices": "4:5"
}

}
]

},
"playback":
{

"autoconnect" : "true",
"port":
[{

"basename" : "Baseoutput_" ,
"indices": "0:1",
"externalport" :
{
"client" : "system",
"portname": "playback_",
"indices": "4:5"

}
}]

}
}

}

7.1. Using VISR standalone renderers 39

VISR User documentation

Fig. 2: Jack audio complex configuration example.

7.2 Using VISR with Python

7.3 Using VISR audio workstation plugins

7.4 Using Max/MSP externals

40 Chapter 7. Using VISR

CHAPTER

EIGHT

EXTENDING VISR

In this part we describe how to use the VISR framework to implement new functionality, i.e., functionality that is
not contained in the existing components or standalone renderers. This part is basically an extended version of the
tutorial presented in

8.1 Creating signal flows from existing components in Python

8.2 Writing atomic functionality in Python

8.3 Implementing atomic components in C++

8.4 Creating composite components in C++

41

VISR User documentation

42 Chapter 8. Extending VISR

CHAPTER

NINE

OBJECT-BASED AUDIO WITH VISR

9.1 Overview

Although the VISR framework is deliberately application-agnostic, it is well-suited for working with spatial and
object-based audio.

9.2 The VISR object model

9.3 Predefined object-based rendering primitives and renderers

9.4 Object-Based Reverberation

43

VISR User documentation

44 Chapter 9. Object-Based Audio with VISR

CHAPTER

TEN

VISR COMPONENT REFERENCE

10.1 Standard rendering component library

10.2 Binaural synthesis toolkit

10.3 Dynamic range control library

45

VISR User documentation

46 Chapter 10. VISR component reference

CHAPTER

ELEVEN

OLD CONTENTS

11.1 Examples

11.2 Tutorials

The contents of these files will be removed or moded to other parts of the documentation.

47

	About
	Getting started with the VISR framework: Overview
	Python integration

	Basic tutorial
	People
	Getting VISR
	Download
	Installing VISR
	Windows
	Mac OS X
	Linux

	Installation components
	Setting up Python
	Python distribution
	Configuration

	Verifying the installation
	Testing a standalone application

	Source Code
	Support and help

	VISR principles
	Component-Based Audio processing
	VISR as a Rendering Framework
	Realtime and Offline Processing
	Prototyping versus mature signal processing code

	Using VISR
	Using VISR standalone renderers
	Using standalone applications

	Using VISR with Python
	Using VISR audio workstation plugins
	Using Max/MSP externals

	Extending VISR
	Creating signal flows from existing components in Python
	Writing atomic functionality in Python
	Implementing atomic components in C++
	Creating composite components in C++

	Object-Based Audio with VISR
	Overview
	The VISR object model
	Predefined object-based rendering primitives and renderers
	Object-Based Reverberation

	VISR component reference
	Standard rendering component library
	Binaural synthesis toolkit
	Dynamic range control library

	Old contents
	Examples
	Tutorials

