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Hybrid Skeletal-Surface Motion Graphs for Character
Animation from 4D Performance Capture

PENG HUANG, MARGARA TEJERA, JOHN COLLOMOSSE, and ADRIAN HILTON
University of Surrey

We present a novel hybrid representation for character animation from 4D
Performance Capture (4DPC) data which combines skeletal control with sur-
face motion graphs. 4DPC data are temporally aligned 3D mesh sequence
reconstructions of the dynamic surface shape and associated appearance
from multiple-view video. The hybrid representation supports the produc-
tion of novel surface sequences which satisfy constraints from user-specified
key-frames or a target skeletal motion. Motion graph path optimisation con-
catenates fragments of 4DPC data to satisfy the constraints while maintain-
ing plausible surface motion at transitions between sequences. Space-time
editing of the mesh sequence using a learned part-based Laplacian surface
deformation model is performed to match the target skeletal motion and tran-
sition between sequences. The approach is quantitatively evaluated for three
4DPC datasets with a variety of clothing styles. Results for key-frame an-
imation demonstrate production of novel sequences that satisfy constraints
on timing and position of less than 1% of the sequence duration and path
length. Evaluation of motion-capture-driven animation over a corpus of 130
sequences shows that the synthesised motion accurately matches the target
skeletal motion. The combination of skeletal control with the surface mo-
tion graph extends the range and style of motion which can be produced
while maintaining the natural dynamics of shape and appearance from the
captured performance.
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Dimensional Graphics and Realism—Animation
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1. INTRODUCTION

Motion Capture (MoCap) has become a fundamental tool for au-
thoring of 3D character animation for games and film. MoCap
technology provides a convenient way to retarget human skeletal
motion to characters, conveying a sense of movement realism that
is both difficult and labour-intensive to animate manually. However,
skeletal MoCap does not capture surface dynamics; it cannot cap-
ture wrinkles in clothing or the motion of hair. These performance
details are critical to realism, but are still created manually within
character models by highly skilled artists and animators.

Recently, 4D Performance Capture (4DPC) has been introduced
to capture shape, appearance, and motion of the human body from
multiview video. The outcome of 4DPC is a sequence of recon-
structed 3D meshes capturing detailed surface dynamics plus as-
sociated video that can be projected onto the mesh to achieve
video-quality realism. Furthermore, 4DPC meshes have temporally
consistent vertices and topology, making them compatible with tra-
ditional animation pipelines. By simultaneously capturing both mo-
tion and appearance, 4DPC offers unique advantages over skeletal
MoCap for the capture of 3D character models. However, there is
limited tool support and limited reusable capture data available to
enable the use of 4DPC models in character animation.

This article addresses these limitations, presenting a novel data-
driven approach for animating 4DPC character models. We make
the following technical contributions.
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First, we describe Surface Motion Graphs (SMGs): a representa-
tion and optimisation algorithm for creating novel animations from
4DPC. Animations are formed through concatenative synthesis: the
seamless joining of captured performance fragments to produce
new movements. The concept is analogous to Kovar et al.’s [2002]
skeletal motion graphs that enable new movements to be sequenced
from skeletal MoCap. However, a surface motion graph considers
consistency of both surface shape as well as, implicitly, the pose.
We describe both the construction of the surface motion graph and
an optimisation algorithm that can incorporate high-level user con-
straints on timing, position, and motion to synthesise high-quality
animated sequences. This extends earlier research on surface motion
graphs [Starck et al. 2005; Huang et al. 2009] which used unaligned
mesh sequences and required manual graph construction. In this
article, 3D mesh sequences are first nonrigidly aligned [Budd et al.
2012] to produce a temporally coherent 4D sequence. This allows
surface motion graph representation with smooth transitions be-
tween sequences and modification of the original motion using a
learned deformation space.

Second, we describe a new algorithm to enable the use of skeletal
MoCap data to drive the creation of animations under our surface
motion graph framework. As an established technology, skeletal
MoCap data is cheap and easy to obtain, whereas 4DPC data is
currently scarce and reconstruction times are lengthy. We describe
a pose retrieval technique for matching MoCap data to skeletal
pose inferred from 4DPC. Spatio-temporal editing is applied to
retrieved mesh sequences to accurately match the target motion
using a learned part-based Laplacian surface deformation model
which preserves the shape and motion characteristics of the 4DPC
data. The ability to drive a high-fidelity 4DPC character model with
readily available libraries of skeletal MoCap data extends the range
of motion which can be produced and promises to accelerate the
uptake of 4DPC for animation production.

A supplementary video, showcasing the animations produced by
our system, accompanies this submission.

2. RELATED WORK

Our concatenative approach to character animation falls squarely
within the domain of example-based synthesis (EBS). EBS was in-
troduced in speech to allow reproduction of natural speech from a
corpus of recorded spoken audio fragments [Hunt and Black 1996].
Subsequently EBS was exploited in computer graphics to reuse
and modify video sequences. Bregler et al. [1997] introduced video
rewrite to create a novel video of a person speaking by retriev-
ing and concatenating mouth images from a training set via audio
cues. Similarly, Ezzat and Geiger [2002] presented an audio-driven
visual-speech animation system which also parametrises the mouth
images, enabling generalisation beyond captured video frames us-
ing a morphable model.

Schödl et al.’s [2000] video textures extended video EBS to be
driven for the first time by visual cues. They demonstrated the
synthesis of perpetually realistic videos by copying and rearranging
frames from a single source video. The video is modelled as a
Markov process with each state corresponding to a single frame and
the probabilities corresponding to the likelihood of transitions from
one frame to another. These likelihoods are computed as frame-
to-frame image similarities over a short temporal window. Later,
Schödl and Essa [2002] extended this work to create character
animations of a moving object, or video sprite, cropped from the
video. In their work, a cost function was introduced to afford the
user a degree of control over the final animation. However, complex
or highly structured phenomena, such as 3D articulated full-body

human motion, cannot be synthesised convincingly using a purely
2D video-based concatenative synthesis approach.

Kovar et al. [2002] construct a directed graph on skeletal mo-
tion capture sequences, referred to as a motion graph, where edges
correspond to segments of motion and nodes identify connections
between them. Motion segments include original motions and tran-
sition motions generated by blending segments together. Distances
between pairs of frames are computed in pose space to determine if
a transition is possible using a fixed similarity threshold. Synthesis
is performed by finding an optimal graph walk that satisfies user-
defined constraints. Gleicher et al. [2003] enhanced this approach
for game applications by allowing a designer to interactively edit
the graph structure.

Lee et al. [2002] extended the motion graph representation to a
two-layer graph structure encoding possible links between different
frames, which allows efficient search and interactive control. The
similarity metric is again based on skeletal pose, but in terms of
joint angles and velocities rather than spatial position of limbs as
in motion graphs [Kovar et al. 2002]. Choice-based, sketch-based,
and performance-based interfaces are demonstrated for interactive
control of character motion. Similarly, Arikan and Forsyth [2002]
employed a directed graph to connect motion segments where each
node corresponds to a motion sequence and each edge a transition.
Their similarity metric measures the distance between two frames
in terms of the differences between corresponding joint positions
and velocities, plus whole body velocities and accelerations. Hard
and soft constraints, such as motion duration, or body position and
orientation at a particular frame, are defined and a hierarchical
randomised search, is used to generate motions. In Arikan et al.
[2003] interactive motion annotation allows the user to include or
exclude motion portions along the time line.

