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Problem Statement
Optimal resampling of the captured views to obtain a 

compact representation without loss of view-dependent 
dynamic surface appearance information
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Reconstructing Geometry
Method Advantage Disadvantage

Model-
Based

• Highly detailed geometry 
• Temporal consistent geometry

• Requires prior knowledge of subject 
• Loss of dynamic surface detail 
• Expensive equipment

Vlasic 2008 
Carranza 2003

Model-Based - Vlasic 2008
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Reconstructing Geometry
Method Advantage Disadvantage

Model-
Based

• Highly detailed geometry 
• Temporal consistent geometry

• Requires prior knowledge of subject 
• Loss of dynamic surface detail 
• Expensive equipment

Vlasic 2008 
Carranza 2003

Model-
Free

• Flexible, no prior knowledge of scene 
required 

• no specialist equipment only cameras

• Each frame is reconstructed independently, 
requires temporal alignment 

• Model detail is limited by camera resolution
Starck 2007

Model-Based - Vlasic 2008 Model-Free - Stark and Hilton 2007
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Optimisation
• Construct an undirected graph  

Nodes -> Mesh Polygons  
Edges -> One Neighbour connection  

• Using Markov Random Fields 
find a labelling of cameras to 
mesh polygons that minimises 
an energy function
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Optimisation
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Optimisation

• Unary Term 
Ensures most direct camera is preferred and enforces visibility 
constraints
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mesh surface
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Optimisation

• Unary Term 
Ensures most direct camera is preferred and enforces visibility 
constraints

• Spatial Smoothness Term  
Reduces changes in camera-to-polygon assignment across 
mesh surface

• Temporal Smoothness Term  
Reduces changes in camera-to-polygon assignment over time
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Rendering 

12



Rendering 
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Texture Artefacts
• Approximate geometry and imprecise camera 

calibration leads to artefacts when blending textures 
as in view-dependent rendering 

• Highlights need for spatial alignment 
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• From viewpoint of each 
camera, projectively 
texture from all other 
cameras and compute 
optical flow 

• Optical flow breaks down 
in presence of occlusions 

• Discard flow in areas of 
occlusions and depth 
discontinuities (black 
areas)  

Multi-View Texture Alignment
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Multi-View Texture Alignment
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Multi-View Texture Alignment

16



Multi-View Texture Alignment
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Evaluation: Datasets
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Dataset Cameras Frames
Captured Data (MB)

Raw Video Compression
Character 1 8 31 1800 61

Cloth 5 310 11400 906
Dan 8 28 1600 57
Face 5 355 13100 386

• Compare storage of layer sequence to the video compressed captured 
data both encoded using same codec

• Evaluate quality by rendering arbitrary views using multi-layer texture 
representation and using free viewpoint video renderer [Starck et al. 2009] 
and compare using Structural Similarity Index Measure [Wang et al. 2009].   



Evaluation: Quality
• Optimisation has no effect on rendering 

quality 

• Same appearance information re-
ordered for better compression 

• Result generated using 512 texture size
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• Increasing the size of the texture 
map has no effect on the quality 
above 1024 

• Results generated using TO
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• Effect of optimisation on storage size 

• With Face dataset this difference is 
approximately 10-20MB 

• Results generated using 512 texture 
size

• Higher the texture size, the lower the 
storage reduction 

• In the case of datasets dan and 
character 1 reduction stop after 4 layers 

• Results generated using TO 
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Conclusions
• Novel texture representation maintains 

dynamic, view-dependent appearance

• Demonstrated on a variety of subjects 
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capture
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Conclusions
• Novel texture representation maintains 

dynamic, view-dependent appearance

• Demonstrated on a variety of subjects 
including full body, face and cloth 
capture

• Significant reduction in storage 
requirements > 90%

• Optical flow based multi camera 
alignment which significantly reduces 
artefacts 
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Future Work
• Can we ensure temporal coherence over layer 

sequences?  

• Can the multi-layer texture representation be extended 
to allow appearance editing and relighting through 
extraction of material properties? 
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Datasets
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cvssp.org/data/cvssp3d
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