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Optimal resampling of the captured views to obtain a
compact representation without loss of view-dependent
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Reconstructing Geometry sty

Vlasic 2008
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Reconstructing Geometry & stk

Method Advantage Disadvantage

* Requires prior knowledge of subject
* Loss of dynamic surface detall
* Expensive equipment

Model- « Highly detailed geometry
Based ° Temporal consistent geometry

Vlasic 2008
Carranza 2003

Model-Based - Vlasic 2008




Reconstructing Geometry & stk

Method Advantage Disadvantage
Model- « Highly detailed geometry Requires prior knowledge of subject Viasic 2008
* Temporal consistent geometry Loss of .dynamllc surface detail Carranza 2003
Based « Expensive equipment
Model- ° Flexible, no prior knowledge of scene ¢ Each frame is reconstructed independently,
required requires temporal alignment Starck 2007
Free . no specialist equipment only cameras ¢ Model detail is limited by camera resolution

-
-
.

4

Vlasic 2008 Model-Based - Vlasic 2008 Model-Free - Stark and Hilton 2007
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Multi-Layer lexture Map &3tk

INPUT PROCESS ASSIGNMENT
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Multi-Layer lexture Map &3tk

INPUT PROCESS ASSIGNMENT
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Optimisation

¥ SURREY

e Construct an undirected graph
Nodes -> Mesh Polygons

Edges -> One Neighbour connection

* Using Markov Random Fields
find a labelling of cameras to

mesh polygons that minimises
an energy function

(O Graph Node
— Graph Edge
‘ Mesh Vertex
— Mesh Edge
V' Mesh Polygon




Optimisation o SO

E(L(t)) =Y (Eu(L(t)) + AE (L(t)) + ME (L(1),L(t + 1))
Vi




Optimisation o SR

Unary Term

e Unary Term

Ensures most direct camera is preferred and enforces visibility
constraints
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OptimisatiOn 5 SURREY

Unary Term Spatial Term

E(L(I)) :Z(E ( ( ))‘F;LnEv( ( ))‘FAIEI(L(I),L(Z‘—}-I))

ve o0t

e Unary Term
Ensures most direct camera is preferred and enforces visibility
constraints

e Spatial Smoothness Term
Reduces changes in camera-to-polygon assignment across
mesh surface




Optimisation o SR

Unary Term Spatial Term Temporal Term

E(L(t)) = ) (Ev(L(t)) + AEy(L(t)) + AgEy (L(2), L(t +1)):

Vt ---------------

e Unary Term

Ensures most direct camera is preferred and enforces visibility
constraints

e Spatial Smoothness Term

Reduces changes in camera-to-polygon assignment across
mesh surface

 Temporal Smoothness Term
Reduces changes in camera-to-polygon assignment over time
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Texture Artefacts 5 SURKEY

e Approximate geometry and imprecise camera
calibration leads to artefacts when blending textures
as in view-dependent rendering

 Highlights need for spatial alignment




Multi-View lexture Alignment & StRREY
1 2 3 4 5 I
gEl os

e From viewpoint of each
camera, projectively
texture from all other
cameras and compute
optical flow

e Optical flow breaks down
iNn presence of occlusions

e Discard flow in areas of

occlusions and depth N
discontinuities (black Vi=Y 0,50,
areas) =1
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Multi-View lexture Alignment & SURREY
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Multi-View Texture Alignment & StrkEy
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Multi-View Texture Alignment & StrkEy

Without multi-view texture alignment
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Evaluation: Datasets &ty

Captured Data (MB)

Dataset Cameras Frames

Raw Video Compression

Character 1 8 31 1800 o
Cloth 5 310 11400 906
Dan 3 28 1600 57
Face 5 355 13100 386

 Compare storage of layer sequence to the video compressed captured
data both encoded using same codec

e Evaluate quality by rendering arbitrary views using multi-layer texture
representation and using free viewpoint video renderer [Starck et al. 2009]
and compare using Structural Similarity Index Measure [Wang et al. 2009].