These approaches synthesise skeletal human motion successfully
but, since skeletal MoCap does not capture nonrigid surface motion,
they cannot reproduce detailed surface dynamics with the realism
achievable by 4DPC. Our system extends the concept of a directed
graph over skeletal MoCap to 4DPC surface capture data. Similarity
is determined using 3D volumetric shape descriptors which were
previously shown to achieve good performance for retrieval on 3D
performance capture data [Huang et al. 2010]. To ensure accurate
matching of both shape and appearance, the volumetric descriptor
is extended in this work to include surface colour information. The
use of motion graphs for animation from surface sequences was
first introduced in Starck et al. [2005] but required manual graph
construction. Huang et al. [2009] addressed automatic SMG con-
struction based on shape similarity, allowing animation synthesis by
concatenation of unaligned mesh sequences without video textures.
In this work we present a complete framework for SMG representa-
tion and animation synthesis of shape and appearance from tempo-
rally aligned 4DPC data. Novel algorithms are proposed for graph
construction and path optimisation for motion planning according
to user-specified key-frame constraints or matching a target skeletal
motion. This greatly extends the flexibility of animation, range of
motion, and visual quality over previous SMG-based animation.

A further contribution of our system is content synthesis in one
domain (4DPC) driven by motion from another (skeletal MoCap).
In prior EBS work, transfer between the skeletal MoCap and 2D
video domains has been explored. Hornung and Dekkers [2007] pre-
sented a method to animate photos of 2D characters using skeletal
MoCap. Given a single image of a person or essentially human-
like subject, the motion of a 3D skeleton is transferred onto the
subject’s 2D shape in the image space, generating a realistic move-
ment. They reconstruct a projective camera model and a 3D model
pose that best matches the given 2D image. A 2D shape template is
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Fig. 1. Overview of the proposed 4DPC character animation pipeline (Section 3).

then fitted onto the character in the input image to drive the defor-
mation according to projected 3D motion data. Flagg et al. [2009]
also exploited the combination of 2D video and skeletal MoCap to
generate controllable animations of human performance. 2D video
and MoCap data are first synchronised and a video graph is then
constructed to represent transitions between motion segments. The
synthesis is performed via a random walk on the graph. The skele-
ton associated with each frame is used to blend images to create
seamless transitions. Since this approach requires skeletal MoCap,
the synthesis contains markers and is limited to human motions in
tight clothing. James et al. [2007] proposed mesh ensemble motion
graphs for interactive data-driven animation of dynamic mesh en-
sembles. This approach is focused on motion graph techniques for
animating collections of objects. Integer programming is used to op-
timise asynchronous transitions to avoid mesh inter-penetration. In
this article we also exploit integer programming for graph path op-
timisation, allowing optimisation of the number of loops for cyclic
motions.

Xu et al. [2011] recently introduced an approach to synthesise 2D
video sequences of human motion under user-defined motion and
viewpoint constraints by sampling from a 4DPC database. They first
exploit video-based skeletal performance capture [Gall et al. 2009]
to acquire a database of an actor performing different motions, then
retrieve similar frames in a database using pose similarity, and fi-
nally adopt a warping strategy in the 2D rendered view to synthesise
video of novel motions. In this article, we present a framework to
synthesise full 3D character animation from captured 4DPC data
allowing free-viewpoint rendering and flexible user control of the
character motion.

Previous research has also addressed example-based parametric
motion control to increase the range of motion. Heck and Gleicher
[2007] introduced parametric motion graphs allowing real-time in-
teractive character control based on parameterisation of skeletal
motion. Skeletal motion sequences of related motions are parame-
terised by interpolating between the sequences in joint angle space
for example, parameterisation of a walk and run sequence according
to speed and direction. The parametric motion graph representation
enables transition between multiple parameterised motion spaces to
synthesise novel animation sequences. Recent research [Casas et al.
2013] has investigated parametric control from example sequences
of 4DPC data. Interactive character animation with multiple motion

classes is demonstrated using a 4D parametric motion graph. This
approach allows animation from 4DPC but is limited to interpo-
lation between example surface motion sequences. The approach
presented in this article extends the range of motion outside the
range of captured motions by using skeletal MoCap sequences to
drive the animation while maintaining plausible surface deforma-
tion using a learned model. Previous work on space-time editing of
mesh sequences [Tejera et al. 2013] used a learned global model
to represent the surface shape which was restricted to reproducing
poses similar to those in the captured motion. This article extends
the range of motion by introducing a learned part-based model to
represent the surface deformation, which enables flexible animation
of novel poses and motions outside the 4DPC data.

3. CHARACTER ANIMATION PRODUCTION

Our character animation system processes 4D performance capture
(4DPC) data through the pipeline presented in Figure 1.

4DPC Reconstruction. The first stage is data capture, in which
synchronised HD video from multiple views is first captured with
eight calibrated cameras. The cameras are spaced equally around
a circle of 8 meters in diameter, at a height of 2.4 meters above
the studio floor. A volumetric visual hull [Laurentini 1994] is com-
puted from the silhouette of the performer in each view, obtained
via chroma-key. Geometric detail is improved in the resulting mesh
through stereo surface refinement — full details of these 3D recon-
struction steps are reported in Starck and Hilton [2007]. The process
yields an unstructured 3D mesh sequence in which meshes are not
temporally consistent. Finally, global temporal registration [Budd
et al. 2012] is used to obtain a single deformable mesh model for the
captured performance, thus establishing temporal correspondence
of vertices between meshes. The global alignment automatically
aligns across a database of multiple sequences. This collection of
aligned sequences is referred to as the 4DPC database. Our system
is able to combine frames from a 4DPC database to synthesise new
character animations.

Skeleton Extraction. To facilitate later retargeting of skeletal Mo-
Cap to the 4DPC sequence, we must estimate a skeletal pose for
each frame. On a single frame, mesh vertices are manually marked
to indicate the body parts to which they belong. Since after global
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Fig. 2. Skeleton extraction. The user manually identifies different body
parts on a single mesh. Vertex correspondence propagates markup to other
frames, enabling extraction of a skeletal pose.

temporal registration all meshes share the same connectivity, this
markup is propagated to all other frames. For each mesh, the centre
of mass of each labelled vertex set is computed as a joint position
and aggregated to form a skeleton. Figure 2 shows an example of
a marked reference mesh, and the extracted skeletal pose for the
reference and other frames.

Character Animation Pipeline. A frame-to-frame similarity ma-
trix is first computed between all frames in the 4DPC database. For
each frame, a spherical coordinate system is established around the
mesh, and the space quantised into bins. The occupancy of each bin
is used to compute a shape histogram that can be directly compared
to those of other frames to score similarity. Adaptive temporal fil-
tering is performed on the similarity to establish potential transition
points between frames. A surface motion graph is then constructed
using these transitions (Section 4). Once the graph structure is com-
puted, character animation is produced according to user input such
as key-frames (skeleton or surface pose), global timing, and dis-
tance constraints. MoCap sequences can also be used to retrieve
similar motions from the surface motion graph. These motion plan-
ning algorithms are described in Section 5. Finally, view-dependent
4D video texture rendering [Casas et al. 2014] is used to combine
the mesh sequence with captured multiview video, resulting in a
video-realistic character animation as the final result.

