
High-detail temporally consistent 3D capture of
facial performance

Martin Klaudiny

Submitted for the Degree of
Doctor of Philosophy

from the
University of Surrey

Centre for Vision, Speech and Signal Processing
Faculty of Engineering and Physical Sciences

University of Surrey
Guildford, Surrey GU2 7XH, U.K.

March 2013

c© Martin Klaudiny 2013





Summary

Capturing a realistic digital copy of a facial performance has high importance for film
and television production. This allows high-quality replay of the performance under
different conditions such as a new illumination or viewpoint. The model of performance
can be altered by space-time editing or can be used for building and driving a facial
animation rig. This thesis presents a novel system to capture high-detail 4D models
of facial performances. A geometric model without appearance is reconstructed from
videos of an actor’s face recorded from multiple views in a controlled studio environ-
ment. The focus is on achieving temporal consistency and a high level of detail of the
4D performance model which are crucial aspects for the use in film production.

A baseline method for dense surface tracking in multi-view image sequences is in-
vestigated for facial performance capture. Evaluation shows limitations of previous
sequential methods which provide accurate temporal alignment only for faces with a
painted random pattern. A novel robust sequential tracking is proposed to handle
weak skin texture and rapid non-rigid facial motions. However, gradual accumulation
of frame-to-frame alignment errors still results in significant drift of the tracked mesh.
A non-sequential tracking framework is introduced which processes an input sequence
according to a tree derived from a measure of dissimilarity between all pairs of frames.
A novel cluster tree enables balancing between sequential drift and non-sequential jump
artefacts. Comprehensive evaluation shows temporally consistent mesh sequences with
very little drift for highly dynamic facial performances. Improvements are also demon-
strated on whole-body performances and cloth deformation.

Photometric stereo with colour lights is used for capturing pore-level skin detail. An ori-
ginal error analysis of the technique is conducted for image noise and calibration errors.
The proposed markerless capture system for facial performances combines photometric
stereo with non-sequential surface tracking based on the cluster tree. A practical cap-
ture setup is constructed from standard video equipment without active illumination or
high-speed recording. Errors in the photometric normals are corrected using the tem-
porally aligned mesh sequence. The resulting 3D models enhanced by the normal maps
capture fine skin dynamics such as skin wrinkling. High-quality temporal consistency
of the models is also demonstrated with minimal drift in comparison to the previous
approaches. Qualitative and quantitative comparison with the best state-of-the-art
system shows comparable results.
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BRDF Bidirectional reflectance distribution function
CCD charge-coupled device
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ii Notation

Mathematical symbols

Symbols used in individual chapters are listed and briefly described. Some symbols are
redefined for different chapters.

Typesetting

scalar values lower-case letters in italic type (e.g. j, ηj)
vectors lower-case letters in bold type (e.g. lj , ri)
matrices upper-case letters in bold type (e.g. L,V)
functions upper-case letters in italic type (e.g. Ej(λ), A(Fk))
sets upper-case letters in italic type (e.g. Xt, C)
total numbers of elements upper-case letters in italic type (e.g. J,N)
elements from graph theory upper-case letters in calligraphic type (e.g. E , T )
sequences closed in curly brackets with a range (e.g. {Mt}Tt=1)



Notation iii

Chapter 3

j index used for light
J number of lights
Ij grey-scale image acquired under

the light j
lj light direction vector
gj grey-scale pixel intensity under

the light j
g vector of intensities gj
n unit surface normal
α grey-scale albedo of a surface

point for PSWL
L illumination matrix describing

light directions
V interaction matrix describing

light-sensor-material interaction
λ wavelength
Ej(λ) spectrum of the light j
Sr(λ) spectral sensitivity of the red

camera sensor (similarly for the
green and blue sensor)

R(λ) material reflectance of a surface
point

cr pixel intensity in the red image
channel (similarly for the green
and blue channel)

c RGB colour
I colour image
ρ(λ) wavelength-dependent chro-

maticity of the surface
a grey-scale albedo of a surface

point for PSCL
vj interaction vector of the red,

green and blue sensors with the
light j given a surface material

vrj coefficient from vj for the red
sensor (similarly for the green
and blue sensor)

Īj calibration image acquired un-
der colour light j

P binary mask for the face region
in the image Īj

p pixel in P

Error analysis uses a simulation-reconstruction
chain where subscripts S and R denote ele-
ments associated with simulation and re-
construction part. The subscript ∗ repres-
ents both S and R.

L∗ illumination matrix
V∗ interaction matrix
n∗ unit normal
a∗ grey-scale albedo
ñ∗ albedo-scaled normal

(ñ∗ = a∗ n∗)
d difference vector (d = ñR − ñS)
dj difference vector for the light j

(d = d1 + ...+ dJ)
lj∗ light direction vector from L∗
vj∗ interaction vector from V∗
m3 normalised vector l1R × l2R

(similarly for other mj)
γj angle between mj and ljR
βj angle between ñS and (lTjS−lTjR)

u3 normalised vector v1R × v2R

(similarly for other uj)
δj angle between uj and vjR
ηj angle between ñS and lj
∆ noise vector from a Gaussian

distribution N (0, σ2)
σ standard deviation of noise
θj slant of the light j
φj tilt of the light j
4θ discrepancy in slant
4φ discrepancy in tilt

Chapter 4

i index used for vertices/patches
c index used for camera/view
t frame
r reference frame
T number of frames
Ot observations at the frame t
C number of cameras/views
Ict image at the frame t for the cam-

era c



iv Notation

Mt temporally aligned mesh at the
frame t

Xt set of vertex positions of the
mesh Mt

Γ set of edges of the mesh Mt

N number of vertices in Mt

vi position of the vertex i
Vi set of adjacent vertices around

the vertex i
XL,YL,ZL axes of LCS
XW ,YW ,ZW axes of WCS
pi position of patch LCS with re-

spect to WCS
ri rotation of patch LCS with re-

spect to WCS
Ti transformation matrix between

LCS and WCS
p̂i local translation in LCS
r̂i local rotation in LCS

T̂i transformation matrix for local
modification in LCS (formed
from p̂i, r̂i)

Gi vector of 3D sample points of
the patch i

Qi visibility set of the patch i
Bc
i texture of the patch i from the

camera c
do 3D distance between rings of

sample points in Gi
o index of sample ring
No number of sample rings
Ei() patch error function for multi-

view alignment
ESi () patch error function for multi-

view stereo
ei patch matching error
τe threshold for matching error ei

in motion estimate initialisation
V τ
i subset of Vi for motion estimate

initialisation
aj weight for adjacent motion es-

timate

S(Ict ,p) operation projecting a 3D
point p into the image Ict and
sampling a colour value

d′i displacement vector of the patch
i (motion estimate)

di displacement vector of the ver-
tex i (final motion)

L matrix of Laplacian operator

L̃ matrix of mixed bi-Laplacian
and Laplacian operator

µ mixing coefficient for Laplacian
operator

W matrix of constraint weights
s smoothness coefficient
wi weight of patch displacement
δe half-width of linear ramp map-

ping between ei and wi
ξe centre of linear ramp mapping

between ei and wi
MGT
t mesh at the frame t from tem-

porally aligned ground-truth

Chapter 5

Mg
t temporally unaligned mesh at

the frame t
Xg
t set of vertex positions of the

mesh Mg
t

Γ g
t set of edges of the mesh Mg

t

Egi () patch error function for multi-
view alignment and fitting to
the mesh Mg

t

σg half-width of Tukey bi-weight
error norm

ρ(x, σg) Tukey bi-weight error norm
with a variable x

wg weight of geometry fitting term
in Egi

H number of iterations in CRS
α ratio of range decrease for ran-

dom sampling
a integer exponent of α
U number of samples per range

size in random sampling



Notation v

u random vector from a cube
(−1, 1)× (−1, 1)× (−1, 1)

qmax maximal range for random
sampling

qmin minimal range for random
sampling

qlim half size of bounding box limit-
ing possible motion estimates

l index used for LOD
L number of LOD in hierarchical

surface model
M l
t mesh on LOD l at the frame t

Gli sample grid of the patch on the
LOD l for the vertex i

V l
i set of adjacent vertices around

the vertex i on the LOD l
Bcl
i texture of the patch on the LOD

l associated with the vertex i
from the camera c

ψo scaling factor for patch size No

across LODs
ψs scaling factor for smoothness

coefficient s across LODs

Chapter 6

i, j, u indices used for frames (respect-
ive graph nodes)

r root frame
k, l indices used for frame clusters

(respective graph nodes)
v index used for nodes
d dissimilarity
D dissimilarity matrix
n tree/graph node
nr root node
T directed traversal tree among

frames
N set of nodes of the tree T
E set of edges of the tree T
G fully-connected undirected

graph among frames
D set of edges of the graph G
T ′ undirected spanning tree among

frames

E ′ set of edges of the tree T ′
T ′MST undirected minimum spanning

tree among frames
TMST directed minimum spanning tree

among frames
TSPT directed shortest path tree

among frames
Fk frame cluster
tk central frame of the cluster Fk
∆tk half-size of the cluster Fk
A(Fk) intra-cluster inconsistency for

the cluster Fk
β granularity parameter for frame

clustering
Uβ clustering of frames for given β
K number of frame clusters
DF cluster dissimilarity matrix
GF fully-connected undirected

graph among clusters
NF set of nodes of the graph GF
DF set of edges of the graph GF
T ′F undirected minimum spanning

tree among frame clusters
E ′F set of edges of the tree T ′F
T ′β undirected cluster tree among

frames given β
E ′ set of edges of the tree T ′β
Tβ directed cluster tree among

frames given β
m length of branch extension

across cuts

T̃ directed tree extended from T
across cuts

Ñ set of nodes of the tree T̃
Ẽ set of edges of the tree T̃
ñv node of the tree T̃
ηv blending weight for a tracking

solution at the node ñv
dI dissimilarity for image-oriented

frame-to-frame alignment
dG dissimilarity for geometry-

oriented frame-to-frame align-
ment
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ēI average patch matching error for
image-oriented frame-to-frame
alignment

ēG average patch matching error
for geometry-oriented frame-to-
frame alignment
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Îrt rectified reference image

Îmt rectified matching image

Gr grid of image points in Îrt
Gm grid of image points in Îmt
sG size of grids Gr, Gm
P binary mask for the face region

in the reference image Îrt
p,q pixel in P
V set defining a 4-point neighbour-

hood over pixels in P
λ smoothness coefficient
d disparity value (horizontal)
D() disparity map for the reference

image Îrt
E() energy function for the disparity

map D



Chapter 1

Introduction

Capture and analysis of human faces is an area of great interest because it has ap-

plications in a number of fields. The face is used as a biometric modality for person

identification or verification. 3D scans of a patient’s face serve as an important aid for

surgery planning or prosthesis design. Automatic analysis of facial movement helps to

diagnose various medical disorders. Digital avatars controlled by user’s expressions are

demanded in online communication and telepresence. Game industry, television and

film production strive for believable digital characters.

There has been a huge effort in the film industry to create digital doubles of real actors.

Digital doubles would allow seamless integration of real-world content coming from

traditional film shooting with virtual worlds created by computer graphics. The digital

double can be placed into environments or situations which would not be possible for

an actor. This gives tremendous creative freedom to the director who can influence

every aspect of the performance recorded. Moreover, the digital double can be used

to produce new performances without the presence of the actor. Development of this

technology has a big impact on areas of post-production, facial modelling, texturing

and animation. Progress over the last decade has been driven by a number of films

such as Final Fantasy: The Spirits Within (2001), The Matrix series (1999 - 2003), The

Lord of the Rings series (2001-2003), The Polar Express (2004), Beowulf (2007), The

Curious Case of Benjamin Button (2008) and Avatar (2009).

1



2 Chapter 1. Introduction

1.1 Motivation

Creating realistic digital double of the face remains a major challenge for computer

graphics and animation because of its sheer complexity. The face contains intricate

details such as pores, blemishes and fine wrinkles. The skin interacts with incident

illumination in a complex way which defines the appearance. Movements of the face

are driven by a complicated system of bones, muscles, connective tissues and skin which

results in highly non-rigid deformations of the surface. Features such as eyes, hair, teeth

or tongue have very different properties compared to the rest of the face.

Creation of a digital model of the face is also complicated by human sensitivity to

faces. People observe and analyse faces from an early age because they are the key

component of non-verbal communication. Hence, any imperfection or unusual detail

in shape, appearance or motion of the face is noticed and can even cause adverse

emotions. This phenomenon have been first documented in robotics and is described

as the Uncanny valley. Mori [75] observed that robots very dissimilar from humans do

not trigger any emotional reaction. As their human likeness increases, people find them

more familiar and respond positively. But beyond a certain level of robot realism the

reaction becomes negative, because there is something uncanny about it which indicates

a potential danger. When the robot starts to be completely like a real person, the

familiarity sharply increases and people’s emotions are positive. This can be depicted

as a curve with the Uncanny valley in Figure 1.1. The same observations has been

made for virtual characters in computer animation.

Automatic synthesis of believable facial performance for film and television production

is impossible with the current technology. Physical simulation of an anatomically cor-

rect model of the face is intractable on the level of accuracy required. Thus, digital

faces are modelled and animated manually which is a laborious task requiring highly

skilled artists. However, it is extremely difficult to avoid the Uncanny valley even for

an experienced artist if the digital character is created from scratch. It is common

practice to base the character on a real actor and their performance to improve the

realism. The artist effectively creates a digital double of the actor.

Actor’s performances are recorded and videos can be used as a reference for the artist.
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Figure 1.1: Uncanny valley in robotics [75]. Note that movement of the robot emphas-
ises the valley as it is an important cue for judging human likeness.

A better option is to obtain a 4D model of facial performance representing changes in

the 3D shape and appearance of the face over time. The term ’4D model’ refers to a

sequence of reconstructed 3D models with temporal consistency such that points on

the models are in correspondence with the same points on the face at each captured

frame. Such model is provided by 3D capture systems for facial performances which

can significantly reduce the manual work of the artist required to create the digital

double. The 3D models of the actor can speed up or completely replace the model-

ling phase. Motion of the models during the performance can provide correct facial

dynamics for animation. The captured performance can be directly replayed with only

manual modification of environmental conditions. Although, this approach improves

the quality of digital characters, they still fall into the trap of the Uncanny valley (the

film Beowulf being a typical example). Promising results have been demonstrated by

The Digital Emily Project [2] or the film The Curious Case of Benjamin Button both

of which featured some of the most realistic facial performances by digital doubles so

far. But there has not yet been a digital character which would cross the Uncanny

valley and significant amounts of manual interaction are still required from artists.

To achieve realistic digital doubles, it is necessary to improve 4D spatio-temporal cap-

turing of facial performance to aid the artist. Thus, facial performance capture needs

to advance in two key aspects - realism and temporal consistency of the resulting 4D

performance model.
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Realism of the 4D performance model is instrumental for crossing the Uncanny valley.

The shape of the face should contain fine geometric details such as skin wrinkles and

pores. The appearance of the face should describe the complex interaction of light with

skin in terms of diffuse/specular reflectance, translucency and sub-surface scattering.

All of this data needs to be captured with adequate temporal sampling to preserve

subtle dynamics of the face such as skin wrinkling, pore deformation or changes in

skin colouring. This allows high-quality replay of the performance under different

conditions defined in post-production. The actor can be relighted according to a virtual

environment or can be observed from a novel viewpoint.

Temporal consistency of the 4D performance model means that the facial 3D mesh has

a fixed topology and its vertices correspond to the same surface points over time. This

introduces a common structure to the data captured in all frames, and therefore allows

easy modification of the performance. The temporally consistent model enables space-

time editing where a change in one frame can be directly propagated to other frames.

This applies to the facial geometry and also appearance associated with it as various

texture layers. Without temporal consistency all frames affected by an edit would have

to be laboriously modified one by one. Retiming of the performance is another use

case for the temporal correspondence across the data which allows interpolation of the

facial model for new time instances.

Temporal consistency of the captured data is also important for producing new content.

Facial animation rigs are commonly based on blend shapes [84] which require a number

of example expressions in full correspondence. This allows weighted blending between

them, and therefore creation of new expressions. Animating the rig to generate a new

facial performance with the correct motion and timing is difficult and time-consuming

even for a highly skilled artist. Therefore, the animation is often driven by a real

performance [118] to simplify the process. The temporally consistent representation

implicitly provides natural motion of the face over time which is transformed to anim-

ation curves for the rig. The curves can be also retargeted to another actor or even a

non-human character.
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1.2 Objective

The objective of this thesis is capturing high-detail 4D models of facial performances

for film production. The model is obtained from multi-view videos of an actor’s face

recorded in a controlled studio environment. Only the geometry of the face is captured

over time because it is more difficult to create realistic facial shapes in motion than

appearance. The geometric 4D model of performance should contain all details observed

in the acquired videos and have precise temporal consistency.

There is a number of challenges involved in building the 3D capture system for facial

performance:

• Complexity of capture setup - Existing capture systems often consist of com-

plex equipment such as high-speed cameras, structured light scanners, active

illumination elements, etc. All of these components need to be synchronised

to provide consistent observations. A practical capture rig should be constructed

from standard cameras and lights which does not require complicated integration.

• Temporal sampling - Full reconstruction of facial shape often requires multiple

observations such as images under various illuminations. Individual observations

need to be acquired at high speed to ensure temporal sampling of the whole set at

standard frame-rate 25Hz. A capture system should acquire all necessary data

at one time instant, so that a 3D model is available for every frame.

• Actor’s comfort - An actor typically has to perform under restricted conditions

such as a small capture volume or strong fast-switching illumination. Markers

or pattern are applied on their face to emphasise motion. Reduction of such

constraints would help actors to deliver a more natural performances.

• Fine skin detail - Many current methods reconstruct the medium-scale shape

of the face with only large skin folds and wrinkles. However, realistic models of

the performance should contain pore-level skin detail and fine wrinkles with all

subtle deformations over time.

• Drift - Temporal consistency of 4D performance models is usually obtained by

tracking a 3D facial model in the captured videos. The tracking accumulates

errors due to fast non-rigid movements of the face and weak skin texture varying
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over time. This results in drift of the 3D model on the actual surface of the face.

The proposed system should address drift problems without markers or patterns

painted on the face to aid the tracking.

• Data size - The level of detail required from a 4D performance model inevitably

leads to large amounts of data. A compact representation would be beneficial for

efficient storage and fast manipulation.

• Eyes, teeth, hair - The face includes features such as the eyes, teeth or hair

which have very different properties than the skin. Their accurate capture is a

long-standing problem because of the complex geometry, reflectance and motion.

However, this problem is not addressed in this work which focuses on skin areas

of the face.

1.3 Thesis outline

This thesis is structured as follows:

• Chapter 2 - Related work

A literature review is presented for facial performance capture and specific areas

related to the approaches described in this thesis.

• Chapter 3 - Geometric detail capture

Photometric stereo with colour lights is investigated for capturing skin detail. A

formulation of the photometric stereo is derived for simultaneous colour illumin-

ation. Photometric calibration of a capture setup is explained. Theoretical error

analysis of the photometric stereo is supported by simulations on synthetic data.

The quality of estimated normal maps is evaluated on real facial performance.