Evaluation: Quality st
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Evaluation: Quality st

Visual Quality (SSIM)

0.94 ——=0 a—a—cb
0.92
0.9

—+— NO

0.88 —=—- SO

0.86 —— TO

| 2 3 4 5 6 T 8

Number of Layers (N;)

Optimisation has no effect on rendering
quality

Same appearance information re-
ordered for better compression

Result generated using 512 texture size

Increasing the size of the texture
map has no effect on the quality

above 1024

Results generated using TO
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0.86 —e— 2048
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—— 512

Visual Quality (SSIM)

1 2 3 4 5 6 7T 8
Number of Layers (N)




Evaluation: Storage bt
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With Face dataset this difference is
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Results generated using 512 texture
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Evaluation: Storage bt

S
-
°

Effect of optimisation on storage size

°\£ 98 ——NO

= 96 —=- S0

2 o —e-TO || « \ith Face dataset this difference is
2 gy approximately 10-20MB

=90 e s 4

? 88—, < 5 g °* Resultsgenerated using 512 texture

Number of Layers (N) SIZE

« Higher the texture size, the lower the

storage reduction x 100
s 90 F--7
« In the case of datasets dan and z 80 T
: O —+— 512
character 1 reduction stop after 4 layers & 70 e 1024
g 60 —o— 2048
o o) 7o =
. g 5 b < = ©
» Results generated using TO 2 N T s 6 7 s
Number of Layers (V)

Ve




Conclusions 5 SORREY

BV oA




Conclusions 5 SORREY

* Novel texture representation maintains W View Dependent

dynamic, view-dependent appearance & Dynamic
;; Practical Storage

 Demonstrated on a variety of subjects
including full body, face and cloth “‘

capture




Conclusions 5 SORREY

* Novel texture representation maintains W View Dependent
dynamic, view-dependent appearance & Dynamic

/\ /
W Practical Storage

 Demonstrated on a variety of subjects
including full body, face and cloth “‘
capture

Significant reduction in storage o

98
g —5-SO
——TO

2
5 96

requirements > 90% Z

w92 :
£ 90
8

88

1 2 3 4 5 6 7 8

Number of Layers (Ny)




Conclusions 5 SORREY

* Novel texture representation maintains W View Dependent
dynamic, view-dependent appearance v Dynamic

W Practical Storage

 Demonstrated on a variety of subjects
including full body, face and cloth

capture
 Significant reduction in storage -
requirements > 90% i =

» 88
1 2 3 4 5 6 7 8

Number of Layers (Ny)

* Optical flow based multi camera

alignment which significantly reduces @Q@
artetacts :

MV



Future Work $ SRS

 Can we ensure temporal coherence over layer
sequences”?

* Can the multi-layer texture representation be extended
to allow appearance editing and relighting through
extraction of material properties”




Datasets & Sty

CVSSP3D Data Directory

Dataset: Dan

Recorded as part of Dans PhD

Box Low Big Box Low Small

8 Cameras, 162 Frames 8 Cameras, 171 Frames

Downicad: Calibration Images
Slihoyette

cvsspm;morg/datalzvsspw

Jump Long Jump Low

8 Cameras, 18 Frames

Download: Calibeation Images
Sthouette

8 Cameras, 53 Frames

Download: Caibration Images
Silhouette

Jump Short Turn Left

8 Cameras, 36 Frames 8 Cameras, 27 Frames

Download: Calbration Images
Slihcuette

Download: Calibeation Images
Sshouette

Turn Right Walk

8 Cameras, 27 Frames 8 Cameras, 29 Frames

Downlocad: Calibration Images Downioad: Calibeation Images
Slihouette Shouette

University of Surrey © 2014




ACKnowledgements iy

University of Surrey BBC R&D

Adrian Hilton John Collomosse Graham Thomas

Project

Dan Casas* Martin Klaudiny Peng Huang
*Now at USC: ICT




¥ SURREY

cvssp.org/data/cvssp3d

Thanks for your attention!
Questions 7

TO, 1024, 3 Layers TO, 512, 3 Layers
/2 MB, 82% Reduction 3.8 MB, 93% Reduction



¥ SURREY

cvssp.org/data/cvssp3d

Thanks for your attention!
Questions 7

TO, 1024, 3 Layers TO, 512, 3 Layers
/2 MB, 82% Reduction 3.8 MB, 93% Reduction