4. SURFACE MOTION GRAPHS

A surface motion graph for a 4DPC database represents possible
inter- and intra-sequence transitions, analogous to motion graphs
[Kovar et al. 2002] for skeletal motion capture sequences.

4.1 6D Shape-Colour Similarity

To identify potential transitions, we must measure the similarity
of each frame within the 4DPC database. To make sure transitions
are seamless in terms of both geometry and appearance we use a
similarity metric considering both 3D shape and associated texture
colour. Volumetric shape histograms have previously been shown
to achieve good performance for matching 3D surface shape and
motion of performance capture sequences [Huang et al. 2010]. We
extend this to a 6D shape-colour histogram H (M) such that each
bin represents both the spatial occupancy and colour appearance
distribution for a given mesh M . We define a measure of shape-
colour dissimilarity between two meshes Mr and Ms by optimising
for the maximum overlap between their corresponding radial bins
with respect to rotation about the vertical axis.

c(Mr, Ms) = min
φ

‖H (Mr ) − H (Ms, φ)‖. (1)

The shape-colour histogram H (M) partitions the space that contains
a 3D object into disjoint cells and counts the number of occupied
voxels falling into each bin, together with their RGB colour distribu-
tion, to construct a 6D histogram as a signature for the object. The

Fig. 3. An illustration of the shape-colour histograms.

space is represented in a spherical coordinate system augmented
with an RGB colour space (r, θ, φ, R, G, B) located around the
object’s centre of mass. The number of bins for each dimension is
chosen as (5, 10, 20, 10, 10, 10) respectively throughout this work.
The Earth Mover’s Distance (EMD) [Rubner et al. 1998] is used
to compute the distance between the sparse 6D shape-colour his-
tograms due to its suitability for use in high-dimensional sparsely
occupied spaces. Eq. (1) is minimised by extending the compu-
tationally efficient approach for comparing 3D shape histograms
[Huang et al. 2010] to the 6D space: a fine histogram is generated
initially at an order of magnitude higher resolution than the desired
vertical bin size; the fine histogram is then shifted by the fine bin size
and rebinned to a coarse histogram for comparison. An illustration
of the 6D shape-colour histogram is shown in Figure 3.

4.2 Transitions

A transition of the surface motion graph Si→j = {Mi→j (t)} from
a 4DPC video sequence Si = {Mi(t)} to another 4DPC video se-
quence Sj = {Mj (t)} is defined as an overlap of Si and Sj . If we
denote m, n as the central indices for the overlap, the length of
overlap as 2L + 1, the blending weight for the kth transition frame
is computed as α(k) = k+L

2L
, k ∈ [−L, L]. The kth transition frame

Mi→j (tk) = G(Mi(tm+k), Mj (tn+k), α(k)) will be generated by a
nonlinear blend described in Section 4.4.

Since the quality of a transition is determined by the distortion
of blended to the original sequences, an optimal transition can be
identified as the transtion which minimises this distortion. However,
blended frames Mi→j (t) cannot be generated before transitions are
identified, that is, Mi→j (t) is unknown. We approximate the distor-
tion as the weighted 6D shape-colour dissimilarity (Eq. (1)) between
frame Mi(t) and Mj (t), which are known. The distortion measure
of a transition frame Mi→j (tk) is defined as follows,

d(Mi→j (tk)) = α′(k) · c(Mi(tm+k), Mj (tn+k)), (2)

where m, n are the central indices for the overlap and α′(k) =
min(1 − α(k), α(k)). The total distortion for a transition sequence
Si→j is then computed as the sum of the distortion of all transition
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Fig. 4. An example of static similarity matrix and identified transitions on temporal filtered similarity matrix for Character1between 4DPC mesh sequences
of four motions “Jog”, “Jog2Walk”, “Walk” and “Walk2Jog”.

frames,

D(Si→j ) =
L∑

k=−L

d(Mi→j (tk)). (3)

An optimal transition S
opt

i→j is then defined to minimise the dis-
tortion cost,

S
opt

i→j = arg min
Si→j

D(Si→j ). (4)

Adaptive Temporal Filtering. Each transition Si→j is determined
by a tuple (m, n, L). A frame-to-frame static similarity matrix be-
tween Si and Sj can be precomputed: the shape similarity between
rth frame Mi(tr ) from sequence Si and sth frame Mj (ts) from Sj is
measured according to Eq. (1); this precomputation is performed
only once through all frames and across all motion sequences in the
4DPC database. For simplicity, we denote the similarity matrix be-
tween Si and Sj as C = [cr,s]Nr×Ns

, where cr,s = c(Mi(tr ), Mj (ts)),
Nr , and Ns are the total number of frames for Si and Sj , respectively.
The global optimisation is then performed by testing all possible
tuples (m, n, L) and so finding optimal arguments for the minimum,

(mopt , nopt , Lopt ) = arg min
m,n,L

L∑
k=−L

α′(k) · cm+k,n+k. (5)

This equates to performing an adaptive temporal filtering with win-
dow size 2L + 1 and weighting α′(k) on the static similarity matrix
C. In practice, candidates (pairs of m and n) are limited to all local
minima of the similarity matrix and the window size is constrained
by L < 25 (overlap is limited to be less than 1 second). To obtain
multiple transitions between a pair of sequences, the top N best
transitions are preserved. N is predetermined by the user. The pro-

cess is efficient and the actual process time negligible (<100ms)
with N = 4 for a pair of sequences.

This automatic transition identification overcomes the limita-
tion of the approach presented in Huang et al. [2009] that required
switching between sequences at the central frame due to the absence
of temporal alignment. Their approach is also limited in allowing
only one transition between each pair of motion sequences. In this
work, the concatenation is performed by nonlinearly blending 3D
mesh sequences that can produce smooth transitions. Multiple tran-
sitions (top N best transitions) are allowed between each pair of
motion sequences, and the optimal window size L is computed for
each top N best transitions.

Figure 4 shows an example of the frame-to-frame similarity ma-
trix and associated transition frames (marked in yellow) evaluated
using a temporal window L = 4 and N = 4 for four different
similarity metrics: 6D shape-colour histogram; 3D shape-only his-
togram; Euclidean mesh vertex distance; and skeletal pose similar-
ity. The 6D shape-colour histogram gives the best identification of
transitions due to the use of both shape and colour information, as
illustrated by the compact clusters of transition points and absence
of transitions with large changes in appearance for similar shape.
Shape only, Euclidean vertex distance, and skeletal pose similarity
result in some lower-quality transitions with changes in appearance
that may cause visible artefacts in the rendered animation. Fur-
ther comparative evaluation of 3D shape descriptors for similarity
computation is presented in Huang et al. [2010].

