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ABSTRACT

Since its initial release in 2013, Tensorlab has evolved into a
powerful Matlab toolbox for the analysis of tensors and the
computation of tensor decompositions. This upcoming re-
lease of Tensorlab, version 4.0, widens the applicability of the
toolbox to a larger range of real-world applications. New β-
divergence and low-rank weighted least squares (WLS) cost-
functions are introduced for the canonical polyadic decompo-
sition (CPD), offering higher flexibility to the user. Further,
updating algorithms for the CPD allow both the tracking of
streaming data and the incremental computation of the CPD
of a large tensor. An LS-CPD algorithm is included to com-
pute the CPD of a tensor that is only implicitly available as
the solution of an underdetermined linear system.

1. TENSORLAB 3.0

The current 3.0 version of Tensorlab [1] (available online at
www.tensorlab.net), features a large range of methods
for the manipulation, analysis and visualization of tensors,
as well as algebraic and optimization-based algorithms for
the computation of tensor decompositions [2]. These range
from the CPD and multilinear singular value decomposition
(MLSVD) to block term decompositions (BTD) such as the
decomposition in multilinear rank-(Lr, Lr, 1) and more gen-
eral variants. Specialized routines handle sparse, incomplete
and large-scale tensors. Structured tensors (defined implicitly
in Hankel, Löwner, CPD, or other form) are also supported,
and their structure is strongly exploited during the computa-
tion of their decompositions. Additionally, the structured data
fusion (SDF) framework provides an intuitive way to compute
structured and/or coupled decompositions of tensors. The nu-
merical philosophy behind the algorithms in Tensorlab is ex-
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plained in [3]. An extensive user guide and a series of demos
are available online.

2. NEW FEATURES IN TENSORLAB 4.0

With the upcoming release of version 4.0 of Tensorlab, its
functionality will again be increased significantly. One of the
main new features is the increased flexibility for computing
the CPD of a tensor. The CPD of a tensor decomposes a rank-
R tensor T ∈ RI×J×K as a linear combination of R rank-1
terms: T =

∑R
r=1 ar ⊗ br ⊗ cr = JA,B,CK with ⊗ the

outer product of vectors, A = [a1 . . .aR] ∈ RI×R, and sim-
ilarly for B and C. A wider range of cost functions will be
supported by allowing β-divergence and WLS cost functions.
Additionally, incremental computation of the decomposition
will become possible with CPD updating which will allow
both the tracking of a CPD in real-time as well as the piece-
wise computation of the CPD of a large tensor. Furthermore,
one will be able to compute the CPD of a tensor that is only
available as the solution of a linear system of equations with
the new LS-CPD algorithm.

2.1. β-divergence cost functions for the CPD

Tensorlab 3.0 only uses the Euclidean distance as metric for
the cost function when approximating a tensor. This leads
to good results in a lot of applications, but there are numer-
ous situations in which the choice of a different metric can
be beneficial. The Euclidean distance can be generalized to
the family of β-divergences, where β is a parameter. This
more general family of cost functions allows tensors to also
be used for the analysis of for example counts, concentrations
and spectra, for which the Euclidean distance may yield infe-
rior results [4]. It includes, aside from the Euclidean distance
(β = 2), a whole range of divergences of which the well-
known Kullback–Leibler (KL) and Itakura–Saito (IS) diver-
gences, with β = 1 and β = 0 respectively, are also part. The
first- and second-order optimization algorithms for the CPD
in Tensorlab were generalized so that they also support these
β-divergence cost functions.

2.2. Low-rank WLS cost functions for the CPD

When using standard least squares cost functions to compute
the CPD of a tensor, one inherently assumes that the residuals
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have equal variances and are uncorrelated. These assump-
tions may not hold in practice, however, for example when
sensors of different quality are used in array processing appli-
cations. It therefore makes sense to assign different weights
to the different residuals of the decomposition and take their
correlation into account. Using a full weight tensor would be
too computationally demanding, but a low-rank weight ten-
sor can already offer much more flexibility compared to stan-
dard least squares (where the weight tensor is rank-1, with
vectors a,b, c of which all entries are equal to 1 in the third-
order case) while its CPD structure can be exploited during
the computations. This leads to the following low-rank WLS
cost function for the CPD of a tensor T in the third-order case:

min
A,B,C

1

2
‖JX,Y,ZK ∗ (JA,B,CK− T )‖2F ,

where JX,Y,ZK is a low-rank approximation of the weight
tensorW . Note thatW and T can have different rank. Ten-
sorlab 4.0 offers first- and second-order optimization algo-
rithms to efficiently compute a CPD of a tensor in the WLS
sense with a low-rank weight tensor [5].

2.3. CPD updating

Batch tensor methods can easily become too slow to continu-
ally recompute a CPD of a tensor when new data is added to or
removed from the tensor. Also, for very large tensors, storing
the full tensor to be decomposed can already be problematic.
CPD updating methods solve these problems by applying ef-
ficient updates to a previously computed CPD instead of re-
computing the entire decomposition when new data is added
to the tensor [6, 7]. In Tensorlab, the structure of the decom-
position is exploited to achieve fast updates for the CPD when
new slices are added to the tensor in certain modes [3, 6]. In
addition, only the previous CPD and the new tensor slices
have to be stored in every updating step. This enables both the
tracking of the CPD of a fast-changing tensor and the piece-
wise computation of the CPD of a large tensor.

2.4. LS-CPD

Algebraic and first- and second-order optimization-based al-
gorithms have been added to Tensorlab to compute the CPD
of tensors that are only available as the solution of a system
of equations [8]. These problems can for instance appear in
tensor-based classification, or signal processing applications
such as blind deconvolution of constant modulus signals. In
the third-order case, one tries to find A, B, and C, such that

Mx = p, with x = vec(JA,B,CK),

where vec(.) denotes the vectorization of a tensor. The algo-
rithms exploit the structure of x to directly obtain the factor
matrices of the CPD, while being computationally efficient.
This is especially beneficial when the system to be solved is
(highly) underdetermined.

3. CONCLUSION

Tensorlab 4.0 will introduce a number of new algorithms that
widen its applicability significantly. The focus of this release
lies on the generalization of the CPD algorithms so that they
offer a wider range of cost functions and can be used when
the tensor to decompose is not static or is only given as the
solution of a linear system.
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