• Chapter 4 - Baseline surface tracking

A baseline method for dense surface tracking is developed based on the work of

Furukawa et al. [36, 37]. A patch-based model of the surface is used for tracking

a template mesh on multi-view image sequences. 3D matching of a surface patch

between frames is formulated and the matching error is empirically analysed.

Raw motion estimates from the patches constrain a Laplacian deformation of the

template between frames. The method is evaluated for 4D performance capture
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with varying amounts of painted texture on the face. This demonstrates accurate

temporal alignment with a random pattern but fails for faces without make-up.

• Chapter 5 - Robust surface tracking

A robust surface tracking method is proposed to improve over the baseline method

in Chapter 4 on weakly textured skin without make-up. The reformulated ob-

jective function for 3D patch matching includes fitting to unaligned per-frame

3D reconstructions. Cooperative optimisation of patches across the surface im-

proves accuracy of motion estimates for Laplacian deformation. Evaluation of

the method analyses the influence of varying strength of surface texture. Results

for faces without markers or patterns show significantly less drift than for the

baseline technique.

• Chapter 6 - Non-sequential surface tracking

A framework for non-sequential surface tracking is introduced which processes

an input sequence according to a tree structure across the frames. The traversal

tree is derived from the dissimilarity between frames. Several types of trees -

minimum spanning tree, shortest path tree and novel cluster tree are described

and compared to sequential traversal in terms of the quality of temporal align-

ment. The framework is generalised to any frame-to-frame alignment method with

an associated dissimilarity measure and two different combinations are assessed.

Comprehensive evaluation shows temporally consistent mesh sequences with very

little drift for facial performances. Versatility of the approach is demonstrated

for other non-rigid surfaces such as cloth and whole body.

• Chapter 7 - Facial performance capture

The processing pipeline of the proposed capture system is described and the meth-

ods from the previous chapters are tied together. Capture setup for acquisition

of multi-view image sequences and subsequent per-frame stereo reconstruction

are explained. Non-sequential surface tracking using the cluster tree approach

is combined with the photometric stereo with colour lights. Artefacts in the

photometric normals are corrected using the temporally aligned mesh sequence.

The resulting geometric models of facial performances offer pore-level detail with

high-quality temporal consistency which is comparable to the state-of-the-art.
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• Chapter 8 - Conclusions and future work

This chapter draws the main conclusions and suggests directions for future work.

• Appendix A - Marker-based facial performance capture

An early marker-based version of facial performance capture system is presented.

The approach combines per-frame stereo reconstruction with photometric stereo

with colour lights. The resulting 3D models have coarse temporal consistency

based on motion of markers painted on the face.

Chapters 4, 5, 6 are closely related because they describe evolution of surface tracking

framework. Chapter 3 about acquisition of geometric detail is tied together with the

surface tracking in Chapter 7 presenting the whole system.

1.4 Contributions

The main contributions of this work are:

• Error analysis of photometric stereo with colour lights. Normal and albedo ac-

curacy are investigated for image noise, calibration errors in light directions and

calibration errors in interaction between lights, sensors and the surface.

• Robust patch-based alignment of a template mesh between two frames. The

correspondence is given by cooperative 3D matching of textured surface patches

to multi-view images and an unregistered geometry. The method works robustly

on plain skin without the aid of markers or pattern make-up. Sequential tracking

based on this alignment is more reliable in the presence of fast non-rigid motions

than previous techniques.

• Non-sequential surface tracking framework. A template mesh is tracked along

branches of a traversal tree calculated from a dissimilarity measure between

frames. This greatly reduces drift and impact of failure in comparison to the

conventional sequential tracking. The modular framework allows use of any dis-

similarity measure, frame-to-frame alignment method and algorithm for calculat-

ing the traversal tree. It is possible to align together multiple sequences of the

same surface. Versatility of the approach is demonstrated on facial performances,

whole-body performances and cloth deformation.
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• Cluster tree representation taking into account temporal order of frames to limit

the number of alignment jumps introduced by non-sequential traversal. This

improves over the minimum spanning tree and shortest path tree used previously

in whole-body tracking. The cluster tree enables balancing between sequential

accumulation of drift and non-sequential jump artefacts. Remaining jumps in the

resulting mesh sequence are eliminated with multi-path temporal fusion.

• Marker-based approach combining photometric stereo with colour lights and ste-

reo reconstruction. This work was proposed to enhance a medium-scale shape

from stereo with skin details from the photometric stereo at every frame of a

facial performance. Markers painted on the face provide coarse temporal consist-

ency of the resulting mesh sequence.

• Markerless approach combining photometric stereo with colour lights and non-

sequential surface tracking based on the cluster tree. This is one of the first

techniques using non-sequential traversal for alignment of facial performances.

This achieves high-quality temporal consistency of the final models with minimal

drift in comparison to previous sequential methods.

• Practical capture setup consisting of several HD cameras and three colour lights.

This does not require high-speed recording or active illumination as used in many

previous methods.

• 3D capture system for facial performance capture with a full pipeline from cap-

turing an actor to rendering 4D model of a performance.
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Chapter 2

Related work

This chapter presents a survey of work in the area of facial performance capture. It also

includes a brief overview of related work in the areas of photometric stereo and dense

motion capture which are important for the approaches developed in this research.

2.1 Facial performance capture

This survey of techniques for facial performance capture is organised according to two

key challenges pursued by researchers: realism and temporal consistency of the 4D

model of a performance. Solving both challenges is crucial for the creation of a digital

copy of a performance for use in film and television production.

2.1.1 Realism of the 4D performance model

Systems for facial performance capture differ in the amount of shape and appearance

detail present in the 4D performance model acquired. This section categorises the

systems according to underlying methods for shape reconstruction - stereo, structured

light, shape from shading, photometric stereo with colour lights and Light Stage. Some

of the systems combine two methods but they are categorised according to the method

providing finer geometric information.

11
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Stereo

Stereo reconstruction has been widely used for obtaining 3D models of the face [36,

19, 122]. A capture rig in the minimal configuration needs only two standard cameras.

Typically, more cameras together with lighting elements are used to increase facial

coverage and reconstruction quality. Facial shape can be reconstructed by matching

image patches in stereo camera pairs and fusing the resulting depth maps into a single

mesh. Alternatively, the whole surface is computed at once by multi-view stereo (MVS)

which jointly matches the image patches across views.

Passive stereo techniques rely on the facial appearance under diffuse white illumination

for 3D reconstruction and tracking. Therefore, they do not use any active lighting

elements and 3D models of the face can be acquired at camera frame-rate. Furukawa

et al. [36, 37] paint random pattern on the face to enhance weak skin texture in 1Mpx

images. This yields accurate mesh sequence exhibiting skin wrinkling but natural

appearance of the face is obscured. An alternative to the pattern is an increase of the

camera resolution, such that skin pore structure of skin is clearly visible. Bradley et al.

[19] construct a rig with 7 pairs of HD cameras zoomed on overlapping regions of the

face. The acquired high-resolution skin detail allows reconstruction of the geometry

comparable to the pattern-based method [37]. In addition, the meshes have extremely

detailed dynamic texture (10Mpx). DI4D capture system from Dimensional Imaging

[31] achieves similar fidelity of the facial model with less cameras.

Before the use of high-resolution cameras the weakness of skin texture was overcome

by projecting a random pattern on the face to improve stereo matching. But this

complicates simultaneous appearance capture. Zhang et al. [122] introduce space-time

stereo aided with a projected pattern to obtain accurate depth maps with little temporal

noise. Every third frame is recorded with full illumination to allow surface tracking and

appearance capture. Small deformations are not captured due to the lower resolution of

the tracked template than depth maps (Figure 2.1(b)). The texture sequence also lacks

details due to the use of 640 × 480 camera sensor. Two pairs of grey-scale cameras

for shape acquisition and two colour cameras for appearance acquisition operate at

60fps and full textured meshes are produced at 20fps. Commercial system Mova
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CONTOUR Reality Capture [76] uses a random pattern painted on the face to improve

MVS reconstructions at each frame. The pattern is fluorescent and invisible under

white light which allows joint capture of the shape and appearance by fast switching

between white and ultra-violet light. The geometries are aligned to a medium-resolution

mesh sequence textured with dynamic high-resolution colour map. To achieve truly

simultaneous capture of the shape and appearance, the pattern can be projected in the

infra-red part of light spectrum [121, 1]. 3dMD dynamic system [1] has two pairs of

infra-red cameras which provide depth maps for each side of face at 60fps. They are

synchronised with two colour cameras which simultaneously obtain textures.

Structured light

Structured-light systems typically project a series of fringe patterns on the actor [124,

115]. The patterns temporally encode planes across 3D space which combined with

rays cast from the observing camera define 3D surface points. This does not allow

capture of shape at video frame-rate and simultaneous appearance acquisition. High

frame-rate cameras are required to interlace the pattern projections for geometry and

white illumination for colour texture. This results in a temporal offset between shape

and appearance capture. A capture rig typically contains a light projector, a grey-

scale camera recording the projected patterns and a colour camera recording facial

appearance.

Zhang et al. [124] proposed the phase-shifting method which cycles only three sinusoidal

fringe patterns at 120Hz. 3D reconstruction is performed in real-time for each pattern

cycle independently. Colour texture is obtained using a long exposure on the colour

camera over the multiple patterns. The system provides textured meshes with temporal

sampling of 40fps (Figure 2.1(a)). Wang et al. [112] fits a template mesh to geometries

from Zhang’s scanner. The final performance model contains large skin folds and

wrinkles and has a low-resolution dynamic texture. Walder et al. [111] achieves a

similar quality of shape but better appearance due to higher image resolution of cameras

in their scanner. Weise et al. [115] present for a system with an additional grey-

scale camera which combines phase-shifting with stereo matching to improve depth
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discontinuities. Partial scans of the face are produced at 25fps. An actor-specific PCA

deformable model with fixed appearance is fitted to the scans and images but its shape

space does not model any skin wrinkles. Li et al. [64] enhance a warped template

mesh with details over time. Shape details such as medium-sized wrinkles are encoded

as displacement coefficients along vertex normals. They dynamically change over time

but the stable features are gradually aggregated and preserved in the model. Thus,

these features are present in the mesh even if a current scan does not contain them.

(a) (b)

Figure 2.1: Structured-light method [124] - fringe images, a shaded and textured model
of the face (a). Stereo-based method [122] fitting a template mesh to depth maps (b).

Shape from shading

Shape from shading derives surface normals and reflectance of an object lit by direc-

tional light from a single image. This is inherently an under-constrained problem for

a single surface point, therefore various global regularisation constraints have been

introduced [123]. General regularisation terms such as surface smoothness do not

yield correct shape for faces. Thus, statistical model of facial normals is used as a

shape prior for the regularisation of normal map [95, 96, 97]. Another option for the

prior can be 3D morphable facial model [83]. Local shading constraints from pixel

intensities can be modelled according to different reflectance models - Lambertian [95],

Torrance-Sparrow[96] or general bidirectional reflectance distribution function (BRDF)
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[97]. Facial shape integrated from normals contains larger wrinkles but no pore-level

skin structure. All mentioned methods provide static capture from a single viewpoint.

Dark-is-deep concept represents an approximation of shape-from-shading formulation,

such that a darker/brighter pixel intensity indicates a valley/bump on the surface

[63, 42]. This is valid especially under diffuse white illumination which is problematic

for standard shape from shading assuming collimated light. The reason is that a pixel

intensity depends more on the amount of light reaching a surface point than on a

surface normal. A large intensity change with respect to neighbourhood means that

the surface point is largely occluded and is inside a valley. Based on this simplified

interaction between illumination and surface, it is possible to hallucinate fine details

such as skin wrinkles or pores. Their shape can be be visually pleasing but is not

accurate.

Passive capture systems use dark-is-deep concept to enhance the medium-scale meshes

with approximate skin detail. This approach is suitable because passive setups typically

rely on white diffuse illumination. Bickel et al. [14] build a high-detail model of the

neutral face using 3dMD system [1] for base shape and the method by Weyrich et al.

[117] for normals and skin reflectance. This model is then deformed throughout the

performance using markers painted on the face. Shape of large wrinkles is inferred from

shading under diffuse illumination at every frame. They are painted by distinct diffuse

colours to simplify their tracking and improve the shape inference (Figure 2.2(a)). The

reconstructed wrinkles dynamically enhance the template model but fine skin geometry

and appearance remains fixed over time. Borshukov et al. [17] used a similar approach

for facial performance capture in The Matrix sequels but without use of any make-up.

A high-detailed laser scan of the neutral expression is stripped of fine details which are

stored in a static bump map. Medium-sized wrinkles are extracted from shading in the

images and added onto the scan as a dynamic displacement map. Five HD cameras

capturing the performance provide time-varying high-resolution texture map.

Beeler et al. [10] present a static capture system which acquires images of an actor under

white diffuse light by 7 DSLR cameras. MVS reconstructs a base shape of the face which

is further refined by the dark-is-deep approach. The approximate mesoscopic layer



16 Chapter 2. Related work

(a) (b)

Figure 2.2: Marker-driven technique enhanced by dark-is-deep concept [14] - one input
image, a deformed template mesh, a template with added wrinkles and a final textured
model (a). High-quality MVS reconstruction augmented with dark-is-deep approach
[10] - one input image, a shaded and textured final mesh (b).

displaces vertices of the base mesh to include small wrinkles and pores (Figure 2.2(b)).

This system has been extended to dynamic capture using 7 cameras with frame-rate

46fps [13]. The output is a high-resolution mesh sequence which contains fine skin

deformations.

Photometric stereo with colour lights

Hernandez and colleagues introduced a photometric stereo with colour lights (PSCL)

which obtains normal maps of dynamic surfaces [20]. An actor is simultaneously lit

by red, green and blue directional light from different angles. A normal map is com-

puted for every frame captured by a single camera without any time-multiplexing of

the illumination. An assumption of Lambertian surface with constant albedo requires

application of uniform make-up on the face. Integration of normal maps results in

detailed but distorted facial shape. This is a consequence of low-frequency bias in

normals which is a common issue of photometric stereo methods. Self-shadows due

to directional illumination also bias affected normals. A simple correction in [20] can

handle pixels with one occluded light assuming constant albedo. Hernandez et al. [49]
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offer more robust scheme for the shadow correction which permits varying grey-scale

albedo but uniform chromaticity. A normal map is optimised jointly to enforce surface

continuity in shadowed regions.

Vogiatzis et al. [110] alleviate restrictions on the reflectance by incorporating Phong

model. Chromaticity and specular reflectance parameters are assumed constant but

grey-scale albedo can vary across the face. Photometric calibration selects a dominant

chromaticity on the face, so that normals are calculated precisely for most of the surface.

Integration of normal maps produces visually plausible meshes with fine skin detail even

for faces without uniform make-up (Figure 2.3). However, regions with other than the

dominant chromaticity are distorted to some extent. Anderson et al. [3] combine

PSCL with depth acquisition by Kinect sensor [72]. Available depth maps enable

normal calculation for multiple chromaticities because image pixels can be associated

with a particular chromaticity based on orientation estimate. The obtained normal

maps augment the depth maps with geometric detail at every frame using [77].

Figure 2.3: Meshes integrated from normal maps by PSCL [110].

Light Stage

Debevec and colleagues introduced the Light Stage technology [27, 116, 69, 39] which

captures an actor under many different illumination conditions. High-resolution normal

map and reflectance of the face are calculated from changing appearance due to the

illumination changes. This is facilitated by complex lighting setup synchronised with

typically a single camera which records the face during cycles of illumination patterns

at high frame-rate. Effective frame-rate of the resulting facial models depends on the

number of illumination patterns and the camera frame-rate.
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The first Light Stage approach [27] records an actor in still pose while a single light

source moves around on a spherical trajectory for one minute. This samples facial

reflectance under 2048 light directions and allows relighting of the actor’s pose under

different environmental illumination. Hawkins et al. [45] improve the capture process

by rotating an arc of lights around the actor in 8s. Reflectance of the face is scanned

under 480 light directions for 60 different facial expressions and visemes. A blend-shape

model of the face is constructed together with the sampled reflectance which allows

relighting of the actor for any created pose. Actor’s performance can be captured by

deforming the model according to motion of markers on the face.

Wenger et al. [116] take the Light Stage concept to truly dynamic capture. A spherical

light dome with 156 LEDs enables quick changes between complicated illumination

patterns (Figure 2.4(a)). The dome is synchronised with high-speed camera recording

cycles through different patterns at 2160fps. A Hadamard illumination basis is used

instead of a cycle through individual lights to give improved signal-to-noise ratio (SNR)

by capturing the face under greater illumination for each sample image. Actor’s motion

during capturing the full basis is compensated by optic flow between fully lit tracking

frames inserted at 120Hz. Surface normals together with diffuse albedo and ambient

occlusion are computed from the sampled reflectance. A full set of observations is

acquired at effective rate of 24fps for very short performances which can be realistically

relighted afterwards.

(a) (b)

Figure 2.4: The Light Stage capture rig from [2] (a). A static capture with the polarised
Light Stage [67] - a high-resolution mesh and renderings with reflectance (b).
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The previous methods do not allow relighting with directional spatially-varying illumin-

ation because a facial shape is not recovered. Jones et al. [59] address this problem by

combining the reflectance sampling [116] with the structured light. A scanner projects

24 horizontal and vertical patterns to reconstruct the mesh. The Light Stage illuminates

an actor by 29 basis conditions which are used in photometric stereo to obtain diffuse

normals and albedo. The whole system runs at 1500fps and outputs high-resolution

meshes at 24fps. Motion correction between the basis images is not applied in con-

trast to [116], hence speed of facial movements is restricted. A static capture method of

Weyrich et al. [117] combines the Light Stage with stereo reconstruction [1]. The face

is recorded by 16 cameras during illumination cycles through 150 light directions. This

yields a comprehensive model of the face consisting of diffuse and specular normals,

diffuse albedo map and specular BRDF map. Parameters of sub-surface scattering in

the skin are measured separately by a fibre optic spectrometer. This results in highly

realistic renderings of the face.

To reduce a number of illumination conditions, Ma et al. [67] propose a new photomet-

ric stereo technique based on spherical gradient illumination (PSGI). Three illumination

conditions - X, Y, Z gradients are required for normal calculation and a constant il-

lumination provides colour albedo (Figure 2.5(a)). Because gradient illumination is

specularly reflected across the whole face, it is possible to compute dense normal and

albedo map only from specular component of the light reflection. Specular normals are

more accurate than diffuse ones because the light is reflected from the outer surface

of the skin and is not subject of sub-surface scattering. Diffuse and specular compon-

ent of the reflection are separated using linearly polarised illumination and a polariser

switching between parallel and cross orientation in front of the camera. The obtained

normal and albedo map are combined with a mesh from pattern-aided stereo to create

realistic static model of the face (Figure 2.4(b)).

To extend the combination of pattern-aided stereo and PSGI to dynamic capture [69],

polarisation cannot be used due to technical limitation of switching the camera polariser

at high speed. Therefore, photometric normals embossing the mesh reconstructed by

the stereo [77] are less crisp. The textured meshes in Figure 2.5(b) are acquired at

24fps by processing groups of 12 images under different light patterns (a subset in
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Figure 2.5(a)). The images are motion-corrected by optic flow between constantly lit

frames assuming linear motion. These techniques [67, 69] have been used for building

high-detail blend-shape rig in The Digital Emily Project [2]. Realistic digital copy of a

real performance is created by driving this rig according to an original video.