4.3 Motion Graph Construction

A surface motion graph representation is defined as a directed graph,
where each node denotes a 4DPC video sequence and each edge
denotes one or multiple possible transitions. Since transitions are
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Fig. 5. An example of surface motion graph for a game character. Here,
the user tries to create a surface motion graph for a game character, and
other possible transitions, such as from “Stand2Walk” to “Walk2Stand”, are
removed.

automatically identified in Section 4.2, the graph construction is
straightforward.

(1) Initialization. Insert all 4DPC video sequences as nodes into an
empty graph.

(2) Insert transitions. If there is at least one transition from the
source 4DPC video sequence to the target, then insert a directed
edge from the corresponding source node to the target node.

(3) Modification (optional). In general, between each pair of mo-
tion sequences, if they contain similar frames, an edge exists,
but this edge may not be useful according to the user’s need. Al-
though the path optimisation will avoid them, the user can also
edit the graph to remove unwanted transition edges to refine
the graph.

Figure 5 shows an example of a surface motion graph constructed
for a 4DPC of an actor dressed as a game character.

4.4 Nonlinear Blending

Previous concatenative motion synthesis/animation methods link
different motion sequences together without any smoothing at tran-
sitions [Huang et al. 2009] as the surface correspondence is un-
known. This may result in artefacts such as sudden change in surface
shape and appearance. After global alignment, all frames share the
same 3D mesh structure, that is, vertex correspondences are known.
This section leverages this alignment to obtain smooth transitions
by nonlinear blending of temporally aligned 4DPC frames both
in geometry and appearance. This significantly reduces transition
artefacts.

Blending Geometry and Skeletal Pose. Blending for a transi-
tion 3D mesh and skeleton pair sequence Sb = {(Mb(tk), Kb(tk))}
from a source sequence Ss = {(Ms(tk),Ks(tk))} to a target sequence
St = {(Mt (tk), Kt (tk))} is performed over the optimal window length
Lopt obtained from the transition optimisation (Eq. (5)), that is,
k ∈ [−Lopt , Lopt ]. The blended mesh Mb(tk) = (B, Xb(tk)), the
source mesh Ms(tk) = (B, Xs(tk)), and the target mesh Mt (tk) =
(B, Xt (tk)) share the same mesh connectivity B. The blended skele-
ton Kb(tk) = (B ′, Jb(tk)), the source skeleton Ks(tk) = (B ′, Js(tk)),
and the target skeleton Kt (tk) = (B ′, Jt (tk)) share the same joint
connectivity B ′,

Mb(tk) = G(Ms(tk), Mt (tk), α(k)), (6)

where α(k) = k+Lopt

2Lopt denotes the blending weight. G(·) denotes
a nonlinear blend function that interpolates triangle transforma-
tions, applies them to the source mesh, and finally uses a Laplacian
editing framework to link the transformed triangles back together,
obtaining a nonlinear interpolated mesh [Tejera and Hilton 2013].

Fig. 6. Key-frame- and constraints-based graph optimisation.

The skeleton Kb(tk) is then extracted from Mb(tk) as described in
Section 3.

Blending Appearance. To better preserve the visual quality,
view-dependent rendering is implemented. For blended 3D meshes,
there are no original images, so view-dependent rendering cannot
be used directly. A solution is to first perform view-dependent tex-
ture mapping for the source and target meshes that have the original
images, respectively, and then compute optical flows between them.
Blending is then performed based on the computed flows to obtain
view-dependent texture for the blended mesh [Casas et al. 2014].

5. GRAPH OPTIMISATION

Graph optimisation is performed to find the path through the surface
motion graph that best satisfies the required animation constraints.
Constraints can be specified in two ways: as user-defined key-frames
together with timing and distance (Section 5.1); or as a query MoCap
sequence, for which a matching animation is synthesised via an
optimisation framework (Section 5.2).

5.1 Key-Frame-Based Graph Optimisation

Intermediate key-frames selected by the user provide hard con-
straints defining the desired movement. Alternatively, a series of
key-frames can be specified with the path optimisation used to eval-
uate the best path between each pair of key-frames together with
the start and end positons. Start and end key-frame locations spec-
ify the target traverse distance dV and the target traverse time tV
chosen by the user. Both target traverse distance and time are used
as soft constraints that define global constraints on the animation.
Figure 6 illustrates key-frame-based graph optimisation. We now
describe the path cost function to be optimised, before describing
the optimisation process itself. The cost function for graph path
optimisation to satisfy the constraints is described as follows.

Combined Cost. The cost function for a path P through the
surface motion graph between a pair of key-frames is formulated as
the combination of three costs: Ctran representing cost of transition
between motions, soft constraints on distance Cdist , and time Ctime,

C(P ) = Ctran(P ) + wdist · Cdist (P ) + wtime · Ctime(P ), (7)

where wdist and wtime are weights for distance and time con-
straints, respectively. Throughout this work we set wdist = 1/0.3
and wtime = 1/10 that equates the penalty for an error of 30cm in
distance with an error of 10 frames in time [Arikan and Forsyth
2002].

Transition Cost. Ctran(P ) for a path P is defined as the sum of
distortion for all transitions between concatenated 4DPC segments.
If we denote the index for concatenated 4DPC segments as {fi},
i = 0, . . . , Nf −1, the total transition cost Ctran(P ) is computed as

Ctran(P ) =
NP −2∑
i=0

D(Sfi→fi+1 ), (8)
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where NP denotes the total number of transitions on path P and
D(Sfi→fi+1 ) (Section 4.2) the distortion for transition from motion
sequence Sfi

to motion sequence Sfi+1 .

Distance Cost. Cdist (P ) for a path P with Nf frames on the
surface motion graph is computed as the absolute difference be-
tween the user-specified target distance dV and the total trav-
elled distance dist(P ), given the 3D frames on the path of P is
{M(tf )},f = [0, Nf − 1],

Cdist (P ) = |dist(P ) − dV |, (9)

dist(P ) =
Nf −2∑
f =0

|centre(M(tf +1)) − centre(M(tf ))|, (10)

where function centre() computes the projection of the centroid of
the mesh onto the ground. If the target distance dV is set to zero, the
optimisation will find the shortest path in terms of distance on the
graph.

Timing Cost. Ctime(P ) for a path P with Nf frames is evaluated
as the absolute difference between the user-specified target time tV
and the total travelled time t ime(P ),

Ctime(P ) = |t ime(P ) − tV |, (11)

t ime(P ) = Nf · �t, (12)

where �t denotes the frame rate (25 frames per second for our
4DPC data). If the target time tV is set to zero, the optimisation will
find the shortest temporal path on the graph.

5.1.1 Path Optimisation. We adopt an efficient approach to
search for the optimal path that best satisfies the user-defined soft
constraints. The optimal path P opt minimises the combined cost
C(P ) as defined in Eq. (7):

P opt = arg min
P

C(P ). (13)

First, the path needs to satisfy the hard constraints, that is, user-
defined key-frames. Since there may be cycles in the graph for
repetitive motion such as walking, the number of paths between
key-frames may be infinite. Each path can be considered as a com-
position of a path without loops, plus attached loops. The optimi-
sation can then be performed in two steps: we enumerate all paths
without loops that satisfy key-frames and also store all loops attach-
ing them; we compare all paths with their own optimal number of
loops to find the globally optimal path.

