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ABSTRACT

Approximate orthogonal/unitary diagonalization of matri-
ces and tensors is at the core of many source separation al-
gorithm. We consider a family of Jacobi-type algorithms for
approximate diagonalization (including the JADE and CoM
algorithms). We report recent results on local and global
convergence of these algorithms.

1. INTRODUCTION

Diagonalization of cumulant tensors or covariance matrices
by orthogonal transformations are at the core of classic al-
gorithms for blind source separation [1]. Several algorithms
proposed in the literature perform approximate diagonaliza-
tion by successive Jacobi rotations. The first were the Jacobi
CoM (Contrast Maximization) algorithm for orthogonal di-
agonalization of 3rd and 4th-order real symmetric (cumu-
lant) tensors [2, 3] and the JADE (Joint Approximate Di-
agonalization of Eigenmatrices) algorithm for simultaneous
orthogonal/unitary (covariance) matrix diagonalization [4].
An algorithm for simultaneous orthogonal 3rd-order tensor
diagonalization was proposed in [5], that can be applied to
slices of 4th order cumulant tensors.

Jacobi-type algorithms are very attractive due to the fact
that Jacobi rotations can be computed by rooting low-order
polynomials, thus the iterations are very fast. Nevertheless,
to our knowledge, the convergence of these methods was
not proved, although it was often observed in practice.

In the recent paper [6] the real case was considered, and
several modifications of the classic cyclic Jacobi algorithm.
The first modification is the gradient-based order of Jacobi
rotations proposed initially in [7] for best low multilinear
rank approximation of 3rd-order symmetric tensors. The
second modification proposed in [6] is an algorithm of prox-
imal type. For both modifications local and global conver-
gence properties were proved in [6]. In this note, we sum-
marize the results of [6] for the gradient-based algorithm
and discuss extension of [6] to the complex-valued case.

2. ORTHOGONAL DIAGONALIZATION

Let {A(`) : 1 ≤ ` ≤ m} ⊂ Rn×···×n be a set of symmetric
tensors. We wish to maximize

Q∗ = arg max
Q∈SOn

m∑
`=1

‖ diag{W(`)}‖2, (1)

where W(`) = A(`) •1 QT · · · •dQT for 1 ≤ ` ≤ m, •k
is the k-mode product and SOn is the special orthogonal
group. Problem (1) has the following special cases:

• tensor diagonalization if m = 1, d > 2;

• simultaneous matrix diagonalization ifm > 1, d = 2.

Let G(i,j,θ) ∈ Rn×n be the Givens rotation matrix

(G(i,j,θ))k,l =



1, k = l, k 6∈ {i, j},
cos θ, k = l, k ∈ {i, j},
sin θ, (k, l) = (j, i),

− sin θ, (k, l) = (i, j),

0, otherwise

for 1 ≤ k, l ≤ n. The classic Jacobi algorithm is based on
the successive Jacobi rotations.

Algorithm 1 (Jacobi-C algorithm) Input: Point Q0.
Output: Sequence of iterations {Qk}k≥1.

• For k = 1, 2, . . . [until ...] do

• Choose the pair (ik, jk) according to the cyclic
pair selection rule:

(1, 2)→ (1, 3)→ · · · → (n− 1, n)→ · · · (2)

• Compute the angle θ∗k that maximizes the function

hk(θ)
def
= f(Qk−1G

(ik,jk,θ)). (3)

• Set Uk
def
= G(ik,jk,θ

∗
k), and update Qk = Qk−1Uk.

• End for
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Special cases of algorithm 1 include the CoM algorithm
[2, 3] and JADE [4] (in the real-valued case), and STOTD
[5]; In all these cases the function (3) can be maximized by
rooting a polynomial of order at most 4.

In every iteration the cost function increases, and due to
compactness of SOn, the sequence of cost function values
f(Q1), f(Q2), . . . is nondecreasing and has a limit point.
Nevertheless, the following remarks should be made. First,
the sequence Q1,Q2, . . . is not guaranteed to converge to a
single point (which is desirable for identifiability in source
separation), and potentially may evolve cyclicly. Second,
even if a convergent subsequence is extracted, the subse-
quence is not guaranteed to converge to a stationary point.
It is difficult to study these properties for the cyclic Jacobi
algorithm, and we prove them for two modifications instead.

3. GRADIENT-BASED JACOBI ALGORITHM

The first modification was proposed in [7]. Following [7,
Lemma 5.1], we define the projected gradient as

Proj∇ f(Q)
def
= QΛ(Q), (4)

where Λ(Q)
def
=

QT∇f(Q)− (∇f(Q))TQ

2
(5)

and ∇f(Q) is the Euclidean gradient of f . The idea of [7],
is to a choose pair (i, j) at each iteration that satisfies

|〈Proj∇ f(Q), di,j(Q)〉| ≥ ε‖Proj∇ f(Q)‖, (6)

where ε is a constant and di,j(Q) = Q∂G(i,j,θ)

∂θ |θ=0. Condi-
tion (6) ensures that the rotations are well-aligned with the
gradient.

Algorithm 2 (Jacobi-G algorithm) Input: A small posi-
tive 0 < ε ≤ 2

n , a starting point Q0.
Output: Sequence of iterations {Qk}k≥1.

• For k = 1, 2, . . . [until ....] do

• Choose (i, j)=(ik, jk) satisfying (6) at Q = Qk−1.

• Compute the angle θ∗k that maximizes the function
hk(θ) defined in (3).

• Set Uk
def
= G(ik,jk,θ

∗
k), and update Qk = Qk−1Uk.

• End for

The following convergence properties can be proved.

Theorem 1 ( [7, Theorem 5.4], [6, Theorem 3.3]) Every ac-
cumulation point1 Q∗ of {Qk}k≥1 produced by algorithm 2
is a stationary point of f (i.e, Proj∇ f(Q∗) = 0).

Theorem 2 ( [6, Theorem 5.6]) For d = 2, 3 and any Q0,
Algorithm 2 converges to a stationary point of f in SOn.

Theorem 2 was proved in [6] by employing the Lojasiewicz
gradient inequality.

1i.e., the limit of every convergent subsequence.

4. DISCUSSION

In [6] the global convergence of two Jacobi-type algorithms
(Algorithm 2 and an algorithm of proximal type) was proved
for the real-valued case. In the complex-valued case, we are
looking at a similar problem of joint diagonalization of a set
of complex Hermitian matrices, as in the algorithm of [4].
The main difficulty is that the optimal Jacobi rotations are
no longer univariate, and are similar to subspace optimiza-
tion subproblems. Our preliminary results indicate that we
can still define an analogue of Algorithm 2 and prove an
analogue of Theorem 1, but the global convergence (an ana-
logue of Theorem 2) seems more challenging.
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