(a) (b)

Figure 2.5: A combination of PSGI and structured light by Ma et al. [69] - gradient
images, a subset of stripe patterns and different layers of the model (a); a shaded and
textured final model (b).

Wilson et al. [119] improves accuracy of normals on darker side of gradient patterns

in PSGI by introducing complement gradient patterns with opposite direction. Every

tracking frame with constant illumination is flanked by three original X, Y, Z gradients

and their three complements. The pairs of complement frames are jointly aligned with

the tracking frame using an optic flow algorithm handling gradient shading. This en-

hances crispness of normal map which is merged with 2.5D mesh computed by stereo at

the tracking frame. Replacement of the structured light with the stereo reconstruction

reduces a number of images required for a full 3D model in contrast to [69]. Dir-

ect temporal alignment of gradient images also enables accurate model interpolation

between the tracking frames, so that full facial models are available at every frame

captured. Fyffe et al. [39] extend [119] with MVS which improves fine details around

eyes and mouth. Also, better coverage of the face is achieved with 5 high-speed cameras

(264fps). Diffuse and specular reflectance are heuristically separated, so that normals,

diffuse and specular albedos can be obtained. Final models of the face are available
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at standard 24fps. Drawbacks of the diffuse/specular separation through polarisation

[67] are alleviated in the static capture system by Ghosh et al. [41]. Instead of mech-

anical rotation of a camera polariser, linear polarisation of the illumination changes

between latitude and longitude orientation by alternating two sets of lights. This also

lifts a single-view restriction imposed by a fixed polarisation pattern across the Light

Stage which is optimised for the specific camera position. Thus, multi-view capture can

be combined with the polarisation which improves MVS by utilising diffuse/specular

normal maps.

Discussion

The described categories of performance capture systems differ in several important key

listed in Table 2.1. They are compared in terms of lighting conditions during capturing,

level of geometric detail in the facial 3D model, type of appearance data acquired and

the number of observations required for obtaining one instance of the model.

Category Lighting
conditions

Geometry Appearance No. of
observations

Stereo diffuse white
illumination

medium-scale
facial shape

colour texture 1

Structured
light

multiple fringe
patterns

medium-scale
facial shape

colour texture 3-4

Shape from
shading

directional/diffuse
white illumination

approximate
skin structure

BRDF /
colour texture

1

PSCL directional colour
illumination

accurate skin
structure

grey-scale
albedo

1

Light Stage multiple illumina-
tion patterns

accurate skin
structure

BRDF 7-156

Table 2.1: Categories of capture systems according to realism of the 4D facial perform-
ance model.

Stereo-based approaches usually use a random pattern painted or projected on the

face to improve the reconstructed shape. Use of high-resolution cameras in recent

methods has eliminated need of the pattern because skin structure provides enough

image information for accurate matching. However, the camera resolutions are not

large enough to reconstruct pore-level details. A capture rig can be constructed from
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standard cameras and lighting equipment. The advantage of the stereo is reconstruction

of a 3D model at every frame. Passive white illumination also enables simultaneous

acquisition of colour texture of the face.

Inaccuracy of stereo matching on skin texture under low image resolution was circum-

vented using structured-light 3D reconstruction at the expense of active illumination.

This requires several observations with different fringe patterns projected on the face

at high frame-rate which can be distractive for an actor. Facial colour texture can be

captured in additional frame or extracted from the pattern frames. 3D models of the

face contain shape details up to larger skin wrinkles which is comparable to the current

stereo-based systems.

Standard shape from shading has been used for static facial capture under a single

directional light source. Statistical model of the face used as a regularisation prior

enables reconstruction of facial shape up to large wrinkles and estimation of different

parametric BRDFs. For diffuse white illumination the dark-is-deep concept approxim-

ates the shape-from-shading approach which is useful for dynamic capture systems with

passive illumination. At each frame the estimated normal maps and colour textures en-

hance medium-scale facial meshes from less accurate 3D reconstruction methods. This

provides approximate skin structure which is visually pleasing but less accurate than

photometric stereo.

Approaches using photometric stereo with colour lights acquire accurate pore-level geo-

metric detail at every frame. However, the obtained normal maps contain low-frequency

bias which distorts facial meshes integrated from the normals. PSCL has also a restric-

tion of single or few constant chromaticities across the surface which is not entirely

valid for the face. This allows only acquisition of grey-scale albedo maps. The capture

setup contains three passive directional colour lights which is considerably simpler than

the Light Stage.

Light Stage systems capture accurate facial shape up to fine skin details together with

extensive reflectance data. This requires complex capture rig alternating between many

illumination conditions which can be uncomfortable for the actor. High-speed cameras

record cycles of the conditions to ensure standard frame-rate of full facial models. Use
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of the Light Stage for photometric stereo with gradient illumination has reduced the

number of illumination patterns to seven and therefore necessary camera frame-rate

has decreased. However, optic-flow alignment of images under different illumination

patterns is still necessary and can be imprecise under fast facial motion.

2.1.2 Temporal consistency of the 4D performance model

Systems for facial performance capture can be divided into several categories depending

on how they achieve temporal consistency of 4D performance model. This section de-

scribes independent per-frame 3D reconstruction, 3D deformable models, systems using

markers, a dense pattern, geometry-based alignment and image-based alignment.

Independent per-frame 3D reconstruction

Static facial reconstruction performed independently at regular time steps is the simplest

way of capturing dynamic performance. However, lack of temporal consistency in the

data limits use to replay and does not allow spatio-temporal editing. For relighting

the actor in the video according to a new virtual environment, it is sufficient to obtain

time-varying surface normals and reflectance [116, 67]. To change the viewpoint or

cast shadows, the full 3D shape of the face needs to be reconstructed. This can be

obtained by stereo matching at every frame of multi-view image sequences [121, 1].

An alternative for reconstruction of the medium-scale geometry is a structured-light

approach [124]. Ma et al. [69] and Jones et al. [59] improve the geometric resolution of

structured-light reconstruction with normal and reflectance data provided by PSGI. A

similar enhancement with the photometric detail can be done for MVS reconstructions

[39]. Vogiatzis et al. [110] compute dynamic normal maps using PSCL and integrate

them into meshes in real-time.

Deformable models

Temporal consistency over a performance can be achieved using a 3D deformable model

of a face which is fitted to the captured data. A single mesh topology of the facial model
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and its possible deformations are designed before the performance alignment. Model

deformations are controlled by a set of parameters which is significantly smaller than a

number of mesh vertices. Thus, there is far less variables to optimise during the model

fitting to data constraints coming from images and/or geometry. Global optimisation

across the whole model helps to overcome missing strong constraints for parts of the

face (e.g. smooth skin regions).

Widely used deformable models for the face are based on a dataset of example facial

shapes which represents a space of possible deformations. These examples typically

include various facial expressions, visemes and eye poses. This is often inspired by

Facial Action Coding System (FACS) [35] which describes all possible states of the

face. The dataset can include faces of multiple people to create a person-independent

model. All example meshes are usually textured, so facial appearance can change

together with shape. A new instance of the face is created as a linear combination of

the examples comprising the model. Blending of the textured meshes is possible only

if they are in full correspondence. Mesh registration across different facial expressions

obtained by static 3D capture is complicated and often semi-automatic process.

Figure 2.6: Blend-shape model driven by markers [51].

The first type of linear statistical deformable model is a blend-shape model used in

facial animation [84]. Control parameters are blending weights used for interpolation

between example shapes. Because they are directly associated with them, they have

semantic meaning interpretable by an animator. The model is typically person-specific

due to nature of the application. The blending weights can be estimated for all frames
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of a real performance to aid the animation process or just track the actor’s face. This

is often based on motion of markers applied on the face [45, 51]. Huang et al. [51]

analyse the marker motion of a recorded performance to find the most compact set of

example expressions representing the data (Figure 2.6). The model is built from high-

detail laser scans which enable capturing medium-sized wrinkles. Although the dataset

is optimised for a particular performance, details are not completely correct for some

blended poses. Other methods exploit full image information instead of sparse marker

locations. Pighin et al. [85] optimise the weights so that rendering of the interpolated

textured mesh resembles a target image. To increase flexibility of the blend-shapes,

the face is also split into regions which are deformed separately. Alexander et al. [2]

has achieved impressive results with semi-automatic image-based method from Image

Metrics [57] which drives the blend-shape model by a single-view video.

The second type of linear model is the 3D morphable facial model by Blanz and Vetter

[15] which is derived from 2D Active appearance model [25]. Similarly to the blend-

shapes, it is built from a dataset of faces which vary in expressions and also in a person’s

identity. Control parameters are derived by Principal component analysis (PCA) on

the input dataset. This allows a reduction of parameters by selecting a number of the

most significant principal components. Although, PCA coefficients influence the face

independently from each other, they lack semantic meaning. This can be alleviated

by mapping them to semantic facial attributes but this involves manual labelling of

the examples. Fitting the morphable model to a 3D laser scan or images from several

viewpoints in [15] showed a potential for the facial performance capture. This is fully

demonstrated by recent work of Weise et al. [115] where a person-specific model is

tracked on-line on the raw geometries from a real-time structured-light scanner. An

extension [114] using the Kinect sensor [72] tracks the model on depth maps and images

simultaneously. Optic flow constraints from a single-view video stabilise the fitting in

the presence of high noise levels in the captured geometries.

The third type of linear model is based on multi-linear algebra [108]. It is created from

a set of 3D scans [1] of various people performing different expressions and visemes.

The model has three separate modes for identity, expression and viseme which provide

independent groups of control parameters not influencing each other. During facial
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(a) (b)

Figure 2.7: A subset of facial expressions used for building a 3D morphable model [115]
(a). Example of fitting the model to geometry from a structured-light scanner (b).

tracking only the expression and viseme parameters are estimated according to optic

flow constraints from 1000 selected mesh vertices. The identity mode of the multi-linear

model can be used for transfer of the performance to another actor.

The 3D deformable model can be also based on physical deformation operators instead

of shape interpolation in an example space. Control parameters then describe various

types of mesh deformations such as scaling, stretching, bending etc. DeCarlo et al.

[28] proposed a multi-part facial model where different sets of operations are defined

by a user over individual parts or groups of the parts. The deformation parameters

are directly incorporated into a model-based optic flow which estimates motion of the

face. Huang et al. [55] uses a multi-resolution model for the whole face where a coarse

mesh is deformed by simple operations to capture large movements. This is refined

on dense resolution by Free Form Deformations which are better suited for local non-

rigid motions. The model is tracked according to point clouds from a structured-light

scanner.

Markers or pattern

Free-form tracking of the face is desirable because deformations are not restricted by

any prior model. However, finding reliable correspondences for all vertices of a tem-

plate mesh is difficult and the mesh usually starts to drift on the face after short period
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of time. The reasons are fast non-rigid deformations and relatively uniform skin ap-

pearance in standard image resolution. A pragmatic solution to this problem has been

the application of markers pioneered by Williams [118] which is still widely used in

industry.

Up to several hundred passive markers are glued or painted on the face. They can

be observed by several cameras [44, 70, 14], a single camera combined with side-view

mirrors [66] or head-mounted camera rig (VICON Cara [107]). Because of their dis-

tinct appearance it is much easier to find correct correspondence across views and over

time in comparison to the skin. Correspondence algorithms have to be robust against

occlusions and mismatches due to fast motion. This is addressed by adaptive Kalman

filters [66] or graph matching [44]. 3D trajectories of the markers drive deformation of

a template mesh over time (typically a laser scan of the face). The resulting temporally

aligned meshes do not contain small surface deformations because of the limited num-

ber of markers. This is partially alleviated by Bickel et al. [14] who track large wrinkles

and synthesise their shape in the final mesh sequence in post-processing (Figure 2.2(a)).

Because the markers occlude the natural appearance of the face, the majority of meth-

ods capture the texture and reflectance data beforehand [66, 70, 14]. This results in

static appearance over time which is not visually pleasing. Guenter et al. [44] obtain

time-varying textures by erasing the markers and filling holes with synthesised skin.

Figure 2.8: Temporally consistent mesh from a pattern-based method [37] - a sample
image, shaded mesh, motion field and a textured mesh.

To achieve better sampling of facial motion, a dense random pattern can be painted on

an actor instead of markers. Work by Furukawa and Ponce [36, 37] tracks a dense mesh

reconstructed by MVS in the initial frame. The mesh is deformed directly according to
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multi-view image sequences without prior computation of unregistered meshes or optic

flow fields. The results show accurate temporal alignment of medium-sized wrinkles.

The Mova CONTOUR Reality Capture system [76] uses fluorescent pattern visible

under ultra-violet light to improve optic flows computed across multiple cameras. The

multi-view flows together with MVS meshes accurately drive deformation of a user-

designed mesh.

Geometry-based alignment

Instead of enhancing skin texture by markers or pattern, some approaches achieve tem-

poral consistency by focusing on the shape of the face. Input data are typically unre-

gistered point clouds or meshes coming from structured-light scanners. The geometries

often carry colour texture which can provide sparse constraints from strong appearance

features [112, 87]. The raw meshes in successive frames can be cross-parametrised by

mapping into the 2D domain and aligned there using the appearance constraints. Wang

et al. [112] unwrap the whole meshes onto a 2D disk using harmonic maps. Popa et al.

[87] segment the surfaces into regions which are unwrapped by local low-stretch maps.

The region-based approach allows handling topology changes and missing data. Drift

is restricted by hierarchical merging of sub-sequences which are aligned independently.

Li et al. [64] warp a template mesh in 3D space without any appearance constraints.

The warping is controlled by a deformation graph associated with the template which

is refined over time to accommodate new deformations observed in per-frame scans. In

contrast, motion of template vertices can be optimised directly based on the distance

from scans, acceleration, surface rigidity and colour variance as in [111].

Image-based alignment

Many techniques infer temporal correspondence from facial appearance rather than

shape because there is intuitively more information variance. Especially with increasing

resolution of cameras, the captured skin texture starts to contain fine details such as

pores and blemishes which create distinct patterns. However, it is still challenging
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to match skin patches over time because their appearance changes dramatically with

surface deformations. This commonly leads to drift during temporal alignment.

The input is image sequences from multiple cameras which are first processed separately

to obtain frame-to-frame 2D optic flows (widely used Brox’s method [82]). A template

mesh is fitted to the first frame and is sequentially propagated between frames accord-

ing to the multi-view flows [17, 93]. Sibbing et al. [93] compute sparse optic flow using

2D mesh where displacements are interpolated within mesh triangles. Surfel anchors

attached to the template are moved to the next frame according to the flows but their

position and orientation is refined afterwards according to MVS objective. The tech-

nique used for the Matrix sequels [17] includes a semi-automatic process for correcting

pre-computed optic flows to meet high quality of temporal consistency required.

The majority of methods also reconstruct facial shape using MVS at every frame.

The 3D reconstructions do not provide motion estimates as in the geometry-based

approaches but they rather constrain deformation of the template to the correct shape.

Vertices of the template mesh are moved according to flow fields in individual views and

conform to unregistered geometries [31, 122, 19, 13]. Zhang et al. [122] aid stereo with

a projected pattern but every third frame is recorded without it to allow computation

of optic flow. Deformation of the template is defined as a global optimisation over all

vertices. Data terms force the vertices to follow flow fields and stay close to depth

maps. A regularisation term penalises different motion in adjacent vertices.

Passive performance capture techniques [31, 19, 13] rely on a high image resolution to

acquire enough skin detail for reliable surface tracking (Figure 2.9). Frame-to-frame

alignment of the template mesh in [19, 13] differs from Zhang et al. [122]. Each vertex

is projected into individual views to obtain 2D positions in the next frame from flow

fields. The new 2D positions are back-projected onto a raw mesh in the next frame and

fused into a new vertex 3D position. After displacing all vertices separately the whole

mesh is regularised by Laplacian deformation to filter outliers. Quality of the alignment

and shape of small features can be improved by cancelling ambient occlusion in concave

regions (e.g. valleys in between wrinkles). Beeler et al. [12] remove estimated ambient

occlusion from input images. The recalculated optic flow is more accurate because skin
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appearance change is smaller between frames. The shape is refined according to the

difference between the current frame and a neutral expression warped by optic flow.

Figure 2.9: A temporally consistent mesh sequence from [19] - a fixed UV texture (a)
and time-varying real appearance (b).

Systems capturing the geometric structure of the skin exploit this for temporal align-

ment because of richer detail than skin appearance [68, 119]. The combination of ori-

ginal images with normal/displacement maps improves accuracy of optic flow. Ma et al.

[68] unwrap meshes from a structured-light scanner in a common texture space using

several markers on the face. Each mesh is textured with a fine displacement map from

PSGI which is used for dense mesh alignment by optic flow in the texture space. Wilson

et al. [119] combines PSGI with stereo reconstruction using one HD camera pair. Optic

flow is calculated between full-lit tracking frames in one view leveraging also normal

maps which are computed for them from adjacent gradient-lit frames. The full-lit im-

ages, normal maps and 2.5D meshes are interpolated between the tracking frames to

provide complete models for all captured frames.

Despite the high image resolution and the augmentation with skin geometry, motion

estimation still contains some amount of error. Sequential concatenation of frame-to-

frame estimates inevitably leads to the accumulation of errors (e.g. significant drift

after ∼ 200 frames in [119]). Bradley et al. [19] apply drift correction on the resulting

temporally consistent mesh sequence. Their assumption is that textures projected on

the meshes in every frame should be stable in texture space if the temporal alignment

has been accurate. Additional optic flow computed in the texture space measures
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shifts with respect to the initial frame and enables correction of the drift in 3D space.

However, there is still some amount of inaccuracy around lips which undergo the most

complex deformations (Figure 2.9). Non-sequential tracking of the face is proposed

by Beeler et al. [13] which relies on the frequent occurrence of the neutral expression

in any performance. The neutral expression is detected throughout the sequence and

so-called anchor frames are created. The template mesh is first tracked between the

initial frame and the anchor frames which contain similar neutral expression. The

tracking then continues sequentially between the anchor frames. This significantly

limits the possibility of drift due to shorter chains of frame-to-frame alignments towards

each frame. Impressive results demonstrate temporal consistency up to skin pore level

(Figure 2.10). The non-sequential approach is adopted by the commercial DI4D capture

system developed by Dimensional Imaging [31]. Anchor frames are selected by a user

which allows flexibility and control in terms of traversal through the data.

Figure 2.10: A temporally consistent mesh sequence from [13] - a fixed UV texture (a)
and time-varying real appearance (b).

Discussion

The described categories of capture systems differ in terms of temporal alignment used.