Given a path P , it can be represented as a composition of a path
without loops l0 and loops l1, . . . , lNL

. For simplicity, we can put
the paths without loops and loops together L = [li]NL

and denote
the number of repetitions as n = [ni]NL

, where, n0 = 1 for the path
without loops. We can then denote P as follows,

P = n · L, (14)

where · denotes the inner product of the number of loop repeti-
tions ni with the corresponding loop li to give the full path with
concatenated loop repetitions.

The optimisation then becomes

P opt = nopt · Lopt = arg min
n,L

{C(n · L)}. (15)

The combined cost defined in Eq. (7) becomes

C(n·L) = Ctran(n·L)+wdist ·Cdist (n·L)+wtime ·Ctime(n·L). (16)

In essence, a path without loops (or a single loop) is a graph path
that represents a sequence of frames. The computation of transition,
distance, and time costs has no influence, therefore, the transition,
distance, and time cost for n · L can be computed as follows,

Ctran(n · L) = n · Ctran(L), (17)

Cdist (n · L) = |n · dist(L) − dV |, (18)

Ctime(n · L) = |n · t ime(L) − tV |. (19)

Once the surface motion graph is constructed and key-frames are
selected, L is determined and the goal becomes to optimise n by
minimising C(n · L) defined in Eq. (16). A two-step optimisation
is performed. Let Nk denote the number of walks, for the kth walk
lk,0, Lk is determined and the objective is to find the corresponding
optimal repetitions of loops nopt

k according to Eq. (15),

nopt

k = arg min
nk

{C(nk · Lk)}. (20)

Let kopt denote the index of the global optimal walk, we enumerate
all walks, compare their optimal cost, and find the minimal

kopt = arg min
k=1,...,Nk

{
C

(
nopt

k · Lk

)}
. (21)

Finally, the optimal path P opt is a composition of the optimal walk
and loops Lopt = Lkopt together with optimal repetitions for each
loop nopt = nopt

kopt ,

P opt = nopt

kopt · Lkopt . (22)

Depth-first search is exploited to decompose all possible paths
(constrained by key-frames) to walks and loops L.

5.1.2 Integer Linear Programming Solver. An integer linear
programming solver is used to solve the optimisation of Eq. (20).
Although the equation is nonlinear due to modulus computation
in Eqs. (18) and (19), it can be converted into constrained Integer
Linear Programming (ILP) subproblems. For a particular walk with
loops L, the corresponding number of repetitions n is optimised as
four independent ILP subproblems, ρ = 0, 1, 2, 3.

minimise Cρ · nρ (23)

subject to n0,ρ = 1

0 ≤ ni ≤ +∞, int

Cdist,ρ · nρ ≥ 0

Ct ime,ρ · nρ ≥ 0.

Cρ , Ctran,ρ , Cdist,ρ , and Ct ime,ρ are vectors representing the com-
bined costs, total transition, distance, and time costs for each sub-
problem ρ, whose elements are computed as

Ctran,ρ,i = Ctran(li) (24)

Cdist,ρ,i = signd (ρ) · wd · (dist(li) − dV )

Ctime,ρ,i = signt (ρ) · wt · (t ime(li) − tV )

Cρ,i = Cd,ρ,i + Ct,ρ,i + Cs,ρ,i ,

where signd = {1, 1, −1, −1} and signt = {1, −1, 1, −1}. For
each subproblem, nopt

ρ is solved efficiently by a standard ILP solver.
The optimal repeat time of loops n for a particular walk with loops
L then computed as the one that achieves the minimum combined
cost,

nopt = arg min
ρ=0,1,2,3

{
Cρ · nopt

ρ

}
. (25)
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Fig. 7. Skeletal MoCap-based graph optimisation.

5.2 Skeletal MoCap-Based Optimisation

The aim is to enable skeletal MoCap-driven animation production
using 4DPC data. Similar to traditional skeletal MoCap-driven an-
imation, the input is skeletal MoCap data and the output is an
animation from a 4DPC database performing the same actions as
the input. To achieve this, a skeletal MoCap retrieval is first per-
formed to find the closest path through the surface motion graph to
the input MoCap sequence. Due to the scale limits of the available
4DPC database, the retrieved results do not exactly match the input
MoCap sequence in terms of timing and styling. Additional steps of
temporal interpolation and Laplacian deformation are then applied.
Figure 7 illustrates skeletal MoCap-based graph optimisation.

Given a query skeletal MoCap sequence Q = {KQ(tk)}, k ∈
[0, NQ − 1] and the skeletons extracted from the surface motion
graph G = {KG(ti)}, i ∈ [0, NG−1], a retrieval path P = {KG(trk )}
produces a cost, where NQ and NG are the total number of frames
for query/retrieval and the surface motion graph, respectively. Index
rk is introduced to denote the matching between query and retrieval
sequences in timing. The objective is to minimise the difference
between the retrieved path P and the query sequence Q while
minimising the number of transitions, where the cost functions are
defined as follows.

Combined Cost. The combined cost function is defined as a
combination of the retrieval cost and the transition cost,

C ′(P ) = Ctran(P ) + wretr · Cretr (P ), (26)

where wretr is set as wretr = 1 to equate retrieval cost and tran-
sition cost. Since the transition cost is defined in the same way in
Section 5.1, here we only need to introduce the retrieval cost.

Retrieval Cost. Cretr (P ) for a path P is defined as the sum of
dissimilarity for all pairs of skeletons between query and retrieval,

Cretr (P ) =
NQ−1∑
k=0

cskel(KQ(tk),KG(trk )). (27)

where cskel(KQ(tk),KG(trk )) computes the skeletal dissimilarity be-
tween KQ(tk) from the query and KG(trk ) from the surface motion
graph. Skeleton similarity between a source skeleton Ks = (B ′, Js),
Js = {xs

i }, i ∈ [0, NJ − 1] and a target skeleton Kt = (B ′, Jt ),
Jt = {xt

i } is computed as follows,

cskel(Ks, Kt ) =
NJ −1∑
i=0

wi · ∣∣∣∣xs
i − xt

i

∣∣∣∣, (28)

where xs
i and xt

i are the ith joint 3D position vector for the source and
the target, respectively, and NJ the total number of joints. Moreover,
|| · || computes Euclidean distance, and wi is set as 1 to set equal
weights for all joint positions. Note that Ks and Kt are prealigned
in both translation and orientation.

Fig. 8. Illustration of skeleton retrieval trellis graph. Each node denotes a
pair of a MoCap query frame and a frame from the surface motion graph.
Yellow nodes are candidates which mean skeleton dissimilarity below a
given threshold. Edges show possible connections in the surface motion
graph. Source and sink nodes are virtual nodes inserted and only used to
find the shortest path. Colour light magenta denotes the shortest path from
source to sink. The shortest path gives the desired retrieval result.

5.2.1 Path Optimisation. The optimal path P opt is then found
as the path which minimises the combined cost C ′(P ) as defined in
Eq. (26).

