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ABSTRACT

In this paper, we propose a weighted loss function for monau-
ral source separation using recurrent neural networks where
appropriate training data for the original sources are avail-
able. The weight varies for each time-frequency instance
according to the mutual dominance of the binaural source
signals. The mutual dominance is computed by the mul-
tiplications of the inverse source-to-mixture ratios of the
ground truth signals of the two sources, and the weights
are obtained by appropriate scaling of the mutual domi-
nance. The squared error between the target and the esti-
mated becomes more important as the difference becomes
larger. The proposed weighting is applied to one of the con-
ventional monaural source separation techniques that ex-
ploits recurrent neural networks, and showed improved per-
formances over the same dataset.

1. MONAURAL SOURCE SEPARATION USING
RECURRENT NEURAL NETWORKS

Monaural source separation has been regarded as one of the
most difficult tasks among many different kinds of signal
processing applications. However, with the help of recent
advancement in recurrent neural networks (RNNs), many
promising results have been made to the problem [1, 2].
The problem that we are dealing with is not blind, because
some amount of labeled training data that reflects the char-
acteristics of target source is required to train the RNN. We
propose a weighted loss function that varies the weight on
each time-frequency instance according to the difference in
power spectral density. The baseline source separation net-
work architecture adopted in this paper is based on [2].

2. LOSS FUNCTION WEIGHTING

One of the most general loss function between the given
ground truth and the approximate signals is the mean-squared
error (MSE) over all the time and frequency units in the
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power spectral domain. More specifically, sum of the error
between y1 and ỹ1, and between y2 and ỹ2, where y1 and
y2 are the short-time Fourier transforms (STFTs) of the time
domain input, which can be computed as following formula:

JMSE =
1

TF

T∑
t=1

F∑
f=1

∆(t, f) , (1)

where T and F are the numbers of time frames and fre-
quency bins, respectively, and ∆(t, f) is the sum of the dif-
ference between ground truth and network outputs given as:

∆(t, f) = |y1,t(f)− ỹ1,t(f)|2 + |y2,t(f)− ỹ2,t(f)|2 . (2)

The loss function in Equation 1 applies the same amount
of importance for all of the time-frequency units. However,
imposing different weight to each unit based on their im-
portance in describing individual source signals can lead to
better learning of the networks.

Our assumption is that if one signal is dominant to the
other when they are mixed, it is more efficient in describing
the corresponding source. The dominance of source 1 is
defined by the ratio of source 1 to the sum of source 1 and 2
in the power spectral domain as follows:

γi(t, f) =
|yi,t(f)|

|y1,t(f) + y2,t(f)|
, i = {1, 2} . (3)

The relationship between the dominance for source 1 and
source 2 is, γ2 ' 1− γ1. If we multiply the two dominance
factors to consider both sources, γ1γ2 ' γ1(1−γ1), is max-
imum at γ1 = γ2 = 0.5. However, our assumption is that
the importance should be proportional to the dominance, so
we define a mutual dominance factor by the multiplication
of the inverse of the individual dominance values:

γmutual(t, f) =
1

γ1(t, f)

1

γ2(t, f)

=
|y1,t(f) + y2,t(f)|2

|y1,t(f)||y2,t(f)|
. (4)

The mutual dominance factor approaches∞ very rapidly
as either source goes to 0, that is, either γ1 or γ2 becomes
0. To make use of the mutual dominance as weight factors
to the loss function in Equation 1, we apply log function to

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).



14th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICA, Guildford, UK, 3–5 July 2018

0 0.2 0.4 0.6 0.8 1

1

0

1

2

3

4

weight(
1
)

Figure 1: Loss function weight with respect to γ1. The be-
havior near 0 and 1 becomes less steep when compared to
Equation 4, and it is linearly scaled so that minimum and
maximum weights are 1.0 and 4.0, respectively.

γmutual in Equation 4 to make it not too steep near 0 and 1,
and scale it appropriatly as follows:

w(t, f) = g (log γmutual(t, f)) , (5)

where the scale function g(·) rectifies the input at 90 per-
centile and scales the value linearly in [wmin wmax]. The
statistics of log γmutual(t, f) is obtained by the training data
of the source separation RNN.

Figure 1 shows the weight values with respect to source
1 dominance γ1. The weight becomes roughly two times
when γ1 = 0.9 or 0.1, and maximum when γ1 > 0.99 or
γ1 < 0.01. We apply the weight in Equation 5 to the loss
function Equation 1 to obtain a new weighted loss function:

JwMSE =
1

TF

T∑
t=1

F∑
f=1

w(t, f)∆(t, f) . (6)

3. EXPERIMENTAL RESULTS

To show the effectiveness of the proposed method, we car-
ried out source separation experiments on MIR-1K dataset [3].
It is composed of 1,000 sound clips from 110 songs by 19
Chinese amateur singers. The sound files are stereo record-
ings, with left channels music accompaniment and right chan-
nels singing voice. We used one male and one female (‘ab-
jones’ and ‘amy’) for training and development set, and
recordings of the remaining 17 singers as test set. The per-
formance was evaluated by GNSDR (global normalized source
to distortion ratio), GSIR (global source to interference ra-
tio), and GSAR (global source to artifact ratio) measures
in BSS-EVAL 3.0 metrics [4]. To construct input to the
RNNs, we generated sum of each pair of stereo sound files,
y1+2[n] = y1[n] + y2[n], applied 1024-point STFT with
25% overlap, extracted magnitude spectrum yt, and con-
catenated the previous and the next frames:

xt = [yt−1 yt yt+1] . (7)

The separation network is a stacked RNN with 3 layers,
and the number of hidden nodes in each layer was 1024.

base- wmax

Metric line 5.0 10.0 15.0 20.0 25.0
GNSDRm 5.7 5.8 5.9 5.9 5.8 5.7
GSIRm 12.6 12.4 12.2 12.4 11.8 12.2
GSARm 7.3 7.5 7.6 7.6 7.7 7.5
GNSDRv 5.5 5.6 5.7 5.7 5.6 5.6
GSIRv 12.1 12.4 12.8 12.6 12.8 12.5
GSARv 7.4 7.4 7.4 7.4 7.3 7.3
Average 8.43 8.52 8.60 8.60 8.50 8.47

Table 1: Separation performance comparison in terms of
BSS-EVAL 3.0 metrics.

Training parameters are: batch size 128, Adam optimizer
with learning late 10−4, and the number of learning steps
30,000. The evaluation results are shown in Table 1. First
column lists the used metrics. GNSDRm and GNSDRv

are the measured GNSDRs for music and voice sources, re-
spectively. The other two metrics, GSIR and GSAR, are
computed for both music and voice sources as well. ‘base-
line’ is the RNN with the unweighted loss function in Equa-
tion 1, and the last 5 columns are from RNNs with the pro-
posed weighted loss function in Equation 6, with the maxi-
mum weights (wmax) vary from 5.0 to 25.0. The minimum
weights (wmin) are all fixed to 1.0. The proposed method
outperformed the baseline except GSIRm, by 0.04 to 0.17
improvements on the average over the baseline method.
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