Temporal consistency of the 4D performance model has varying accuracy depending

on the amount of drift and resolution of motion estimation. Independent per-frame 3D

reconstruction of the face is the simplest way of capturing dynamic performance but

there is no temporal consistency in the captured data.
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Fitting a 3D deformable model to the input data at every frame implicitly yields tem-

poral consistency across the frames. The deformable model of the face needs to be

created before performance tracking but it is deformed according to a relatively small

number of parameters compared to the number of mesh vertices. Example-based de-

formable models require building a dataset of example facial shapes which need to be

fully registered. Another limitation is capturing facial expressions which are quite dif-

ferent from the example dataset. Also, the amount of shape and motion detail which

can be obtained depends on the resolution and number of examples. Enlarging the

dataset can partially alleviate these issues but it is time-consuming to create a complex

model. In the case of deformable models with defined deformation operators, the model

design is a manual task requiring a good understanding of facial dynamics.

Model-free methods for dense facial tracking do not restrict the captured motion by a

prior model but they are less robust to weak skin texture and fast non-rigid motions.

This problem is usually circumvented by enhancing the skin texture with sparse markers

or dense pattern. A sparse set of markers provides accurate alignment at their positions

but surface points in between have approximate temporal consistency. A dense random

pattern allows higher resolution of motion estimation which yields temporal alignment

of detail such as skin wrinkling. Limiting factors for using the markers or pattern are

inconvenience of their application on the face and occlusion of skin appearance.

To avoid uniformity of skin appearance, some approaches perform geometry-based align-

ment of per-frame 3D reconstructions without using image information. A drawback

is the level of shape detail in geometries which amounts to medium-sized wrinkles and

skin folds. Therefore, there is a limit to accuracy of the alignment working with the fea-

tures of this scale. Moreover, large regions of the face are fairly smooth at the majority

of frames which leads to drift of the tracked mesh.

With increasing camera resolution, many techniques pursue image-based alignment of

the facial performance without use of markers or a pattern. Surface tracking leverages

the large amount of skin detail present in images. Fine skin structure calculated by

some approaches can augment the original image information to further increase the

amount of detail. Despite the high image resolution and the augmentation with fine
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skin geometry, concatenation of frame-to-frame alignments inevitably leads to accumu-

lation of errors. Sequential tracking cannot also recover from a complete failure during

complicated motions. The drift and failure problems are addressed by non-sequential

tracking of the performance according to similarity between frames. However, the cur-

rent methods use fairly simple non-sequential traversal of frames by jumping to neutral

expressions occurring during the performance.

2.2 Photometric stereo

This section provides a brief overview of photometric stereo techniques which are useful

for 3D capture of facial detail. Photometric stereo recovers normals and reflectance

properties of surface points by analysing their image appearance under different lighting

conditions. The approach works locally on a per-pixel basis, so fine geometric details

visible in images can be reconstructed (e.g. skin wrinkles or pores).

Woodham [120] proposed the original photometric stereo with white lights (PSWL) for

Lambertian surfaces which allows a linear formulation of the problem. An object is sep-

arately illuminated by three white lights from different known directions. Each light

defines one linear constraint on the surface normal given the observed pixel intensity.

Three gray-scale images from the same viewpoint provide enough constraints to de-

termine the normal and gray-scale albedo at every pixel. In practice, pixel intensities

can be corrupted by image noise, shadows, specular highlights, inter-reflections or sub-

surface scattering of light. These can bias the normal and albedo estimation but use of

more lights solves some of these problems. Barsky and Petrou [8] employ 4 known light

sources to detect shadows and specular highlights in individual images. A corrupted

pixel in one image still allows correct estimation from three remaining images. This

technique uses colour images which enables estimation of colour albedo for every pixel.

Non-Lambertian surfaces are tackled by a higher number of lighting conditions [50, 43],

so that shape and spatially-varying BRDF of multiple materials can be estimated across

the surface.

Standard photometric stereo with time-multiplexing of lights is not suitable for dy-

namic capture due to surface motion between observations. An engineering solution is
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high-speed image acquisition and light switching which requires specialised hardware

to achieve satisfactory temporal sampling of the surface [94]. Image alignment is also

necessary between individual observations to maintain accuracy of the result. Further-

more, a common drawback of photometric stereo methods is sensitivity to photometric

calibration errors which cause low-frequency bias in estimated normals. Nehab et al.

[77] eliminate this bias using a coarse shape by other 3D reconstruction techniques.

2.2.1 Photometric stereo with colour lights

Photometric stereo with colour lights separates illumination conditions spectrally rather

than in time. Therefore, all illumination conditions can be recorded simultaneously in

a single colour image. This is the crucial property for dynamic capture because normal

maps of the surface can be reconstructed at every frame with no motion limitation. The

initial concept was presented by Drew [33] which considers a Lambertian surface with

unknown colour albedo and three spectrally different lights with unknown directions.

A pixel colour changes only with the orientation of a surface normal assuming uniform

colour albedo of the surface. Therefore, a single linear mapping between normals and

pixel colours can be derived for the whole surface. It is possible to estimate the mapping

from a single image up to an unknown global rotation of the normals.

Hernandez et al. [47, 20] recover the exact mapping for a given object from example

normal-colour pairs by least-squares fitting. The example pairs are obtained by captur-

ing a calibration board with a flat patch of the object material at various orientations.

Normal orientation is fully calculated but material and light properties are not ex-

plicitly determined (included in the normal-colour mapping). The constant albedo

assumption is alleviated to uniform surface chromaticity and varying grey-scale albedo

in [48]. Subsequently, Hernandez et al. [46] propose self-calibration by capturing a

short sequence of the object undergoing rigid motion. The normal-colour mapping is

optimised for dominant chromaticity on the surface. Vogiatzis et al. [110] incorporate

the Phong reflectance model which allows normal map computation for surfaces with

mixed diffuse and specular reflectance. Monochromatic specular albedo of the surface

is assumed to be constant together with the chromaticity.
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The assumption of uniform chromaticity is restrictive for objects such as faces where

normals in regions with non-dominant chromaticities would be biased. Anderson et al.

[4] extend PSCL to Lambertian surfaces with multiple piece-wise constant chromati-

cities. This is achieved using a coarse normal map from stereo 3D reconstruction.

Kim et al. [62] eliminate the uniform chromaticity assumption by resorting to time-

multiplexing of three mixed colour illuminations. This enables estimation of normal

and colour albedo maps of moving object at a half frame-rate of the camera. The

captured images need to be aligned by optic flow but pixel accuracy is not required.

Fyffe et al. [40] obtain per-pixel normal and colour albedo of the surface from a single

image without time-multiplexing illumination. This is achieved by constructing camera

system with 6 colour channels (bright and dark RGB). A multi-spectral pixel colour

provides enough constraints for 5 degrees of freedom in the normal and colour albedo.

2.2.2 Photometric stereo with gradient illumination

Photometric stereo with gradient illumination has been developed in the context of

facial capture with the Light Stage, thus some information are mentioned in Section

2.1.1. Gradient illumination avoids self-shadowing of the surface which is a problem

of directional lights in PSWL and PSCL. Also, the light reaches the surface from all

directions and is specularly reflected across the whole surface. This provides an option

to separate diffuse and specular component of the reflection and compute dense spec-

ular reflectance data as well. The limitations are complex lighting setup and multiple

observations under different gradient patterns. This requires high-speed recording and

illumination switching for capturing dynamic objects.

Ma et al. [67] proposed original PSGI with three gradient and one constant illumination

pattern. These patterns are captured twice under linearly polarised light to separate

diffuse and specular reflection from the surface. Normals and albedos varying across

the surface are computed for both reflection components. Efficient normal calculation

by Vlasic et al. [109] adds three complement gradient illumination patterns. This also

improves accuracy of diffuse normals because corresponding pixels are well exposed in

at least one image from each complementary pairs. Wilson et al. [119] use complement
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gradient patterns combined with light polarisation. Instead of doubling the number of

observations only one additional image is necessary to approximately extract specular

normal and albedo map.

2.2.3 Error analysis

Photometric stereo is susceptible to several kinds of error in the capture process which

have an impact on accuracy of normals and albedos. Error analysis published in this

area is focused on PSWL. Initial work by Ray et al. [89] compiles a comprehensive

list of potential sources of imprecision and identify two major factors - image noise and

calibration error in the light directions. Formulas describing the sensitivity of estimated

surface gradient with respect to pixel intensity and light direction errors are derived.

Jiang and Bunke [58] simplify this formulation by expressing surface orientation as a

unit normal. Spence and Chantler [100] search for the optimal configuration of three

light sources which minimises error in the estimated normal in the presence of image

noise. Positions of the lights are optimised to decrease the ratio between uncertainty of

the normals and the measured intensities which results in orthogonal light directions.

Sun et al. [102] also confirm that the orthogonal light configuration minimises the

impact of image noise and note that the normal error is largely dependent on surface

albedo. Drbohlav and Chantler [32] theoretically derive the optimality of the orthogonal

set of three lights and provide the optimal configuration for more than three lights.

Multiple lights should be placed equidistantly on a circle with uniform slant ∼ 54.74◦.

Barsky and Petrou [9] focus error analysis on shadow and specular highlight detection

in their method [8].

2.3 Dense motion capture

This section provides a brief overview of dense motion capture which is necessary for

achieving temporal consistency of facial performance capture. The focus is on image-

based motion capture for non-rigid surfaces observed by multiple cameras.
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2.3.1 Frame-to-frame scene flow

Dense motion capture of non-rigid surfaces was initially approached as independent

estimation of 3D motion fields between consecutive frames. Vedula et al. [105, 104]

introduced scene flow - a 3D vector field describing motion of the surface between two

frames. They estimate the scene flow by fusion of 2D flow fields from multiple views

for a volumetric model of the object. This requires pre-computation of 2D optic flows

and 3D geometry at every frame. Latter work [106] does not require the geometry

beforehand but works only for moving parts of the surface. Accuracy of the scene

flow can be improved by incorporating error statistics of input optic flow and shape

estimates [65]. Zhang et al. [125] integrate the scene flow estimation from 2D optic

flows with MVS reconstruction.

Other methods estimate the scene flow directly without pre-computing 2D optic flows.

They typically use a variational formulation of matching image information across views

and between consecutive frames. Pons et al. [86] alternate between MVS and scene

flow estimation in the same framework using a global image-based matching score. The

shape and 3D motion of an object are discretised over a volumetric level set. Several

approaches [126, 73, 56, 113] address calculation of a disparity flow which is a reduced

definition of the scene flow for the binocular case. The 2D flow field and disparity

change map are optimised over the reference image in the stereo pair. The approaches

differ in construction of the energy functional in the variational framework.

The result of these techniques is a sequence of 3D shapes and instantaneous scene flows

for the moving surface. There is no explicit temporal consistency in these data because

the shape and motion are typically sampled at each frame over a regular grid in the

3D space or image domain. This is not suitable for facial performance capture which

requires temporally consistent 3D models of the moving face.

2.3.2 Sequential surface tracking

Dense motion capture can use a common surface model for an object. The model is

deformed over time by surface tracking according to multi-view image sequences. The
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tracking is conventionally performed sequentially and scene flows between consecutive

frames are calculated for control points of the deformed model. This brings temporal

consistency into the resulting sequence of model instances.

A more tractable approach is to compute per-frame 3D geometries and 2D optic flows

beforehand. A template mesh is deformed to fit the sequence of unaligned geometries

and multi-view optic flows. Motion of vertices is optimised jointly subject to constraints

given by the optic flows and raw geometries. Scene flows are usually regularised by

enforcing smooth mesh deformation which suppresses incorrect motion vectors. This

type of tracking has been demonstrated for a single camera [47, 119] where a 2.5D

template mesh is warped between two frames by an optic flow and then back-projected

onto a depth map. To reduce accumulation of errors in the optic flows, Wilson et al.

[119] regularise the mesh warping by a local rigidity term.

Multi-camera tracking is presented by Zhang et al. [122] where the mesh deformation

is constrained using 3D shapes by MVS. Regularisation of vertex motion is included

in the scene flow estimation. In contrast, Bradley et al. [19] estimate a raw scene

flow between two frames and then regularise it by Laplacian deformation. Despite

various regularisation schemes, errors in frame-to-frame optic flows are propagated to

the estimated 3D motion which leads to drift of the mesh. Bradley et al. [19] address the

drift by additional optic flow estimation in the UV domain of the mesh after the initial

deformation. The residual flow corrects the final positions of the vertices. However,

the results are not satisfactory in regions undergoing fast and complex motion.

A disadvantage of the previous methods is pre-computation of 3D shapes and optic

flows at all frames. Also, independent optic flow computation in every view results

in inconsistencies of 2D flows which decrease accuracy of the resulting scene flow. 3D

tracking approaches overcome these disadvantages by joint estimation of shape and

motion directly in the 3D space. Courchay et al. [26] extend the variational frame-

work by Pons et al. [86] with mesh representation of the surface. They merge MVS

and scene flow estimation to a single energy functional which is optimised across the

whole mesh and over a temporal window. This results in a large optimisation which is

computationally expensive and susceptible to local minima. To achieve more tractable
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optimisation, the scene flow can be estimated using relatively small 3D patches at-

tached to the surface. The surface patches can be completely independent and produce

3D trajectories for a sparse set of surface points [23, 29]. Another option is to associate

the patches with control points of the surface model to deform it over time [79, 36].

Carceroni and Kutulakos [23] propose a comprehensive representation for the sur-

face patches which consists of 3D position and orientation, curvature coefficients, dif-

fuse/specular reflectance and linear transformation over time. This results in a complex

optimisation scheme with a high number of parameters. A simpler approach [29] ex-

tends the Lucas-Kanade 2D tracking algorithm [5] to the 3D domain which aligns a tex-

tured planar surfel with images from multiple cameras. The surfel has a single texture

template which has limited update over time to minimise the risk of drift. Neumann

and Aloimonos [79] use a multi-resolution subdivision model for the surface instead

of a collection of standalone patches. Deformation of the subdivision model between

frames is iteratively refined by shape and motion optimisation of surface patches around

its control points. Furukawa and Ponce [36] associate the patches with triangle fans

around vertices of a surface mesh. The textured patches are tracked independently

between two frames and raw motion vectors update vertex positions. Afterwards, the

whole mesh is regularised by Laplacian smoothing combined with local mesh rigidity.

The patch textures have fixed appearance from the reference frame which limits drift

of the mesh over time.

A common problem of these approaches is inaccurate motion estimation for surfaces

with weak and time-varying texture such as skin. Good temporal alignment of facial

performances is shown only for faces with a painted pattern [36] or for high camera

resolutions [19, 119]. However, significant drift of the surface model still appears after

fast non-rigid motions and longer periods of time.

2.3.3 Non-sequential surface tracking

Recently, surface tracking methods have tackled the drift problem by non-sequential

traversal of the input sequence. The template mesh is tracked from the initial frame

along tree structure of paths leading to all frames. Shorter chains of frame-to-frame
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alignments compared to sequential traversal reduce the amount of drift and the impact

of a complete failure.

A simple approach is presented by Beeler et al. [13] for tracking facial performances.

A traversal throughout a performance jumps directly from the initial frame to anchor

frames with a similar neutral expression and then continues sequentially between them.

Huang et al. [52] address global alignment of multiple un-registered mesh sequences

of whole-body performances. At first, individual sequences are tracked separately by a

geometry-based alignment method. Subsequently, frames from all sequences are com-

pared in terms of shape dissimilarity of the original meshes. The sequences are linked

through a few pairs of the least dissimilar frames which forms a sparsely connected graph

among all frames. The shortest path tree is calculated on this graph which is weighted

by frame-to-frame shape dissimilarities. The tree establishes a traversal according to

which a template mesh is propagated to all frames using the temporal correspondences

already computed. Budd et al. [22] construct a fully connected graph among frames in

all sequences with edge weights given by the shape dissimilarity. The traversal is optim-

ised by the minimum spanning tree which minimises the total path length through the

dissimilarity space. In contrast to [52], this provides more optimal traversal tree which

directly guides the actual surface tracking. Although, the tree-based non-sequential

tracking reduces the drift, it suffers from alignment inconsistencies where different tree

branches meet.

2.4 Conclusion

Review of the related work hints at potential research directions in the area of fa-

cial performance capture. This section highlights the most promising approaches with

respect to the objectives of this work.

From the perspective of realism of the 4D performance model, capture methods using

photometric stereo with colour lights offer a balanced solution for obtaining accurate

pore-level skin detail [20, 110]. A capture setup from standard video equipment with

no active illumination provides high-detail normal maps at camera frame-rate. On

the other hand, appearance acquisition is limited but the focus of this work is on



2.4. Conclusion 41

facial geometry. The problem with low-frequency bias in photometric normals can

be overcome by the combination with multi-view stereo 3D reconstruction. Multi-

view stereo provides the correct medium-scale shape of the face at every frame which

complements well the photometric stereo with colour lights. Stereo matching cannot be

aided with a strong random pattern which would interfere with the detail acquisition.

However, skin texture captured at high resolution enables accurate shape reconstruction

without any pattern [19].

From the perspective of temporal consistency of the 4D performance model, the most

practical methods calculate temporal alignment from natural facial appearance in multi-

view image sequences. The challenge is accurate tracking of the skin during fast non-

rigid facial movements without use of markers, pattern or prior deformable model.

The majority of methods [122, 19, 119, 13] sequentially deform a template mesh of

the face according to 2D optic flows in individual views and unregistered geometries.

Disadvantages of this approach are pre-computation of the 3D geometry and flow fields

at each frame and inconsistency of independent optic flow estimation across views. In

contrast, 3D tracking techniques such as [36, 37] directly compute shape and motion

of the mesh in the 3D space between consecutive frames.

Drift of the tracked mesh over time is the main limitation of recent capture systems for

facial performances. This has been tackled by high-resolution capture to acquire more

skin texture [19]. Another approach [119] is to use fine skin geometric detail together

with image information for mesh tracking. These advances improve frame-to-frame

temporal alignment but do not eliminate sequential accumulation of errors over longer

periods of time. Non-sequential tracking proposed for whole-body performance capture

[52, 22] offers an interesting mechanism to reduce the drift.



Chapter 3

Geometric detail capture

To create a realistic digital double of an actor it is crucial to capture the finest nuances

of their performance. The system for facial performance capture has to be able to

obtain a time-varying representation of facial shape up to fine skin structure. Our

focus is on the geometry of skin detail rather than its appearance because it is much

more difficult to manually model and animate believable dynamics of skin deformation

than create a realistic skin texture.

Photometric stereo methods are suitable for reconstructing fine surface geometry for a

wide range of materials. They estimate surface normals on a per-pixel basis which allows

recovery of all detail visible in the input images. The only limit on scale of the obtained

geometry is the resolution of the cameras used. Standard photometric stereo recovers

normals of surface points by analysing their appearance under different directional

illumination [120]. This is not suitable for analysing fast-moving objects such as a

human face because it requires time-multiplexing of lighting conditions. The issue with

surface motion between measurements can be circumvented by high frame-rate image

acquisition with fast switching of light sources but requires specialised hardware [94].

Photometric stereo with gradient illumination [67] allows reconstruction of separate

normals from the diffuse and specular component of light reflection but also requires

switching between different illumination patterns. The reconstructed normal maps

provide a great amount of skin detail for facial performance capture [69], but the main

42
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disadvantage is the complex capture setup with high-speed cameras, projectors and

a light stage. Photometric stereo with colour lights provides an alternative with a

relatively simple light setup and standard cameras [20, 110]. Individual directional

lights are separated spectrally rather than in time, thus all lighting conditions can

be recorded simultaneously in a single colour image. Rapid actor motion does not

pose a problem because normal maps are reconstructed independently for each frame.