P opt = arg min
F

C ′(P ) (29)

This optimisation problem can be formulated as a shortest path
search problem. First, we create a trellis graph as illustrated in
Figure 8. Each node of the trellis represents a pair of frames
from the skeletal query sequence and surface motion graph, re-
spectively. Given a query sequence indexed by k, k ∈ [0, NQ − 1]
and an adjacency matrix Ai,j for the surface motion graph where
i, j ∈ [0, NG − 1], a trellis node vk,i is created for each pair of
a query frame and a surface motion graph frame. To reduce the
number of candidates and so manage the search complexity (given
the O(n2) nature of the shortest path search), a maximum skeleton
dissimilarity threshold Tskel is introduced.

For the kth frame, only those frames from the surface motion
graph below a skeleton dissimilarity threshold Tskel are treated as
candidates (yellow circle shown in Figure 8). The connections from
candidate trellis nodes in the k − 1th row to the kth row are decided
by the adjacency matrix Ai,j of the surface motion graph. If there is
a directed edge from node i to node j in the surface motion graph,
that is, Ai,j = true, then there is a directed edge from vk−1,i to vk,j .
Since the timing of query and surface motion graph may not match
perfectly, we allow the repetition of 4DPC frames. This introduces
additional edges from vk−1,i to vk,i even Ai,i = f alse. The node
cost for a node vk,i is defined as

cnode(vk,i) = wretr · cskel(KQ(tk),KG(ti)). (30)

The edge cost for a directed edge from vk−1,i to vk,j is defined as

cedge(vk−1,i , vk,j ) = c(M(ti),M(tj )). (31)

Finally, we insert two virtual nodes into the trellis: a source and a
sink. The source connects all candidates in the 0th row and the sink
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connects by all candidates in the Nk − 1th row. All node and edge
costs for the source and sink are set to 0. Dijkstra’s algorithm is then
applied to find the shortest path on the trellis graph from source to
sink, P ′opt = {v

k,r
opt
k

}. P opt = {ropt

k } is then found as the optimal
path through the surface motion graph.

5.2.2 Interpolation. The raw retrieved mesh sequence may ap-
pear like a “stop motion” due to the optimisation process allowing
repetition of the same frame multiple times to match the timing
between query and retrieval. A nonlinear temporal interpolation is
used to synthesise intermediate frames over time to produce a plausi-
ble animation. For a retrieved 3D mesh sequence {M(tri )}, resulting
from a MoCap-driven path optimisation, if M(tri ) starts to repeat
n times, that is, M(tri ) = M(tri+1 ) = · · · = M(tri+n−1 ), M(tri ) 	=
M(tri−1 ) and M(tri ) 	= M(tri+n

), M(tri+j
), j ∈ [0, n − 1]. The j th

frame in the sequence, M(tri+j
), can be replaced with a blended mesh

between M(tri ) and M(tri+n
), M(tri+j

) = G(M(tri ), M(tri+n
), α(j )),

where α(j ) = j

n
. Nonlinear blending using Laplacian mesh editing

to interpolate the mesh as presented in Section 4.4 is used to perform
the temporal interpolation.

5.2.3 Part-Based Laplacian Deformation. Interpolation leads
to smooth synthesised motion but is restricted to those body shapes
represented within the 4DPC mesh data. This may, for example, be
a generic walk or run that we wish to tailor to a more characteristic
gait or action in the MoCap data. Although standard linear skinning
techniques such as linear blend skinning (LBS) could be used to
generate a skeleton-driven animation that best matches the motion
and style defined by the query MoCap sequence, this would result
in the following undesired effects: loss of surface dynamics due
to the rigid deformation of a single mesh model; introduction of
artefacts associated with linear vertex-based deformation; and the
quality of the result being dominated by the particular vertex weights
employed. Instead, we propose to synthesise skeleton-driven ani-
mations within a Laplacian deformation framework [Sorkine et al.
2004; Botsch and Sorkine 2008] constrained to a plausible defor-
mation space learned from the 4DPC examples. The properties of
the Laplacian coordinates and the learned deformation space ensure
the preservation of both the surface detail and the inherent structure
of the meshes, respectively. This approach, described in detail in
the remainder of this section, combines previous space-time mesh
sequence editing [Xu et al. 2007; Kircher and Garland 2008] with
statistical models of mesh deformation [Summer et al. 2005].

Each source mesh Ms from the interpolated synthesised motion,
with vertex positions xs , is deformed to match a set of positional
soft constraints xc extracted from the LBS result. These constraints,
which are interactively selected by the user once for each character,
need to avoid areas exhibiting artefacts and should constrain the
pose of the character. The resulting mesh, denoted as M̃s with vertex
positions x̃s, is computed by solving the least-squares minimisation
[Tejera et al. 2013]:

r̃s, x̃s = arg min
r,x

(‖Lx − δ(r)‖2 + ‖Wc(x − xc)‖2), (32)

where Wc is a diagonal weight matrix that allows for control of
the importance of each positional constraint and δ(r) denotes a
learned deformation space. This deformation space is constructed
by principal component analysis (PCA) of a set of F deformation
examples represented in the space of Laplacian coordinates. First,
a data matrix M is constructed by placing the concatenated δ(x),

Fig. 9. An example of body-part decomposition. Note that the leg parts for
both Fashion1 and Fashion2 characters have a bigger overlap to account for
the deformation in the areas of the skirt far from the given leg.

δ(y), and δ(z) Laplacian coordinates of each example in its rows:

M =

⎛
⎜⎜⎜⎝

δ

1 (x) δ


1 (y) δ

1 (z)

δ

2 (x) δ


2 (y) δ

2 (z)

...
...

...
δ


F (x) δ

F (y) δ


F (z)

⎞
⎟⎟⎟⎠ . (33)

This data matrix is centred obtaining Mc = M−M̄, where M̄ is an
F×3n matrix whose rows are the mean of the rows of the data matrix
M. In order to obtain a basis representing the space of deformations,
an SVD is performed over the matrix Mc: Mc = UDV
, where V is
a 3n×F matrix with each column containing a basis eigenvector for
the shape deformation space. The first l eigenvectors ek representing
95% of the variance are kept, which gives a linear basis of the form:

δ(r) = δ̄ +
l∑

k=1

rkek = δ̄ + Er, (34)

where rk are scalar weights for each eigenvector, r is an l-
dimensional weight vector, and E is a 3n× l matrix whose columns
are the first l eigenvectors of length 3n. Since δ(r) represents the
main modes of shape deformation as described by the Laplacian
coordinates, constraining the edited mesh to lie within this space
strives to achieve plausible deformations as exhibited in the example
meshes.

The described deformation framework can be applied by either
considering the entire body as a deformation instance [Tejera et al.
2013] or by decomposing the mesh into a set of regions that will
each produce an independent deformation space [Tejera and Hilton
2013]. The latter technique is preferred within this context, since
it allows extrapolation outside the observed set of poses by mod-
elling the deformation of each body part independently. This greatly
extends the range of plausible output deformations beyond the ex-
ample whole body poses used to learn the deformation space. The
part decomposition chosen for each of the characters is shown in
Figure 9. Torso, head, and limbs are edited following a hierarchi-
cal editing process to fulfil the positional constraints for each body
part. If a constrained vertex is shared by a parent-child part pair, the
following assignment is performed: for the parent, it is assigned the
position of the vertex in the LBS sequence; for the child, it is set to
the position of the vertex in the deformed parent. This minimises
possible discontinuities between vertex positions shared by more
than one body region, ensuring smooth transitions between parts in
the complete whole body mesh.
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Fig. 10. Comparison of the part-based Laplacian deformation technique
against the use of whole body models and traditional LBS for Fashion2.