Approaches using shape-from-shading principle [14, 10] recover geometric detail from

a single image but the normals are not metrically correct as in the photometric stereo.

In this chapter photometric stereo with colour lights is assessed in the context of detail

capture for facial performance. A formulation of the classic photometric stereo with

white lights is extended to colour illumination. Calibration for light directions and

interaction between illumination, camera sensors and surface material is explained. A

novel error analysis of this photometric technique is presented in terms of theoretical

formulation and simulation on synthetic data. Finally, evaluation on real face data

from performance capture is performed.

3.1 Photometric stereo with white lights

Following the work by Barsky and Petrou [8], photometric stereo with time-multiplexed

white lights (PSWL) is based on several assumptions. The observed surface is assumed

to be Lambertian resulting in a linear dependency between the observed intensity of

an image pixel and the associated normal. To preserve this linearity, the camera sensor

must have a linear response to incoming radiance. Moreover, the lights are modelled as

point light source at a large distance which guarantees constant direction of light rays

across the capture volume.

The grey-scale images {Ij}Jj=1 of the surface are taken from the same viewpoint. The

image Ij captures the surface illuminated by the light j with a direction vector lj

(|lj | = 1). Equation 3.1 describes the relationship between the pixel intensity gj in Ij

for a particular surface point and its corresponding normal n.

gj = lTj n

∫
E(λ)S(λ)R(λ)dλ = lTj αn (3.1)
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The interaction between the light source, surface material and camera sensor is ex-

pressed by the integral over wavelength λ. The function E(λ) is the light spectrum

which is assumed to be the same for all light sources. The function S(λ) is the spectral

sensitivity of the grey-scale camera sensor. The function R(λ) is the reflectance of the

material which varies across the surface. The integral is represented by a scalar factor

α which is commonly referred to as an albedo [8]. This expresses the appearance of the

surface point with the given material in the camera sensor used which is independent

from the spatial relationship between the surface and the light sources. However, the

true surface albedo is different because it depends solely on the material reflectance

R(λ). The final intensity gj is obtained by scaling α with the Lambertian dot product

between lj and n.

For a stationary surface and camera, the intensities gj of the same pixel across {Ij}Jj=1

are measurements for the same surface point. This allows straightforward combination

of constraints from individual images to estimate a per-pixel normal and albedo. Equa-

tion 3.2 defines a linear system constructed for every pixel by stacking Equation 3.1

across {Ij}Jj=1. A vector g contains the image intensities gj and a 3 × J illumination

matrix L consists of the light direction vectors lj .

g = Lαn →


c1

...

cJ

 =


lT1
...

lTJ

αn (3.2)

In the case of 3 lights, a single solution is calculated by inversion of the known illumin-

ation matrix (Equation 3.3). Note that for L to be invertible, lj have to be linearly

independent (they should not lie on the same 3D plane). Because n is a unit vector,

the albedo α equals |L−1g|. In the case of more than 3 lights, the linear system is

overdetermined and is solved in a least squares manner.

αn =

 L−1g, J = 3

(LTL)
−1

LTg, J > 3
(3.3)

Barsky and Petrou [8] extended PSWL formulated above to colour images. The RGB
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triples of a pixel in images {Ij}Jj=1 should form a line in RGB space. However, Principal

component analysis (PCA) is used to find its principal direction due to image noise. The

direction is given by a chromaticity of the corresponding surface point. The grey-scale

intensities gj are obtained by projection of the RGB triplets onto the line. Afterwards,

the normal n and albedo α can be calculated as in Equation 3.3. The benefit of this

method is that appearance of the surface is described by colour albedo on a per-pixel

basis by scaling colour direction with α.

3.2 Photometric stereo with colour lights

The main drawback of PSWL is time-multiplexing of lights which requires the camera

and surface to be stationary until all illumination conditions are captured. Any mo-

tion of either of them causes errors in the estimated normal and albedo. This issue is

addressed by photometric stereo based on colour lights (PSCL) [20]. Different lighting

conditions are separated in wavelength rather than time. Therefore, the surface can be

illuminated by all lights simultaneously. The number of lighting conditions is effect-

ively limited to three by the number of sensors in a conventional colour camera (red,

green, blue). A single colour image contains all the information necessary for the recon-

struction of normal and albedo map. Therefore, this technique is suitable for moving

surfaces because the surface detail can be reconstructed at each frame independently.

A single colour image I of the surface is captured under simultaneous illumination by

spectrally different colour lights j ∈ [1..3]. Because of the independent reflection of

different lights incident upon the surface, an observed RGB colour c of a surface point

is the sum of contributions from the individual lights. This preserves the linearity of

photometric calculation defined for PSWL in Equation 3.1. Equation 3.4 defines an

observed intensity in the red channel cr as the sum of intensities contributed by 3 lights

with different spectra Ej .

cr =

3∑
j=1

lTj n

∫
Ej(λ)Sr(λ)R(λ)dλ (3.4)

The red camera sensor has its own spectral sensitivity Sr different from the green
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and blue sensor. Each combination of sensor and light has a specific interaction, thus

the integral is not constant for different light conditions as for PSWL (Equation 3.1).

Therefore, the term albedo α from PSWL needs to be reformulated in the context of

PSCL. Surface reflectance can be separated into wavelength-dependent chromaticity

ρ(λ) and spatially varying grey-scale albedo a (R(λ) = aρ(λ)). In Equation 3.5 the

albedo a is factored out of the integral and scales the unit normal n.

cr =
3∑
j=1

lTj an

∫
Ej(λ)Sr(λ)ρ(λ)dλ (3.5)

To simplify the formulation, Equation 3.6 defines a coefficient vrj which encapsulates

the integral from Equation 3.5 (similarly for the green and blue sensor).

vrj =

∫
Ej(λ)Sr(λ)ρ(λ)dλ (3.6)

A vector vj = [vrj vgj vbj ]
T is then a response of the red, green and blue sensors to the

light j given the surface material. Equation 3.7 shows a full relationship of the RGB

colour c with the albedo-scaled normal an (later referred to as a scaled normal).

c = VLan →


cr

cg

cb

 =
[
v1 v2 v3

]
lT1

lT2

lT3

 an (3.7)

The illumination matrix L has the size 3× 3 and V denotes a 3× 3 interaction matrix

which consists of vj for individual lights. A unique solution for the normal and albedo

is calculated according to Equation 3.8 if V and L are known. Note that the vectors

vj cannot be linearly dependent so that V is invertible (similar condition as for L in

Equation 3.3).

an = L−1V−1c (3.8)

An important assumption of the technique is that the chromaticity ρ(λ) is uniform

across the surface, thus one matrix V can be estimated for the whole surface. If ρ(λ)

varies across the surface, V would be an additional unknown for each pixel which

leads to an under-constrained problem. The uniform chromaticity assumption allows



3.3. Calibration 47

independent per-pixel estimation of an using Equation 3.8 which yields a normal and

grey-scale albedo map for the single image I. The presented formulation of PSCL allows

correct calculation of the scaled normals only for surfaces with uniform chromaticity.

3.3 Calibration

The purpose of calibration is to determine the illumination matrix L and interaction

matrix V. The calibration of L means determining the light directions lj with respect

to the world coordinate system (WCS) in which the surface normals are expressed.

The technique used is inspired by the work of Zhou and Kambhamettu [129]. A white

specular sphere with known radius is placed at the centre of capture volume. The

3D location of the sphere is calculated from the centres of its projection in all views.

The specular highlights on the sphere indicate the directions towards individual light

sources. The ray back-projected through user-located image coordinates of specular

highlight is reflected according to the normal at the point of incidence on the sphere.

The reflected rays calculated from the highlights in all views for the light j are averaged

to obtain a robust solution for lj . The resulting L is constant across the capture volume

because the light sources are assumed to be distant and directional.

The technique by Hernandez et al. [48] has been modified for calibration of the inter-

action matrix V which is specific for the object captured. A calibration image Īj of the

object is acquired under each colour light j separately (Figure 3.1(a-c)). The object is

assumed stationary, so that the same pixel p in all three images corresponds with the

same surface point with the scaled normal an. In the case of illumination by the single

light j, a colour c of the pixel p in Īj is given by Equation 3.9 which is reduced from

Equation 3.7.

c = vj(l
T
j an) (3.9)

The vector vj from V cannot be exactly calculated because an is unknown during the

calibration. However, a direction of vj is given by the vector c which is a scaled version

of vj . Equation 3.10 shows estimation of the direction over multiple pixels in Īj which
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has robustness against image noise and varying surface chromaticity.

∑
p∈P

cp = vj(l
T
j

∑
p∈P

apnp) (3.10)

The set of used pixels is defined by a binary mask P which is the same for all images Īj

(Figure 3.1(d)). The mask P segments the maximal part of the object with dominant

chromaticity which is not shadowed (provided by a user). A colour cp of the pixel p

is observed for a scaled normal apnp. The direction of vj is obtained by normalising

the accumulated vector
∑

p∈P cp. This is repeated for every image Īj to form the full

matrix V.

(a) (b) (c) (d)

Figure 3.1: The image Īj of an actor with painted white make-up captured under each
colour light j separately (a,b,c). A mask P marks unshadowed facial region covered
with the make-up (d).

The object is illuminated by each light from the same direction during the calibration.

This differs from the spatially distributed positions used for the actual normal estim-

ation. The reason is that the term lTj
∑

p∈P apnp from Equation 3.10 is unknown but

the same for all images Īj . Thus, ratios between magnitudes of vj are equal to ratios

between magnitudes of their
∑

p∈P cp. After establishing relative ratios the final mag-

nitudes are given by setting the largest vj to a unit vector. This calculation provides

more accurate V than Hernandez et al. [48] who illuminate the object by individual

lights from different directions. They estimate the directions of vj the same way but

the final magnitudes of vj are given by ratios between the magnitudes of the largest cp

under individual lights. This means that the strength of sensor response for a particular
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light depends on a colour of the brightest pixel which is sensitive to image noise and

specular highlights.

3.4 Error analysis

Quality of detail reconstruction using PSCL is influenced by image noise or errors in the

parameters describing capture setup (illumination and interaction matrices). The error

analysis published in the literature (Section 2.2.3) has been in the context of PSWL and

does not consider the interaction matrix. The majority of previous work is focused on

finding optimal light configuration in the presence of image noise [89, 58, 100, 32, 102].

There is limited analysis of small inaccuracies in light direction vectors for few example

normal directions [89, 58]. The aim of this analysis is to understand how errors in the

estimation of illumination and interaction matrices affect the reconstructed normals

(secondarily albedos). Influence of image noise is also investigated to validate the

previous research.

3.4.1 Error in the illumination matrix

The theoretical analysis of PSCL is initially performed with an arbitrary matrix L

and the identity matrix V on an object with white uniform chromaticity (equivalent

to PSWL with 3 lights of the same intensity). The simulation-reconstruction chain in

Equation 3.11 firstly calculates a colour c for a scaled normal ñS = aSnS using the

actual parameters of a capture setup (index S). Secondly, the scaled normal ñR = aRnR

is reconstructed from c using estimated parameters (index R). The error between the

original ñS and the reconstructed ñR is expressed as a difference vector d.

c = LSñS → ñR = L−1
R c → d = ñR − ñS = L−1

R (LS − LR)ñS (3.11)

Assume a discrepancy in estimation of the blue light direction l3, thus the illumination

matrices LS and LR have different rows lT3S and lT3R. Figure 3.2(a) illustrates an example

case where the discrepancy (lT3S − lT3R) is in the tilt φ of blue light direction (the slant
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θ is unchanged). Equation 3.12 expands the expression of d from Equation 3.11 and

simplifies it for the case of error in l3. Equation 3.12 can be rearranged into Equation

3.13 to separate the direction of d (term C) and the magnitude of d (term A · term B).

d =


lT1

lT2

lT3R


−1 


lT1

lT2

lT3S

−


lT1

lT2

lT3R


 ñS =

1

lT3R(l1 × l2)
(lT3S − lT3R)ñS(l1 × l2)(3.12)

d =
1

cos γ3︸ ︷︷ ︸
term A

|lT3S − lT3R||ñS |cosβ3︸ ︷︷ ︸
term B

m3︸︷︷︸
term C

(3.13)

The vector m3 is the normalised vector (l1×l2) and γ3 is the angle between m3 and l3R.

The term A is a scalar coefficient which scales d according to the spatial configuration of

lights. The term B defines a zero-error plane whose normal is given by the discrepancy

(lT3S − lT3R) and which always crosses the origin of WCS (illustrated in Figure 3.2(a)).

On this 3D plane |d| vanishes because the angle β3 between ñS and (lT3S− lT3R) becomes

90◦ (cosβ3 = 0). The magnitude |d| linearly increases outside the zero-error plane with

the distance between the tip of ñS and the plane which is expressed by |ñS |cosβ3. The

slope of this dependency is given by the magnitude of discrepancy |lT3S − lT3R|. The

term B also flips the direction of d depending which side of the zero-error plane ñS is

on (illustrated by vectors d,d′ in Figure 3.2).

Equation 3.14 expands Equation 3.11 for the general case where there are discrepancies

in all light directions.

d =


lT1R

lT2R

lT3R


−1 


lT1S

lT2S

lT3S

−


lT1R

lT2R

lT3R


 ñS = d1 + d2 + d3 (3.14)

d1 =
1

lT1R(l2R × l3R)
(lT1S − lT1R)ñS(l2R × l3R) =

1

cos γ1
|lT1S − lT1R||ñS |cosβ1m1

d2 =
1

lT2R(l3R × l1R)
(lT2S − lT2R)ñS(l3R × l1R) =

1

cos γ2
|lT2S − lT2R||ñS |cosβ2m2

d3 =
1

lT3R(l1R × l2R)
(lT3S − lT3R)ñS(l1R × l2R) =

1

cos γ3
|lT3S − lT3R||ñS |cosβ3m3
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(a) (b)

Figure 3.2: Spatial relationship between an error d for a scaled normal ñS , actual light
directions LS and estimated light directions LR in WCS (viewed against the Z-axis).
A discrepancy between LS , LR in the tilt of blue light (a), in the tilt of all lights (b).

An important observation is that d is a vector sum of the difference vectors dj intro-

duced by errors in individual lj (as defined by Equations 3.12, 3.13). Because of this

combination the direction and magnitude of the resulting d can vary across the space

of scaled normals in a complex way. This depends on the spatial configuration of light

sources and location of the zero-error planes created by the respective discrepancies in

their estimated direction. Figure 3.2(b) illustrates an example situation with all lights

tilted in one direction by the same angle. The final difference vector d vanishes only

for ñS aligned with the Z-axis where the zero-error planes cross each other. Otherwise,

its magnitude increases with distance from Z-axis.

Note that |d| for any ñS directly depends on the spatial relationship between ljR. Each

contribution dj is scaled by 1
cos γj

(term A in Equation 3.13) which is independent of

the magnitude of discrepancy. The term A is minimal for each light ( 1
cos γj

= 1) if ljR

is an orthonormal set of vectors. Therefore, there is no additional scaling of d due to

positioning of lights when their directions are perpendicular to each other.
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3.4.2 Error in the interaction matrix

The analysis in the previous section can be expanded to include discrepancies in an

arbitrary interaction matrix V. In this case it is assumed that only the estimation

of V is incorrect (VS 6= VR,L = LS = LR). The simulation-reconstruction chain in

Equation 3.15 is therefore modified to reflect this.

c = VSLñS → ñR = L−1V−1
R c → d = ñR− ñS = L−1V−1

R (VS−VR)LñS (3.15)

A formula for d with individual vector components is shown in Equation 3.16.

d =


lT1

lT2

lT3


−1 [

v1R v2R v3R

]−1 [
v1S − v1R v2S − v2R v3S − v3R

]
lT1

lT2

lT3

 ñS (3.16)

By decomposition of matrix (VS −VR) it is possible to separate error contributions

made by discrepancies in individual vectors vj . This results in the sum d = d1+d2+d3

as for the illumination matrix L in Equation 3.14. The difference vector d1 expressed

in Equation 3.17 is related to a discrepancy in v1.

d1 =

1
lT1 (l2×l3)

[
l2 × l3 l3 × l1 l1 × l2

]
1

vT1R(v2R×v3R)


(v2R × v3R)T

(v3R × v1R)T

(v1R × v2R)T

 (v1S − v1R)l1ñS

=
[

m1
cos γ1

m2
cos γ2

m3
cos γ3

]
uT1

|v1R| cos δ1
uT2

|v2R| cos δ2
uT3

|v3R| cos δ3


︸ ︷︷ ︸

term A

|ñS | cos η1︸ ︷︷ ︸
term B

(v1S − v1R)︸ ︷︷ ︸
term C

(3.17)

The magnitude |d1| linearly increases from a zero-error 3D plane as for errors in the

illumination matrix L. The normal of the plane is l1 and term B defines the distance of

ñS from it where η1 is an angle between ñS and l1. The increase of |d1| depends on the

discrepancy vector (term C) but the final scaling coefficient is given by the magnitude
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of this vector after transformation by the matrices in term A. The direction of d1 is

also set by the transformed discrepancy vector and is the same for all ñS apart from

opposite sign on each side of the zero-error plane. The matrix V−1
R in term A can

be expressed in terms of unit vectors uj in a similar manner to L−1 in Equation 3.14

with the difference that the original vj do not have to be unit vectors. The vector u1

is the normalised vector v2R × v3R and the angle δ1 is defined between u1 and v1R

(respectively for other uj). Equation 3.18 for the aggregate error vector d reformulates

Equation 3.16 according to inference in Equation 3.17.

d = d1 + d2 + d3 =
[

m1
cos γ1

m2
cos γ2

m3
cos γ3

]
uT1

|v1R| cos δ1
uT2

|v2R| cos δ2
uT3

|v3R| cos δ3

 · (3.18)

(|ñS | cos η1(v1S − v1R) + |ñS | cos η2(v2S − v2R) + |ñS | cos η3(v3S − v3R))

The zero-error planes are perpendicular to the light directions lj and intersect at the

origin of WCS. Each discrepancy vector (vjS − vjR) is multiplied by common factor

L−1V−1
R (term A in Equation 3.17) and scaled by a distance from the respective zero-

error plane (term B in Equation 3.17). As was mentioned in Section 3.4.1, the scaling

coefficients 1
cos γj

are minimal when the light directions are orthogonal. In this case,

the length of any vector is not changed by multiplication with L−1. Equivalently,

coefficients 1
|vjR| cos δj

in V−1
R are minimal when vjR is an orthogonal set of vectors and

their magnitudes are large. Under these conditions for VR and L, |d| is scaled the least

for any ñS regardless of the magnitude of discrepancies in the interaction matrix.

3.4.3 Image noise

The last source of imprecision in reconstructed normals is the image noise. Assume for

this case that the estimation of both V and L is correct (V = VS = VR,L = LS = LR).

The simulation-reconstruction chain is then defined as Equation 3.19 where ∆ is a noise

vector from a Gaussian distribution N (0, σ2). Note that d does not depend on ñS as

in other sources of errors.
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c = VLñS → ñR = L−1V−1(c + ∆) → d = ñR − ñS = −L−1V−1∆ (3.19)

Optimality of light directions with respect to the noise in intensities has been invest-

igated in the context of PSWL [102, 100, 32]. The conclusion is that L has to be

orthogonal to minimise the impact of image noise. The theoretical proof by Drbohlav

and Chantler [32] can be generalised in a straightforward manner to include the inter-

action matrix V from the formulation for PSCL. As the result, the combined matrix

VL has to be formed by orthogonal vectors. Assuming L to be orthonormal, vj need to

be perpendicular to each other as well. Note that entries in V are all positive (integrals

over wavelength in Equation 3.6), therefore V needs to be diagonal to fulfil the ortho-

gonality criterion. In practice, this means that the light spectra and spectral sensitivity

of sensors should be matched (E1(λ) = Sr(λ), E2(λ) = Sg(λ), E3(λ) = Sb(λ)).

3.4.4 Experiments

The presented theoretical formulations are investigated by a set of experiments on

synthetic data. A white hemisphere is chosen as a test object in a virtual capture setup

because it provides all possible normal directions visible from a single camera. The

white albedo is uniform across the hemisphere to fulfil the chromaticity assumption

(|ñS | = 255). The virtual capture setup is illustrated in Figure 3.2. The hemisphere

is placed at the origin of WCS and the camera points along the Z-axis towards the

origin. The light directions have the same slant θ = 26◦ and are equidistantly spaced

tilts φ1 = 330◦, φ2 = 210◦ and φ3 = 90◦. Note that this is not the optimal set of light

directions, however it is similar to the real setup used for facial performance capture.

The spectra of lights are matched with spectral sensitivity curves of the camera sensors

(V is the identity matrix), thus red, green and blue light are used. A ground-truth

normal and albedo map of the hemisphere is generated for the virtual camera assuming

orthographic projection.

The simulation-reconstruction chain initially creates an image of the hemisphere from

the ground-truth albedo-scaled normal map using actual parameters of the capture
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setup (VS ,LS). Afterwards, the map is reconstructed back from the image using es-

timated parameters (VR,LR). The matrices VR and LR correspond to the description

of the capture setup because it is assumed that the system is built precisely according

to the specification. The matrices VS and LS deviated from VR and LR represent

the actual construction of the setup. The difference between the albedo-scaled normal

maps is examined for different types of discrepancies. Patterns of |d| over the hemi-

sphere show how the error vector spatially varies depending on the normal direction.

Different root mean square (RMS) statistics across the whole hemisphere are plotted for

increasing magnitude of individual discrepancies. They include RMS of the magnitude

of the difference vector |d|, RMS of the angle between actual and reconstructed normal

∠(ñS , ñR) and RMS of the difference between actual albedo and reconstructed albedo

(aS − aR). The angle ∠(ñS , ñR) and the difference (aS − aR) are added to illustrate

a split of d between the normal direction and the albedo. Note that shadows are not

modelled during the simulation and negative RGB values in areas occluded from any

light do not affect correct reconstruction of normals.

Error in the illumination matrix

The first set of experiments is focused on discrepancies in light directions and the

simulation-reconstruction chain follows Equation 3.11 (note that V is fixed). In Exper-

iment A the actual direction of blue light l3S is tilted away from the estimated direction

l3R by an angle4φ as shown in Figure 3.2(a). The pattern in Figure 3.3(a) corresponds

to theoretical expression in Equation 3.13. The black belt across the hemisphere in-

dicates the zero-error plane. The magnitude |d| increases linearly as normals tilt away

from this plane. With changing4φ the plane rotates because (lT3S−lT3R) changes its dir-

ection. There is a linear dependency between |lT3S − lT3R| and |d| according to Equation

3.13. However, the relationship between |lT3S−lT3R| and 4φ is sinusoidal. Therefore, the

RMS of |d| in Figure 3.4(a) increases sinusoidally but the trend is effectively linear for

small angles. The magnitude |d| is symmetrical around 4θ = 0, so the error does not

depend on the direction of tilt. The graph also shows that the error in normal direction

and albedo has a similar trend as the error in scaled normal. The RMS of ∠(ñS , ñR)

is lower than the introduced angular discrepancy in the light direction. The remaining
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inaccuracy is propagated to the albedo which is proportionally more affected than the

direction of normal. In Experiment B l3S is slanted away from the estimated l3R by

an angle 4θ. In comparison to Experiment A the position of the zero-error plane is

different but |d| changes across the hemisphere in a similar way (Figure 3.3(b)). The

RMS curves in Figure 3.4(b) depict more severe impact on the quality of reconstruction

than for a tilt. This is due to spatial location of the zero-error plane with respect to

the hemisphere.

(a) (b) (c) (d)

Figure 3.3: The magnitude of error in scaled normal |d| across the hemisphere: Exp.
A - the change 4φ = −10◦ in the tilt of blue light (a), Exp. B - the change 4θ = −10◦

in the slant of blue light (b), Exp. C - the change 4φ = −10◦ in the tilt of all lights
(c), Exp. D - the change 4θ = −10◦ in the slant of all lights (d). The magnitude |d|
is encoded in grey-scale - black = 0, white = 255 coordinate units.

All light directions ljS are tilted in the same direction by an angle 4φ in Experiment C

as depicted in Figure 3.2(b). The error vector d is theoretically expressed in Equation

3.14. The pattern of |d| in Figure 3.3(c) shows that the only zero error is on top of the

hemisphere and |d| increases radially from the Z-axis. This reflects the theoretical for-

mulation of three zero-error planes crossing each other along the Z-axis. The graph in

Figure 3.4(c) depicts that the dependency between the RMS of |d| and 4φ is again ef-

fectively linear for small angular discrepancies (reflecting Equation 3.14). Interestingly,

the albedo error is zero regardless of 4φ. This is caused by the fact that scaled normals

only change direction opposite to the rotation of the light setup and their scale is not

modified. In Experiment D all light directions ljS are slanted in the same direction by

an angle 4θ. The zero-error planes for individual lights cut through the hemisphere

in the same manner as in the single-light case (Experiment B). They intersect at the

origin of WCS, therefore none of the normals in Figure 3.3(d) is completely accurate.
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The magnitude |d| is smallest along the Z-axis and decreases radially towards the edges

of the hemisphere. The graphs in Figure 3.4(b, d) show that a discrepancy in the slant

angle generally has a stronger impact on the quality of the result than in the tilt angle.

In all experiments apart from C the albedo has higher error compared to its maximal

possible value than a deviation in the normal. Angular error of normal is always the

same or smaller than the discrepancy in light directions.

(a) (b) (c) (d)

Figure 3.4: The RMS graphs across different magnitudes of discrepancy for Exp. A - D
(a-d): RMS of |d| - green (in coordinate units), RMS of (aS − aR) - red (in grey-scale
levels) and RMS of angle(ñS , ñR) - blue (in degrees).

Error in the interaction matrix

The second set of experiments is focused on discrepancies in the interaction matrix V

and the simulation-reconstruction chain follows Equation 3.15 (note that L is fixed). VS

is deviated in individual coefficients from the ideal identity matrix VR. In Experiment

E only the coefficient vb3S which describes the interaction between the blue light and

blue camera sensor is changed. A decrease of vb3S from the original value 1 simulates

lowering intensity of the blue light. Equation 3.18 describing the general discrepancy

between VS and VR has a simpler form of Equation 3.20 because only the contribution

d3 for the blue light is non-zero.

d =
m3

cos γ3
|ñS | cos η3(vb3S − 1) (3.20)

Equation 3.20 is an equivalent of Equation 3.17 for the vector v3. The term A in Equa-

tion 3.17 is simplified to m3
cos γ3

because V−1
R is the identity matrix and the discrepancy

(vb3S−1) selects only the last column from L−1. The normal of zero-error plane equals
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l3 (stems from the term cos η3). The vector |d| linearly increases with distance from

the plane as shown in Figure 3.5(a). The direction of d is given by m3 across whole

hemisphere and does not change with (vb3S − 1).

(a) (b) (c) (d)

Figure 3.5: The magnitude of error in scaled normal |d| across the hemisphere: Exp. E
- intensity of blue light where (vb3S − 1) = −0.5 (a), Exp. F - sensitivity of blue sensor
where (vb3S − 1) = −0.5(b). The RMS graphs across different magnitudes of (vb3S − 1)
for Exp. E (c) and Exp. F (d).

The coefficients vb2S and vb3S are changed simultaneously in Experiment F. Their sum

remains equal to 1, thus the discrepancy is expressed as (vb3S−1) (as in Experiment E).

This experiment simulates a blue sensor sensitive to both green and blue light which

shifts the sensitivity curve from the blue to green light spectrum with decreasing vb3S .

The inference from Equation 3.18 simplifies the terms d2 and d3 in a similar way as

for Equation 3.20. The combination of these two zero-error planes in Equation 3.21

creates a single zero-error plane due to the constraint vb2S + vb3S = 1.

d =
m3

cos γ3
(|ñS | cos η2(vb2S − 0) + |ñS | cos η3(vb3S − 1))

d =
m3

cos γ3
|ñS |(cos η3 − cos η2)(vb3S − 1) (3.21)

The normal of the joint plane is (l3 − l2) represented by (cos η3 − cos η2). The plane is

visible in Figure 3.5(b) and the pattern of |d| is similar to the single-light tilt because

of a similar direction of (l3 − l2).

In both Experiments E, F the zero-error plane does not move with the enlarging dis-

crepancy (vb3S−1) because the discrepancy does not change the orientation of the plane

normal. However, a change of (vb3S − 1) influences |d| in a linear manner which is il-

lustrated by RMS curves in Figure 3.5(c,d). Notice that a discrepancy in the intensity
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of blue light leads to more severe errors than a discrepancy in the spectral relation-

ship between blue sensor, green and blue light. RMS of (aS − aR) and ∠(ñS , ñR)

show proportionally similar error for the albedo and the normal direction in the both

experiments.

Image noise

The third set of experiments is focused on the image noise where the simulation-

reconstruction chain follows Equation 3.19. The same matrices V,L are used for the

simulation and reconstruction of scaled normals. After simulating the captured image

an RGB noise vector generated from a Gaussian distribution N (0, σ2) is added to every

pixel. In Experiment G an orthogonal light configuration is used instead of the config-

uration from previous experiments (the tilt angles φj are the same but the slant angle

is θ = 54.73◦). This configuration is optimal with respect to image noise according to

theoretical findings. The identity matrix V represents ideal light-sensor interaction.

Figure 3.6(a) shows uniform noise in |d| across the hemisphere which proves no de-

pendency of the error on a normal direction. The same observation can be made for

Experiments H and I as well. RMS of |d| has a linear relationship with the standard

deviation of noise σ (Figure 3.7(a)). The graph also confirms theoretical formulation

of this relationship RMS(|d|)2 = 3σ2 presented in [32].

(a) (b) (c)

Figure 3.6: The magnitude of error in scaled normal |d| across the hemisphere for
σ = 10: Exp. G - optimal light setup (a), Exp. H - suboptimal light setup (b) and
Exp. I - suboptimal light-sensor interaction (c).

The original light configuration which has suboptimal light directions and the identity V

are used in Experiment H. Figure 3.6(b) demonstrates amplified noise in comparison to
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the optimal configuration. The fact that a noise vector ∆ is enlarged by non-orthogonal

L−1 is also proven by the increased RMS of |d| in Figure 3.7(b). Experiment I models

suboptimal light-sensor interaction by setting the coefficients vb2S = vb3S = 0.5 in V

(sensitivity of blue sensor spans spectra of green and blue light as in Experiment F).

The matrix L is set according to the optimal light setup to examine solely an influence

of V. Similarly to Experiment H, the errors in scaled normals are higher than in the

case of ideal matching between sensors and lights (Experiment G). It can be seen for

all experiments that the error in albedo and normal direction also linearly depend on

σ. The noise is propagated more to the albedo than to the normal direction.

(a) (b) (c)

Figure 3.7: The RMS graphs for different σ of image noise for Exp. G, H, I (a,b,c).

3.4.5 Discussion

The theoretical inference and the experiments on synthetic data showed that the error in

scaled normal d varies depending on surface orientation in the presence of an inaccuracy

in the illumination matrix L and interaction matrix V. Complex behaviour of d across

the hemisphere depends on the magnitude and direction of the discrepancy present.

This indicates that the uncertainty of the scaled normal should vary with respect to

its orientation given the uncertainty in the capture setup parameters. However, the

direction of d changes smoothly over the hemisphere which suggests a low-frequency

bias in the reconstructed normal and albedo map. This bias affects the overall shape of

the surface represented by the normal map but it does not threaten the reconstruction of

small geometrical detail. Only large calibration errors could cause significant flattening

of the detail in some ranges of normal orientation. The magnitude of discrepancy

vectors in L and V has a linear relationship with the overall RMS error of |d| for all
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experiments. RMS errors related to V cannot be directly compared to the errors for

L due to the different nature and magnitude of introduced discrepancies. Experiments

E, F work with wider range of inaccuracy because it is more likely to make larger

error in the estimation of V than L in practice. Image noise is propagated into scaled

normals and their RMS error is linearly dependent on the standard deviation of noise.

Unit normals are proportionally less affected than albedos when scaled normals are

decomposed. This also holds for the majority of discrepancies in V and L. Since the

main interest is in reconstructing correct shape rather than appearance, this observation

has positive implications.

The magnitude and spatial distribution of d is significantly influenced by the form of

L and V. In the presence of image noise, the orthogonality of vectors forming both

matrices guarantees minimal amplification of noise according to theoretical proofs. The

overall error in scaled normals is minimal under these conditions for discrepancies in

V and L as well. Two important guidelines can be identified on constructing a cap-

ture setup for PSCL from the theory and experimental evaluation. The directions of

lights should be perpendicular and their spectral characteristics should match sensit-

ivity curves of corresponding camera sensors.

3.5 Evaluation

Evaluation of the photometric stereo is conducted for facial performance capture. The

capture setup described in Section 7.2 consists of multiple HD cameras, red, green and

blue light source. The light configuration is not completely orthogonal (slant angle

∼ 24◦, deviations from equidistant spacing 120◦ between the lights). This is because of

spatial limitations and trade-off between the orthogonality and a size of shadows on the

illuminated face. Therefore, the matrix L is sub-optimal in terms of image noise and

calibration errors. The spectra of colour lights are well matched with spectral sensitivity

of corresponding camera sensors which results in almost diagonal V. Thus, the image

noise and calibration errors are not amplified through sensor-light-material interaction.

The error analysis in Section 3.4.4 is conducted using a virtual setup similar to the real

one. Thus, this provides useful information about the magnitude of potential error in
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normal estimation given discrepancies in the calibrated setup parameters.

The calibration of L assumes distant, directional light sources. However, in practice

the used light sources do not provide perfectly directional illumination as they are

relatively close given the size of capture volume. The direction of incident lights can

deviate on edges of the capture volume from L estimated in the centre. This does not

pose a significant problem since small imprecision in L does not have noticeable effect

on reconstructed normals. The matrix V is estimated independently for each camera

because of different sensor characteristics and colour balancing. The calibration of V

requires all colour lights to be in the same position. In practice, only colour filters are

changed on one of the light sources while the actor stays still. This assumes that all

sources have the same light spectra.

0. 57. 100. 152. 218. 281.

Figure 3.8: Example frames from normal map sequence by PSCL for the dataset Martin-
makeup2 - colour-coded (top row) and rendered with grey diffuse material (bottom
row). Colour coding of normal coordinates in WCS: x - red (left to right), y - green
(bottom to top) and z - blue (far to near).
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3.5.1 Reconstruction of facial performance

Experiments are focused on reconstruction of facial normals rather than albedos because

the focus of this work is geometry of the face. A time-varying normal map sequence

is reconstructed by applying PSCL estimation (Equation 3.8) to one of the image

sequences from the dataset Martin-makeup2 (described in Appendix G). The captured

actor is uniformly painted with diffuse white make-up (Figure 3.9(a)) to comply with

the assumption of uniform chromaticity. Other benefits of the make-up over plain skin

are higher signal-to-noise ratio (SNR), no sub-surface scattering of light and reduction

of specular highlights. The latter two interfere with the assumed Lambertian model of

the surface. Markers are painted on the face for tracking purposes (more explanation

in Appendix A).

(a) (b) (c) (d)

Figure 3.9: Reconstruction of the face by PSCL in frame 100 from the dataset Martin-
makeup2 - input image (a), albedo map (b), colour-coded normal map (c), normal map
rendered with grey diffuse material (d).

Figure 3.8 shows normal maps from one of the views in the dataset at example frames

(the whole sequence in the supplementary video). Facial geometry is captured up to

skin pore detail and fine wrinkles. The geometric detail is coherent over time and

image noise is not very noticeable because of good SNR. The normal maps across

the views are not completely aligned because of different low-frequency bias which is

introduced by errors in view-dependent photometric calibration. The major artefacts
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present in normal maps are caused by self-shadows (e.g. around nose, under chin).

Missing constraints from occluded lights lead to incorrect calculation of normals in

shadow regions shown by relighting of the face in Figure 3.8(bottom row). Incorrect

normals are also noticeable on the eyes or inside of the mouth which are areas with non-

Lambertian reflection of light. Lastly, markers are inconsistent with the rest of normal

map because of dark appearance and different colour than the make-up. Figure 3.9

depicts PSCL result in more detail for a single frame. The albedo map in Figure 3.9(b)

is fairly uniform across the face with some residual of local shading which indicates

good separation between shape and appearance. However, the appearance of the face

is not useful in practice due to the make-up covering the skin.

3.5.2 Comparison to photometric stereo with white lights

The method by Barsky and Petrou [8] working with colour images is used for PSWL

(described in Section 3.1). The same three light sources without colour filters are used to

secure comparable conditions with PSCL. Both methods use the same calibration data

for L and assume the same intensity of light sources without colour filters (effectively

V is the identity matrix for PSWL). A stationary actor with the neutral expression is

captured under simultaneous colour illumination for PSCL (Figure 3.10 (a)) and time-

multiplexed white illumination for PSWL (Figure 3.10 (b,c,d)). No make-up is applied

on the face for PSWL because it does not assume uniform surface chromaticity.

Figure 3.11 compares the results from both techniques. The geometrical detail recon-

structed by PSCL has similar quality to PSWL. Amount of noise in normals is similar

in spite of lower intensity of colour illumination. This is due to the fact that white

make-up preserves good SNR in the input image. PSWL suffers from shadow artefacts

as well and additionally there are incorrect normals in regions with specular highlights

(tip of nose and lips in Figure 3.11(bottom row)). The main disadvantage of PSWL

is a risk of detail corruption because of actor’s motion between measurements under

individual lights. But real appearance of the face is obtained in colour albedo map.
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(a) (b) (c) (d)

Figure 3.10: Input images - PSCL (a), PSWL (b-d).

3.5.3 Effect of facial make-up

To improve the performance of PSCL on fine skin details, white uniform make-up is

applied on the face. PSCL on plain skin produces a significantly worse outcome than

on white make-up as can be seen in Figure 3.12. This is also demonstrated by relighting

with moving light source in the supplementary video. Several sources of imprecision

prevent reconstruction of the finest level of skin detail. Firstly, the assumption of

uniform chromaticity does not hold completely for human skin. Therefore, skin patches

with chromaticities which deviate from the global mean given by the estimated V have

different biases in the normal and albedo map. This can be perceived as coarse noise.