Table I. 4DPC Database
Subjects Motions Ns Nf

Character1 walk, jog, stand, stagger, hit, tense 10 442
+ transitions

Fashion1 walk, pose, twirl + transitions 6 491
Fashion2 walk, pose, twirl + transitions 6 435

In order to maximise the range of plausible deformations that can
be synthesised using the proposed framework, the set of deforma-
tion examples chosen to build the deformation space for each part
should represent as much pose variation as possible. In practice, this
set is constructed by manual selection of frames from the database
of each character, which also helps to avoid frames containing re-
construction artefacts. Automatic extraction of the most suitable
deformation examples for each body part could be achieved by se-
lecting extreme poses as examples. Figure 10 shows a comparison
between the performance of the proposed skeleton-driven technique
using both whole body and part-based deformation models and the
traditional LBS approach. The collapse of the skirt area with LBS
and the thinning of body and right wrist for the global approach are
corrected with the proposed part-based learned Laplacian deforma-
tion. Further comparisons are presented in the supplementary video
available at the ACM Digital Library.

6. EXPERIMENTAL RESULTS AND EVALUATION

A publicly available 3D video database [Starck and Hilton 2007] is
aligned using Budd et al. [2012] to create a 4DPC video database
containing sequences of an actress Roxanne in three different cos-
tumes, performing multiple motions with complex nonrigid move-
ment of clothing and hair. The 4DPC database sequences are each
used to construct surface motion graphs for all of our experiments.
The publicly available CMU MoCap database [CMU 2014] is used
to provide query motion sequences for skeletal MoCap-driven an-
imation synthesis. Tables I and II show the summary of motions
used in the experiments, where Ns and Nf denote the number of
sequences and frames.

Table II. CMU MoCap Database
Motions Subjects Ns Nf

Walk 2, 5, 6, 7, 8, 9, 10, 12, 16, 26, 27, 29, 100 8056
32, 35, 37, 38, 39, 43, 45, 46, 47, 49,

Run 2, 9, 16, 35 31 1094

6.1 Key-Frame Motion Synthesis

Surface motion graphs are automatically constructed from 4DPC
sequences for the performer with three different costumes. Opti-
misation is performed in seconds for user-defined constraints on
distance and time (synthesis results are presented in accompanying
videos). An example of selected frames from a synthesised motion,
respectively, for Fashion1, Fashion2, and Character1 captured in a
virtual camera view are shown in Figure 11. These results demon-
strate that the motion synthesis preserves the detailed clothing and
hair dynamics in the captured 4DPC sequences and does not pro-
duce unnatural movements at transitions.

Motion synthesis is evaluated for the three surface motion graphs
that represent potential transitions with four pairs of key-frames
for each costume, as shown in Table III. Evaluation is performed
by synthesising motions for target constraints on distances of 1–
20m in 1m intervals and times of 1–40s in 1s intervals giving 800
sequences for each key-frame pair and 9600 synthesised sequences
in total. The maximum, minimum, and root mean square errors
over all synthesised sequences for distance moved and timing are
presented in Table III for the sequences generated from each key-
frame pair. This analysis shows that the maximum distance and
timing errors are less than 1% of the target indicating that the path
optimisation generates sequences which accurately satisfy the user-
defined constraints. Smoothness cost is evaluated as a weighted
average of Hausdorff distance for overlapping frames at transitions.
The weights are set to decrease about the central frame in the
same way as a′(k) in Eq. (2). Computation times are given for an
ILP solver together with a Matlab implementation of the synthesis
framework running on a single processor machine. The computation
time is approximately constant with respect to the distance and
timing constraints, as indicated by the low standard deviation.

6.2 Skeleton Retrieval

Test query sequences are taken from the CMU MoCap database
across different subjects performing “Walk”, “Run”, “Walk2Stand”,
“Stand2Walk”, “Walk2Run”, and “Run2Walk”. Three surface mo-
tion graphs for Fashion1, Fashion2, and Character1 are used to
retrieve MoCap sequences. Synthesis results are presented in ac-
companying videos. Examples of selected frames of synthesised
results are shown in Figure 12. Evaluation results for Character1
are shown in Figures 13 and 14. Similar results are obtained for
Fashion1 and Fashion2.

For each MoCap sequence, the average per-joint error is com-
puted as a per-joint velocity vector difference to evaluate how sim-
ilar retrieved surface motions are compared to the query MoCap
sequences. The standard deviation of this error is also shown as an
error bar for each query sequence. Evaluation is performed for ani-
mation with temporal interpolation only and with interpolation plus
Laplacian deformation. The latter further reduces the motion dis-
similarity between the query and animation. For all “Walk” includ-
ing “Walk2Stand” and “Stand2Walk” sequences, synthesis-with-
interpolation-only error is around 2cm/f rame with standard devi-
ation less than 0.6cm/f rame, except for 08 07 which is a walk with
exaggerated stride, the error shows around 3.5cm/f rame with stan-
dard deviation 1.1cm/f rame. Synthesis-with-interpolation-plus-
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Fig. 11. Example rendering results for synthesised character animation from 4DPC database of Roxanne spanning three actions. The target traversing distance
is set as 10 metres for (a), (b), and (c); the target traversing time is set as 20 seconds for (a) and (b), 10 seconds for (c).

Table III. Evaluation for Roxanne

SMG: Key-frames
Smoothness (m) Distance error (m) Time error (s) Cputime (s)
min max min rms max min rms max mean ± dev.

Character1: Stand#1 → Hit#45 0.04 0.02 0.0001 0.17 0.96 0 0.16 0.88 14.43 ± 7.05
Stand#1 → Walk#16 0.04 0.03 0.0002 0.21 0.92 0 0.17 0.92 12.21 ± 4.74
Walk#16 → Jog#13 0.04 0.03 0.0001 0.21 0.96 0 0.19 0.96 13.54 ± 4.98
Jog#13 → Hit#45 0.04 0.03 0.0002 0.20 0.98 0 0.15 0.96 12.20 ± 3.42

Fashion1: Pose#1 → Twirl#85 0.06 0.02 0.0001 0.23 0.95 0 0.15 0.96 12.79 ± 2.92
Pose#1 → Walk#15 0.06 0.02 0.0001 0.47 0.99 0 0.17 0.96 5.65 ± 1.46

Walk#15 → WalkPose#37 0.04 0.01 0.0000 0.33 1.00 0 0.23 1.00 12.01 ± 4.85
WalkPose#37 → Twirl#85 0.04 0.02 0.0001 0.29 1.00 0 0.19 1.00 10.10 ± 3.07

Fashion2: Pose#1 → Twirl#100 0.04 0.02 0.0000 0.23 0.95 0 0.31 1.00 12.87 ± 3.61
Pose#1 → Walk#15 0.05 0.02 0.0008 0.39 0.98 0 0.35 1.00 7.09 ± 1.91

Walk#15 → WalkPose#37 0.04 0.02 0.0002 0.36 1.00 0 0.33 1.00 14.95 ± 6.11
WalkPose#37 → Twirl#100 0.04 0.02 0.0002 0.28 1.00 0 0.33 0.96 10.51 ± 2.77

A grid of target 20 × 40 (metres×seconds) is tested for each pair of key-frames shown in the first column.

deformation error falls to 0.3cm/f rame with standard deviation
less than 0.1cm/f rame, and for 08 07 to 0.6cm/f rame with stan-
dard deviation 0.2cm/f rame. For all “Run” including “Walk2Run”
and “Run2Walk” sequences shown in Figure 14, synthesis-with-
interpolation-only error is also around 3.5cm/f rame with standard
deviation less than 1.2cm/f rame and synthesis-with-interpolation-
plus-deformation error is 0.8cm/f rame with standard deviation
0.2cm/f rame. This evaluation of skeleton-driven animation of the
hybrid skeletal surface motion graph with 131 sequences demon-
strates that the approach accurately matches the target skeletal mo-
tion. The hybrid representation extends the range of animation be-
yond the original 4DPC.