Secondly, image noise has a larger impact because SNR is lower for the skin. Thirdly,

normals are a bit blurred due to subsurface scattering of light in the skin. This affects

mostly the red light, therefore the red channel of the image contains less high-frequency

information. Lastly, specular reflections cause incorrect surface orientation (tip of the

nose and the lips).

3.6 Conclusion

This chapter has investigated suitability of the photometric stereo with colour lights for

geometry capture of dynamic facial detail. The geometrical detail is reconstructed up
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(a) (b) (c)

Figure 3.11: Comparison of PSCL (top row) and PSWL (bottom row) - colour-coded
normal map (a), normal map rendered with grey diffuse material (b), albedo map (c).
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(a) (b) (c)

Figure 3.12: Comparison of PSCL without make-up (a), PSCL with make-up (b) and
PSWL (c) - colour-coded normal map (top row), normal map rendered with grey diffuse
material (bottom row).

to fine skin structure such as small wrinkles, pores. The normal maps are temporally

coherent and obtained at the camera frame-rate. The quality of normals is comparable

with standard photometric stereo with white lights if uniform make-up is applied on

the actor’s face. The calibration of light-sensor-material interaction has been improved

over Hernandez et at. [48].

Error analysis of the photometric stereo with colour lights has been conducted which

has not been previously addressed in the literature. In terms of image noise influence

the optimality of an orthogonal illumination matrix is confirmed [32, 100, 102] and the

same conclusion is drawn for a diagonal interaction matrix. Exact formulation of the

relationship between calibration errors in the illumination and interaction matrices and

the error in albedo-scaled normal is presented (in contrast to approximation through

partial derivatives in [89, 58]). The form of this relationship suggests that orthogon-

ality of vectors in the illumination and interaction matrices minimises the impact of

discrepancies in their calibration. The theoretical conclusions with simulations of vari-

ous errors provide valuable guidelines for design of a capture setup. They show that the

calibration errors introduce only low-frequency bias in normals which does not hinder

detail reconstruction. The normals are also proportionally less affected than albedo.
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The main limitation of the presented technique is the assumption about uniform chro-

maticity of the surface and the resulting requirement of make-up on actor’s face stem-

ming from it. Another problem is low-frequency bias present in normals caused by

photometric calibration errors which also differs across cameras. This prevents recon-

struction of the correct facial shape by normal map integration. Furthermore, normal

maps contain artefacts caused by shadows and very dark surface appearance. The low-

frequency bias and shadow artefacts are addressed by a normal map correction using a

reconstructed 3D mesh of the face which is presented in Section 7.5.

Photometric stereo provides a stream of normal maps in a common coordinate system

from each camera at native frame-rate and resolution. This representation encodes all

geometrical detail visible in original video streams, however it is still in the 2D domain.

Therefore, stereo 3D reconstruction is employed to obtain a 3D mesh of the face with

less detail at every frame. This mesh is combined with high-resolution normal maps to

form high-detail facial 3D model as described in Chapter 7. The sequence of normal

maps also lacks temporal consistency which is addressed in Chapters 4,5 and 6.



Chapter 4

Baseline sequential surface

tracking

In the previous chapter the photometric stereo with colour lights is used to capture

fine skin geometry at every frame but there is no temporal consistency across the data.

Moreover, sequences of normal maps from multiple views do not form a full 3D model

of the face. This chapter is focused on obtaining medium-scale facial geometry which

has temporal consistency throughout the performance.

Temporal correspondence of 3D shape was initially addressed by scene flow methods

[104, 65, 127, 86]. However, they rely on pre-computation of 2D optic flow in each

view and provide only instantaneous flow field between a pair of frames. To acquire

temporally consistent mesh sequences over longer periods of time, a template mesh

can be deformed according to multi-view 2D optic flows and an unregistered geometry

computed at every frame [122, 19, 47, 119]. A disadvantage is pre-computation of 3D

geometries and optic flows at all frames. Also, independent optic flow computation in

every view results in inconsistencies of 2D flows which decrease accuracy of the mesh

deformation. 3D tracking approaches [79, 23, 36] overcome these disadvantages by

joint estimation of shape and motion directly in the 3D space. To achieve tractable

optimisation, motion and shape of the surface are estimated using small 3D patches

attached to the surface.

69
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The best current 3D tracking method by Furukawa and Ponce [36] associates the surface

patches with triangle fans around vertices of the mesh. Each patch has a fixed multi-

view texture initialised at the reference frame. 3D tracking aligns each patch with

images at the current frame using this texture. Independent optimisation of individual

patches is aided by multi-view stereo initialisation and simple motion expansion across

the surface. New locations of vertices are regularised by Laplacian smoothing combined

with local mesh rigidity. The patch reference textures shrink and stretch together

with the mesh deforming over time. This improves their sequential alignment with

the images in all frames. The fixed texture limits drift of the mesh on the surface by

referring back to the reference frame (track-to-first concept [21]). This method captures

fairly complex motions of patterned surfaces and is able to recover from tracking errors

and moderate occlusions. In the extension of this work for faces [37], a rigidity term

in the regularisation is relaxed to accommodate extensive stretching and shrinking of

human skin. Good results were reported only for faces with dense pattern make-up.

This chapter describes a baseline surface tracking method inspired by the work of

Furukawa et al. [36, 37]. Building of a surface patch model for a template mesh at

the reference frame is explained. 3D matching of a surface patch to another frame

in multiple views is formulated and characteristics of the defined matching error are

analysed. Optimisation of 3D patch matching providing surface motion estimates is

described. The motion estimates constrain a weighted Laplacian deformation of the

template mesh between two frames. Sequential tracking of the mesh chaining the

frame-to-frame alignments yields a temporally consistent mesh sequence. The method

is evaluated on facial performances under various conditions to identify limitations of

the state-of-the-art in the surface tracking.

4.1 Problem formulation

The input is a sequence of observations {Ot}Tt=1 of a deforming surface for frames

{1, ..., T} where T is a number of frames in the sequence. Each observation Ot for a

frame t consists of a set of images {Ict }Cc=1. They are captured from multiple viewpoints

by synchronised and calibrated cameras where C is a number of cameras. It is assumed



4.2. Surface patch model 71

that each part of the surface to be reconstructed is observed by at least two cameras in

time. The output is a mesh sequence {Mt}Tt=1 where a triangular mesh Mt represents

the surface at the frame t. The mesh Mt = (Xt,Γ ) consists of a set of vertex 3D

positionsXt and a set of undirected edges Γ . The vertex positionsXt = {vi|∀i ∈ [1..N ]}

are defined in the world coordinate system (WCS) set by camera calibration (N is the

number of vertices). The mesh topology Γ ⊆ {(i, j)|∀i, j ∈ [1..N ]; i 6= j} is defined as

a subset of all possible undirected edges among the vertices.

The output sequence {Mt}Tt=1 is temporally consistent, therefore the vertex positions

Xt correspond to the same set of surface points at every frame t and the topology Γ is

fixed throughout the sequence. Initial placement of vertices on the surface and the mesh

topology are designed by a user for the reference frame r (r = t = 1). The sequence

{Mt}Tt=1 is obtained by sequential tracking which concatenates frame-to-frame non-

rigid alignments between successive frames t− 1 and t. The frame-to-frame alignment

estimates correspondence between observations Ot−1 and Ot.

4.2 Surface patch model

A model of the observed surface is constructed at the reference frame r according to

the concept presented by Furukawa and Ponce [36]. The surface is represented as a

triangular mesh M where 1-neighbourhood of the vertex i is denoted Vi = {j|∀(i, j) ∈

Γ}. Every vertex has a surface patch associated with it which is used to estimate

motion of the vertex between frames (Figure 4.1). The pose of a patch in WCS needs

to be represented independently from the mesh for estimation purposes. Therefore, each

patch i has its own local coordinate system (LCS). The 4×4 transformation matrix Ti

between LCS and WCS is formed from a translation vector pi and a rotation vector

ri in axis-angle representation. The patch pose is initially defined in such a way that

the origin of LCS coincides with the respective vertex i (pi = vi). The orientation ri

of LCS is such that aligns ZL-axis with the vertex normal given by surrounding faces.

XL and YL-axes are on the tangent plane such that YL = ZL ×XW ,XL = YL × ZL

where XW is an axis of WCS. The pose Ti = (pi, ri) changes during motion estimation

and the patch moves away from its corresponding vertex.
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(a) (b)

Figure 4.1: Surface patches attached to every mesh vertex (a). Central vertex 1 has
neighbours V1 = {2, 3, 4, 5, 6}. Its patch is formed by sample grid G1 (b) which lies on
the triangle fan with V1. The grid G1 has size O = 5 and spacial spacing do. LCS of
patch 1 (index L) is related to WCS (index W) through the transformation T1.

A patch i is formed by a vector of 3D points Gi (size 3×|Gi|) which forms an irregular

grid centered around the vertex i. The sample grid Gi is shaped according to immediate

triangle fan given by Vi of the vertex i (example in Figure 4.1). The sample points lie

on the adjacent faces along No rings with increasing radius from the central vertex.

Corner samples on mesh edges are spaced with a fixed distance do from pi in 3D space.

A value of do is chosen such that rings of any patch do not project further than 1 pixel

apart in every view ensuring the sampling of image information without aliasing. The

number of sample points increases with ring index o (central sample has o = 1). The

ring o contains o−2 uniformly spaced points between the corner samples on every face.

Sample grids can extend beyond the boundaries of the adjacent triangle fans but it still

follows the triangle planes. Point locations are stored in barycentric coordinates with

respect to the triangles they lie in. Benefits of this representation are that the sample

grid automatically changes shape with a modification of Vi and actual 3D positions in

Gi can be easily recomputed. The 3D positions are expressed in LCS, so that a change

of pi and ri leads to a movement of the entire sample grid in a rigid manner.

Each patch has a visibility set Qi = {c|c ∈ [1..C]} which initially contains view indices

where the vertex i is not self-occluded by the mesh. The set is further restricted by

the angle between the vertex normal (ZL-axis) and the flipped viewing direction of a

camera which has to be lower than 70◦. This avoids poor sampling of image information
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when projecting the patch grid into side views. Each patch has a multi-view texture

{Bc
i }Cc=1 which models its appearance across views at the reference frame r. Each

vector Bc
i ∈ [0..255]|Gi| contains grey-scale pixel values for the sample points Gi from

the image Icr . The 3D points Gi are first converted to WCS using Ti and then they are

projected into the view c to sample Bc
i = S(Icr ,TiGi). The function S() encapsulates

the projection of 3D points TiGi onto image plane of the camera c using its calibration

data and the sampling of an image Icr at the frame r. The obtained pixel values are

bi-linearly interpolated at the projected sample points. The textures {Bc
i }Cc=1 are valid

only for the views c ∈ Qi.

In the context of surface tracking the variables related to the vertices and patches

change over time (such as vi). Thus, they are denoted as a function of time vi(t) when

required. For brevity of notation, note that vi = vi(t) where t is the current frame.

4.3 Frame-to-frame non-rigid alignment

Alignment of surface observations Ot−1 and Ot between successive frames is achieved

in two stages. Firstly, displacements of individual mesh vertices are estimated by 3D

matching of their respective patches to image information in Ot. Secondly, the resulting

motion field for the whole mesh is regularised by global Laplacian deformation.

4.3.1 3D matching of surface patch

Finding a correspondence for the patch i between the frames t − 1 and t is posed as

a problem of aligning multi-view patch texture {Bc
i }Cc=1 from the reference frame with

images at the frame t. This problem is formulated as an optimisation task where the

patch sample grid Gi is rigidly moved in 3D space from its initial pose Ti at frame t−1

to match its texture with the images {Ict }Cc=1. Equation 4.1 defines an error function Ei

for assessing multi-view alignment of {Bc
i }Cc=1 with {Ict }Cc=1 given a local modification

of patch pose by p̂i, r̂i (illustrated in Figure 4.2(a)).

Ei(p̂i, r̂i) =
1

|Qi|
∑
c∈Qi

NCC(S(Ict ,TiT̂iGi), B
c
i ) (4.1)
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The 4× 4 transformation matrix T̂i is formed from p̂i, r̂i where a local translation p̂i

shifts Gi from the origin of LCS along its axes. A rotation vector r̂i with Euler angles

defines rotation of Gi around axes of LCS (order of rotations is XL,YL,ZL-axis). The

vectors pi, ri (the matrix Ti) are not directly optimised since they represent a global

pose with respect to the WCS. To achieve a more meaningful movement of the patch

grid reflecting local surface orientation, it is better to define a change of pose with

respect to the patch LCS (Figure 4.2(b)). After the local modification T̂i the sample

points Gi are expressed in the WCS through the transformation Ti. The vectors of pixel

values S(Ict ,TiT̂iGi) are obtained by projecting them to each view c in the visibility set

Qi. The grey-scale values sampled at the frame t are compared to the reference texture

Bc
i using normalised cross-correlation (NCC). Note that NCC = 1 − (NCC + 1)/2 is

the inverted function which represents an error. The sum of matching errors across

views is normalised by the size of the visibility set. The function Ei(p̂i, r̂i) cannot be

evaluated if Qi = ∅ or TiT̂iGi projects outside the image in any view from Qi.

(a) (b)

Figure 4.2: Multi-view alignment of patch textures {Bc
i }Cc=1 with images {Ict }Cc=1 where

Qi = {1, 2, 4} (a). Global patch pose Ti with respect to WCS is modified by local
transformation T̂i in LCS (b). Translation and rotation vectors p̂i, r̂i forming T̂i can
be decomposed into normal components (green) and tangential components (blue).

4.3.2 Analysis of matching error

The error function Ei (Equation 4.1) is analysed for an example patch to establish the

complexity of its profile in various circumstances. The size of patch is O = 20 and
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3D sampling distance do = 0.2mm. Sampling of parameters p̂i, r̂i evaluates Ei for

local deviations from initial patch pose Ti. The function Ei is computed separately in

the 3D space of local rotations r̂i and local translations p̂i for clarity of visualisation.

In the first case, Euler angles in r̂i are sampled with the step 0.01rad in the range

〈−1rad, 1rad〉 and p̂i is fixed as a zero vector. In the second case, the components of p̂i

are sampled with the step 0.1mm in the range 〈−10mm, 10mm〉 and r̂i is fixed as a zero

vector. The function Ei is displayed across the 3D spaces of rotations and translations

for the following experiments in the supplementary video. It can be assumed that the

profile of Ei with p̂i, r̂i varying simultaneously is more complex than in the separate

cases.

The error profiles for local rotation and translation are computed in two situations.

Firstly, the patch is matched at the reference frame r where its multi-view texture

{Bc
i }Cc=1 is sampled (using the initial pose Ti). This is the ideal situation since the

patch texture matches the images perfectly at Ti. Secondly, the patch is matched

using the reference texture at a frame t in which the surface has a different shape than

at the frame r. The starting pose Ti is roughly estimated to place the patch over the

same surface region as at the frame r. The estimate is not perfect to reflect a real

scenario where the initial pose of patch is not completely correct before 3D matching

at a particular frame.

(a) (b) (c) (d)

Figure 4.3: Example image from one of 4 views - the face with a random pattern at
the reference frame r (a) and the frame t (b); the face with plain skin at the reference
frame r (c) and the frame t (d). The patch used in experiments is visualised in red.
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Face with a random pattern

Figures 4.3(a,b) show two frames from a facial performance of a subject painted with

a random pattern which are used for the error analysis (the dataset Martin-pattern1).

The error function Ei for the frame r is visualised in Figures 4.4(a-f). Figures 4.4(a-c)

are slices of Ei for r̂i at the global minimum [000]T rad (the centre of slices). The value

of the minimum is zero in this ideal case. The profile of Ei for r̂i is clear with the size of

convergence basin approximately −0.2− 0.2rad (−11.5◦− 11.5◦). The error Ei is more

rugged for p̂i where the global minimum at [0 0 0]Tmm is clear but quite localised.

Its basin is around −0.7 − 0.7mm wide and is surrounded by many local minima.

This suggests that any gradient-based optimisation will require a good initialisation

to converge to the global minimum. The error Ei for frame t is visualised in Figures

4.4(g-l). The global minima are located at r̂i = [−0.14 0.33 −0.08]T rad (value 0.226)

and p̂i = [−0.2 −0.5 −1.0]Tmm (value 0.198). They are placed a bit off the centre

since the initial Ti is not correct. The global minima in both spaces are weaker and

have smaller basins around them in comparison to the frame r. This is caused by a

change of surface appearance between the frames r and t due to a deformation. Thus,

the patch texture does not perfectly match the information in individual images. If the

surface deformation alters its appearance significantly, Ei becomes ambiguous with no

clear global minimum.

Face with plain skin

To evaluate the influence of the amount of surface texture, the tests are performed on a

facial performance without any make-up (the dataset Martin-skin1). Example images

from the dataset are shown for the frames r and t in Figures 4.3(c,d). The function

Ei for the reference frame r is visualised in Figures 4.5(a-f). The zero global minima

for no rotation r̂i and no translation p̂i are easily identifiable. However, the extent

of convergence basins is smaller than for the random pattern texture: the rotation

around −0.1 − 0.1rad (−6.25◦ − 6.25◦) and the translation around −0.3 − 0.3mm.

Therefore, the initial pose of patch needs to be quite close to the global minimum

for an optimisation algorithm to find it. The error Ei for the frame t is visualised in
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.4: Slices through the error function Ei for the face with a random pattern at
the reference frame r (top row) and at the frame t (bottom row). Local rotation of
patch at r - slice with r̂i[x] = 0 (a), r̂i[y] = 0 (b) and r̂i[z] = 0 (c). Local translation of
patch at r - slice with p̂i[x] = 0 (d), p̂i[y] = 0 (e) and p̂i[z] = 0 (f). Local rotation of
patch at t - slice with r̂i[x] = −0.14 (g), r̂i[y] = 0.33 (h) and r̂i[z] = −0.08 (i). Local
translation of patch at t - slice with p̂i[x] = −0.2 (j), p̂i[y] = −0.5 (k) and p̂i[z] = −1
(l). Range of error values 〈0, 1〉 is mapped into grey scale (0 - black, 1 - white).

Figures 4.5(g-l). The global minima are located at r̂i = [0.21−0.84−0.33]T rad (value

0.228) and p̂i = [−4.8 1.3 3.7]Tmm (value 0.208). There is a large shallow basin across

the range of r̂i but the location of the global minimum is not obvious. The error Ei

with respect to p̂i has a complicated profile and contains multiple minima of similar

value. Larger decrease in clarity of Ei between the frames r and t than for the random

pattern is due to weaker skin texture which changes more dramatically with surface

deformation (e.g. small wrinkles, skin folds, pore stretching). In general, weaker surface

texture significantly increases ambiguity of the error function, so that matching using

the fixed reference texture becomes a difficult optimisation task.