7. DISCUSSION AND LIMITATIONS

The introduction of 4DPC techniques to capture time-varying ge-
ometry and appearance of an actor’s performance allows us to ex-
ploit surface motion graphs to produce video-realistic character
animation with reduced time and effort compared to traditional
MoCap-based animation techniques. Detailed surface dynamics are
reconstructed from the capture and reproduced in the synthesised
animation together with realistic appearance based on the captured
video.

In this work the use of temporally aligned 4DPC sequences en-
ables a learned space of plausible surface deformations. This allows
nonlinear interpolation between captured sequences at transitions,
giving improved motion continuity over previous surface motion
graph approaches based on single-frame transitions [Starck et al.

2005; Huang et al. 2009]. The use of a separate learned deformation
space for each body part also extends the range of motion, allowing
synthesis of novel poses outside the observed range of motion. This
allows accurate MoCap-driven animation by editing the retrieved
surface motion data to match the skeletal motion. The hybrid com-
bination of skeletal animation with surface motion graphs greatly
increases the flexibility and range of animated motions which can
be achieved. This is illustrated by the synthesis of variations in
walk and run motions from a library of MoCap data. Extrapolation
of the surface motion outside the range of 4DPC data is limited
by the range of poses observed for each body part. If a novel mo-
tion includes body-part poses significantly outside this range, then
unnatural mesh deformation artefacts may occur. The part-based
representation alleviates this problem compared to previous global
learnings of deformation spaces [Tejera et al. 2013] which were
limited to similar whole body poses. The range of motion for part-
based deformation could be further extended by capturing the full
range of motion for each body part in the 4DPC dataset.

Resulting animation sequences using the hybrid skeletal-surface
motion graph still exhibit some artefacts in the mesh shape and
appearance. This is primarily due to errors and noise in the re-
construction and temporal alignment process [Budd et al. 2012].
Geometric reconstruction errors in the shape are exhibited as dis-
tortion in the leg/arm/clothing shape and noise on the silhouette
boundary that is visible for slow motions. The learned surface de-
formation space will also model any temporally coherent distor-
tions in shape but acts as a low-pass filter for noise in the per-
frame reconstruction, due to the eigen basis only representing 95%
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Fig. 12. Example rendering results for synthesised character animation from Roxanne dataset for query MoCap motion “Walk” and “Run”.

Fig. 13. Evaluation for query MoCap motion “Walk” retrieved surface motion from surface motion graph of Character1. Average per-joint position errors of
motion sequences are shown for only interpolation performed (blue) and both interpolation and deformation performed (green). Note: exact CMU references
of sequences appear in the figure.

of the variance. Future improvement in the multiple-view recon-
struction and alignment process used for 4DPC will reduce these
artefacts.

The hybrid skeletal-surface motion graph relies on the automatic
annotation of the 4DPC with a skeletal pose estimate at each frame
as estimated from the temporally aligned surface. Inaccuracies in
skeletal pose estimation may occur due to loose clothing, which
causes large surface distortions and inaccuracies in the temporal
surface alignment. In practice, for the 4DPC sequences used in this
work with moderately loose clothing, the skeletal pose estimation
has been found to achieve sufficient accuracy for the retrieval of
similar motions to a target MoCap sequence. The space-time sur-
face deformation then allows accurate matching to the target skeletal

motion to produce the final animation, as illustrated in the quan-
titative evaluation. For more complex cases where loose clothing
obscures the underlying body pose, it may be necessary to introduce
additional constraints for skeletal pose estimation.

The final rendering quality of the character animation depends
on the quality of the multiple-view image sequences from the ac-
tor performance capture and the accurate alignment of textures at
transitions using the 4D video texture approach [Casas et al. 2014].
Captured image quality is limited by the camera resolution, and
artefacts occur due to motion blur, depth of field, and colour bal-
ancing across views. Blending of textures at transitions between
captured sequences depends on the optic flow alignment. While
this approach has been demonstrated to achieve a visual quality
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Fig. 14. Evaluation for query MoCap motion “Run” retrieved surface mo-
tion from surface motion graph of Character1. Average per-joint position
errors of motion sequences are shown for only interpolation performed
(blue) and both interpolation and deformation performed (green). Note:
exact CMU reference of sequences appear in the figure.

comparable to the captured video with dynamic appearance, arte-
facts may occur if the alignment fails. In the results presented, the
main rendering artefacts occur on the face due to changes in tex-
ture appearance between views and at transitions. Future research
will consider refinement of the texture alignment and relighting to
improve colour matching at transitions.

8. CONCLUSION

A novel hybrid skeletal-surface motion graph representation of 4D
performance capture data has been introduced. This allows skeletal-
driven animation control for production of novel surface sequences.
Constrained graph path optimisation generates novel sequences by
concatenation of fragments of the captured 4D data while ensuring
smooth transitions between sequences. Algorithms are introduced
to support animation driven by user-specified key-frame constraints
or matching to a skeletal motion capture sequence. Skeleton-driven
animation is combined with space-time mesh sequence editing us-
ing a learned part-based model of surface deformation to ensure
seamless transitions and extend the range of motion. This allows
variation in the motion beyond that of the captured 4D data while
maintaining plausible surface dynamics of shape and appearance.

Quantitative evaluation on over 9000 key-frame animation se-
quences shows that the maximum distance and timing errors are
less than 1% of the target motion, demonstrating that the path op-
timisation generates sequences which accurately satisfy the user-
defined constraints. Skeleton-driven animation is evaluated using
131 sequences from the CMU motion capture database. Synthe-
sised motions with space-time editing match the target motion joint
velocity to within 1cm/f rame average error. Space-time editing
to match the target skeletal motion reduces the error by a factor
of two compared to samples from the original captured 4D data,
with the remaining error resulting primarily from differences in
skeletal dimensions of the character from the target motion. Re-
sults demonstrate that the proposed approach accurately matches
the target motion capture sequence. This extends the range of syn-
thesised surface motion beyond the captured 4D performance, al-
lowing stylistic variation in the character animation while maintaing
plausible dynamics of shape and appearance.

To support future research on animation from 4DPC, the datasets
used in this article are available for download from the CVSSP 3D
data repository at http://cvssp.org/cvssp3d.
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