Variants of the matching error

The characteristics of Ei have also been investigated for different formulations of Equa-

tion 4.1. Multi-view patch texture {Bc
i }Cc=1 can be replaced by a single texture Bi

which is sampled at the reference frame r from a view with the least foreshortening of

the projected sampling grid. Figure 4.6 depicts the altered Ei computed at the frame

r for the face with a random pattern and plain skin. The global minima and their
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.5: Slices through the error function Ei for the face with plain skin at the
reference frame r (top row) and at the frame t (bottom row). Local rotation of patch
at r - slice with r̂i[x] = 0 (a), r̂i[y] = 0 (b) and r̂i[z] = 0 (c). Local translation of patch
at r - slice with p̂i[x] = 0 (d), p̂i[y] = 0 (e) and p̂i[z] = 0 (f). Local rotation of patch at
t - slice with r̂i[x] = 0.21 (g), r̂i[y] = −0.84 (h) and r̂i[z] = −0.33 (i). Local translation
of patch at t - slice with p̂i[x] = −4.8 (j), p̂i[y] = 1.3 (k) and p̂i[z] = 3.7 (l).

basins are generally weaker, especially for plain skin. The causes are different colour

balance across cameras and different density of image sampling depending on patch

pose with respect to individual cameras. Taking these into account, the correlation of

single-view texture with the images is lower in comparison to the multi-view texture.

The superiority of multi-view texture has also been observed in results of actual surface

tracking.

Another possible alteration of calculating Ei changes the correlation measure. NCC in

Equation 4.1 works with grey-scale pixel values, however full RGB information can be

utilised. NCC can be computed in each colour channel separately and then averaged

across them (note that this is 3 times more costly). Figure 4.7(a-f) shows the altered

Ei at frame r for the face with plain skin. The function is very similar to NCC on

grey-scale (Figure 4.5(a-f)) and no improvement is observed in the surface tracking.

The use of colour information does not bring a significant benefit for skin under white

illumination. NCC can also be replaced by computationally less expensive sum of

squared differences (SSD). Figure 4.7(g-l) shows an example using grey-scale values.

The error Ei for local rotation is similar to NCC (based on grey-scale or colour values).
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.6: Slices through the error function Ei based on the single-view patch texture.
Evaluated at the reference frame r for the face with a random pattern (top row) and
for the face with plain skin (bottom row). Local rotation of patch at r - slice with
r̂i[x] = 0 (a,g), r̂i[y] = 0 (b,h) and r̂i[z] = 0 (c,i). Local translation of patch at r - slice
with p̂i[x] = 0 (d,j), p̂i[y] = 0 (e,k) and p̂i[z] = 0 (f,l).

The profile for local translation contains a broader convergence basin but the global

minimum is less apparent. Larger difference for p̂i is present because the patch is

shifted to surrounding surface regions which have different mean level of intensity. SSD

is not robust to a linear transformation of the signal in contrast to NCC, therefore the

error increases. A worse performance is observed with SSD in comparison to NCC for

the surface tracking.

4.3.3 Optimisation of 3D patch matching

Error function Ei of each patch i is optimised by independent gradient descent (IGD).

Initial pose Ti is given by the mesh Mt−1 at the previous frame: pi coincides with the

position vi(t− 1) of the respective vertex at t− 1 and ri is set according to the shape

of adjacent triangle fan in Mt−1. The local translation p̂i and rotation r̂i are optimised

with respect to Ti in two stages following [36].

Firstly, only normal components of local modification are targeted: p̂i[z] - shift along

the ZL-axis and r̂i[x], r̂i[y] - Euler angles around XL and YL-axes (illustrated in green

in Figure 4.2(b)). A change of normal components influences spatial position of the

patch tangent plane with respect to the surface. This effectively changes the surface
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.7: Slices through the error function Ei using NCC on colour (top row) and
SSD on grey-scale (bottom row). Evaluated at the reference frame r for the face with
plain skin. Local rotation of patch at r - slice with r̂i[x] = 0 (a,g), r̂i[y] = 0 (b,h) and
r̂i[z] = 0 (c,i). Local translation of patch at r - slice with p̂i[x] = 0 (d,j), p̂i[y] = 0
(e,k) and p̂i[z] = 0 (f,l). SSD does not have a fixed range of values as NCC, thus the
mapping to grey scale is set to get a good visualisation.

shape in contrast to the tangential components which slide the patch along the surface

(illustrated in blue in Figure 4.2(b)). Thus, normal components are initialised by

separate multi-view stereo optimisation in Equation 4.2 which refines only the shape.

ESi (p̂i[z], r̂i[x], r̂i[y]) =
1

|Qi|(|Qi| − 1)/2
· (4.2)∑

c∈Qi

∑
c′∈Qi,c′ 6=c

NCC(S(Ict ,TiT̂iGi), S(Ic
′
t ,TiT̂iGi))

The patch modified via p̂i[z], r̂i[x], r̂i[y] is projected into each pair of views c, c′ from

Qi. The sampled pixels are compared by NCC across all possible image pairs Ict , I
c′
t .

The sum of all matching errors is normalised by the total number of pairs. Note that

the patch texture {Bc
i }Cc=1 is not used at this stage. The optimisation of ESi provides

more stable results than Ei limited to the normal components (Equation 4.1).

Secondly, the full vectors p̂i, r̂i are simultaneously optimised based on the multi-view

alignment of patch texture in Equation 4.1. The previous initialisation of normal

components is meant to bring the starting point closer to a global minimum which

can have a small basin of convergence as demonstrated in Section 4.3.2. Different
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variants of optimised parameters have been tried for Equation 4.1. Optimising only

position (either p̂i or pi) yields less stable motion estimates. Direct use of global pose

parameters pi, ri instead of local p̂i, r̂i also leads to slightly worse outcome.

A multi-dimensional simplex method [78] is used for minimisation of the functions ESi

and Ei. This algorithm is able to work with general non-convex functions without

requiring knowledge of their derivative. Thus, it can be easily applied to the match-

ing error with a complex profile demonstrated in Section 4.3.2. The initial size of the

simplex is given by the magnitude of a perturbation from the starting value of the op-

timised parameters (1mm for p̂i, 0.1rad for r̂i). Search for the best minimum continues

until the size of the simplex (average distance between the centre of simplex and all its

vertices) decreases under 0.01mm or the number of iterations exceeds a limit of 200.

After convergence to a minimum the global patch pose Ti is updated by the final local

modification as Ti ← TiT̂i. The value of the minimum represents a matching error ei

for the resulting pose pi, ri of patch i. There is no guarantee that the global minimum

is always reached due to the complex profile of Ei with many local minima.

Each patch has its own error function which is optimised independently from other

patches. However, neighbouring points on the surface tend to have similar motion

vectors (especially true for the smooth, continuous surface of the face). Therefore,

Furukawa et al. [36] proposed additional initialisation of motion estimate for a patch

from its already tracked neighbours before any optimisation takes place. In our case,

only the position of the patch is initialised since Ei is more ambiguous in positional

components (Section 4.3.2). The position pi is updated using the adjacent patches

from V τ
i where a patch j is included if the matching error ej is below a threshold τe.

Equation 4.3 shows that pi is shifted from vi(t− 1) by a weighted average of accurate

motion estimates from the neighbours.

aj = (1− ‖vi(t− 1)− vj(t− 1)‖∑
j∈V τi

‖vi(t− 1)− vj(t− 1)‖
) · (1− ej∑

j∈V τi
ej

)

pi = vi(t− 1) +
1∑

j∈V τi
aj

∑
j∈V τi

aj(pj − vj(t− 1)) (4.3)

A weight aj of each displacement is derived from the relative edge length in the previous
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frame and relative matching error in the current frame. The weight aj decreases with

high error and large distance between patches. Patches with the largest number of

already matched neighbours have a priority in the processing improves quality of the

initialisation because a larger number of motion estimates is used.

4.3.4 Weighted Laplacian deformation

The 3D matching of patches produces a raw motion field described by 3D displacement

vectors d′i = pi − vi(t − 1) as depicted in Figure 4.8(a). Note that the rotation

vectors ri are not used at this stage. The field can contain outliers due to inaccurate

estimation of the current patch poses. The reasons can be ambiguity of the error

functions (especially in regions with weak surface texture) and convergence into local

minima. Also, the surface region represented by the patch can partially or completely

disappear (e.g. eyelids, inner lips) which makes the correct matching impossible. A

Laplacian deformation [99] is employed to regularise the raw motion field by filtering

the outliers and ensuring spatial continuity of the motion. Laplacian mesh deformation

tries to preserve the shape of the mesh Mt−1 subject to the motion constraints d′i

weighted by their matching errors. The outcome is a new set of displacement vectors

di = vi(t)−vi(t− 1) which define the final vi for the current frame t (Figure 4.8(b)).

(a) (b)

Figure 4.8: Motion estimates d′i for vertices in Mt−1 computed by 3D patch matching
(a). Final displacements di defining the shape of Mt computed by Laplacian deforma-
tion (b). Note a significant difference of estimates d′4,d

′
6 from resulting displacements

due to their down-weighting and inconsistency with overall surface motion.

The Laplacian deformation of the mesh is posed as a single optimisation problem across
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all vertices in contrast to the per-patch 3D matching. Equation 4.4 formulates the

functional which is minimised with respect to the displacements di.

argmin
d[x]

s‖L̃d[x]‖2 + ‖W(d[x]− d′[x])‖2 (4.4)

The problem is solved separately for each coordinate, thus d[x] denotes a vector con-

taining x-coordinates of all di (similarly for y, z). The functional consists of smoothing

and constraint terms which are weighted against each other by a smoothness coefficient

s. The smoothing term regularises the motion field across the mesh using a discrete

Laplacian operator. The N×N matrix L stacks up in rows the coefficients of Laplacian

operators for individual vertices determined according to Mt−1. Multiplication Ld[x]

then computes the Laplacian x-coordinate for each vertex [71]. The matrix L̃ represents

a linear combination of bi-Laplacian and Laplacian operator: L̃ = ((1 − µ)L2 + µL).

This is used to model bending (bi-Laplacian) and stretching (Laplacian) properties of

the surface. The balance between them is set by a coefficient µ (µ = 0.6 for skin ac-

cording to the experiments). If the motion d[x] is smooth and preserves the shape of

Mt−1 (Laplacian coordinates do not change much), the magnitude of L̃d[x] approaches

zero.

The constraint term incorporates raw displacements d′i in the form of soft constraints

which have varying influence expressed by the diagonal weight matrix W of size N×N .

The weight wi of a particular displacement d′i is entered in the corresponding place on

the diagonal of W as
√
wi. The constraint weight is derived from the matching error

ei associated with d′i. The mapping between ei and wi described in Equation 4.5 is a

declining linear ramp with a half-width δe centred around an error threshold ξe.

Figure 4.9: The mapping described
in Equation 4.5.

wi =


0, (ei − ξe) > δe
1, (ei − ξe) < −δe

− 1
2δe

(ei − ξe) + 1
2 , |ei − ξe| ≤ δe

(4.5)
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In some situations, the error ei can be low for outlying d′i, hence the estimate is not

correctly down-weighted by wi. This happens typically if the surface texture is repetit-

ive and the patch is matched to the neighbouring region with very similar appearance.

However, this kind of outliers occurs rarely according to our experiments and they do

not have large magnitudes which would significantly influence overall deformation. The

number of constraints can generally be smaller than the overall number of vertices due

to failures in patch matching (e.g. full occlusion of a vertex). For the vertices without

motion estimates the corresponding positions in W and d′[x] contain zero entries. Their

final displacements are then derived purely from the motion of the whole mesh. If the

final displacements di match closely the estimates d′i, the constraint term approaches

zero.

Minimisation of both terms in Equation 4.4 is a least-squares problem which leads to

an over-determined linear system in Equation 4.6.

√sL̃
W

d[x] =

 0

Wd′[x]

 (4.6)

This system is solved by LU decomposition for each coordinate of the displacements

di separately. The final vectors di represent the optimal motion field between frames

given input constraints and assumed material properties of the surface. Iterative solving

of displacements with local rotation update often included in the Laplacian deforma-

tion framework [98] is not used. The described scheme is sufficient since there are no

significant rotations between successive instances of the facial surface.

The presented regularisation is simpler and can be solved more efficiently in contrast

to Furukawa and Ponce [36]. The surface motion between frames is regularised instead

of smoothing surface shape in the target frame t after raw motion estimation. Their

approximate preservation of mesh shape from the reference frame prevents degradation

of surface geometry but leads to non-linear optimisation. The non-linear optimisation

is performed twice because the first pass with strong smoothness only identifies outlier

constraints and the second pass regularises the mesh after filtering the outliers. The

explicit weighting of constraints proposed in this work suppresses the outliers prior to

the regularisation and thus retains a single-pass process.
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4.4 Sequential tracking

The proposed frame-to-frame alignment is used to sequentially estimate motion of the

surface starting from the reference frame r. The surface is represented by a mesh

Mr = (Xr,Γ ) which shape and topology are defined by the user. The surface patch

model is built using Mr and {Icr}Cc=1 as described in Section 4.2. The mesh Mr needs

to be accurate, so the patches are placed directly on the surface. Otherwise, multi-

view textures {Bc
i }Cc=1 would not be consistent with each other and represent different

surface regions. The following steps are then repeated for each pair of successive frames

t− 1 and t starting from r + 1.

1. The correspondences are estimated at frame t for all patches associated with Mt−1

using the 3D patch matching based on IGD (Sections 4.3.1, 4.3.3).

2. The patch motion estimates drive the Laplacian deformation of Mt−1 to Mt (Sec-

tion 4.3.4).

3. The pose Ti is updated according to a new shape of Mt for every patch. pi is set

to a new value of vi and ri is changed to align the ZL-axis with a new normal at

the vertex i and roughly preserve the direction of XL,YL-axes in the frame t−1.

4. The visibility sets of patches Qi are updated according to Mt.

5. The sample grids of patches are recomputed to reflect a shape change of the

respective triangle fans. Note that new positions Gi are expressed in the updated

LCS (the pose Ti).

Every patch is treated as a rigid element during 3D matching in the frame t but

its shape changes over time due to the step 5. This causes time-varying appearance

of the reference patch textures when projected into views. The textures skew and

rotate together with the patch motion; they shrink and expand together with the patch

deformation. This improves the matching of the textures to the images in the case of

non-rigid motion of the surface. The same accuracy cannot be achieved if the reference

texture would be represented by a standard square window in the image plane. The 2D

sample window does not have any robustness against changes of the surface pose and
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shape in contrast to the 3D deformable sample grid. The temporally consistent mesh

sequence {Mt}Tt=1 with a fixed topology is a result of processing the whole sequence

following the described algorithm.

4.5 Evaluation

Evaluation of the baseline surface tracking method is conducted for several facial per-

formances captured under various conditions. The datasets differ in the nature of

facial appearance: a fixed facial texture for Synthetic-skin1, a painted dense random

pattern for Martin-pattern1, a set of painted markers for Martin-markers1 and plain

skin for Martin-skin1. They have been recorded under uniform white illumination by

the capture system described in Section 7.2. Technical description of the datasets can

be found in Appendix G. All of them provide multi-view image sequences together

with camera calibration data. The resolution of temporally consistent mesh computed

for all performances is 2689 vertices and 5248 faces. Due to the nature of surface

tracking results the reader is encouraged to assess them visually in the supplementary

video. A common parameter configuration used for all datasets is: NCC on grey-scale,

No s τe
Martin-pattern1 20 1.0 0.1
Martin-markers1 11 7.0 0.0

Martin-skin1 11 13.0 0.0
Synthetic-skin1 11 13.0 0.1

Table 4.1: Parameters for the baseline surface tracking across the evaluated datasets.

do = 0.2mm, ξe = 0.1, δe = 0.05. Table 4.1 shows parameters varying across the

evaluated datasets to reflect the amount of surface texture. The patch size No is lower

for the plain skin than for the random pattern. It is more likely to match correctly

smaller patches because the skin appearance due to surface deformations changes more

than the pattern. The smoothness coefficient s increases for weaker surface texture to

strengthen the regularisation which needs to deal with a larger portion of outliers in the

estimated motion field. The initialisation step expanding low-error motion estimates

has a positive impact only for the datasets Martin-pattern1 and Synthetic-skin1 where
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the fixed patch texture works well (as reported in [36]). The other two datasets with

predominantly natural skin texture on the face contain too many outlying displace-

ments for a reliable motion expansion and the tracking becomes more unstable. The

initialisation of 3D patch matching by separate multi-view stereo optimisation brings

marginal improvement across the datasets according to further experiments.

4.5.1 Synthetic facial performance

Absence of ground-truth for real datasets is a common issue in the area of dense surface

tracking. To allow quantitative evaluation, the dataset Synthetic-skin1 is artificially

created. It is derived from a real performance to achieve realistic facial motion (the

dataset Martin-skin2) . The temporally consistent mesh sequence is obtained by non-

sequential tracking (Chapter 6) and temporally smoothed across cuts to improve the

coherence over time. This sequence represents the ground-truth {MGT
t }Tt=1 which is

textured with a fixed UV texture of the face from the reference frame. The fixed

texture is not ideal since the real facial appearance changes over time but this avoids

introduction of any inconsistencies between appearance changes and underlying motion

of the geometry. The textured {MGT
t }Tt=1 is rendered into virtual views to obtain image

sequences {{Ict }Cc=1}Tt=1.

The tracked mesh Mr is taken from {MGT
t }Tt=1 at the reference frame r so the resulting

mesh sequence {Mt}Tt=1 can be directly compared to the ground-truth on per-vertex

basis. This dataset gives an advantage to the tested method because the surface texture

does not change throughout the sequence which suits the track-to-first concept with

fixed patch textures. Snapshots from the temporally consistent {Mt}Tt=1 are presented

in Figure 4.10. They demonstrate that the shape and motion are well recovered across

the whole face. There is occasional drift of the mesh in the mouth region which is

caused by severe distortion of the UV texture during mouth opening (noticeable at

the frame 66). The accuracy of the result is illustrated by the ground-truth error in

Figure 4.11. This is an average Euclidean distance between corresponding vertices of

Mt and MGT
t . The error fluctuates over time with peaks at the extremes of different

expressions. The highest peak around frame 66 reflects the drift during the largest and
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0. 40. 66. 146. 228. 354.

Figure 4.10: Snapshots from the temporally consistent mesh sequence for the dataset
Synthetic-skin1: input images from one of the views (first row), meshes rendered with
a uniform material (second row), meshes rendered with a fixed UV texture (third row)
and difference to the ground truth (fourth row). Euclidean distance to corresponding
vertices in the ground truth is visualised across the face (blue = 0mm, red = 2mm).
The left most column represents the start/reference frame and the right most column
the end frame of the sequence. Actual frame numbers are denoted.
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most complicated deformation. The tracking algorithm recovers after each expression

change, so there is no increasing trend which would suggest gradual accumulation of

errors. The overall error across all vertices in every frame has a mean of 0.467mm and

a standard deviation of 0.994mm.

Figure 4.11: Average Euclidean distance across vertices to the ground-truth mesh se-
quence for the dataset Synthetic-skin1.

4.5.2 Influence of surface texture

The baseline surface tracking approach is evaluated in terms of the level of surface

texture using the datasets Martin-pattern1, Martin-markers1 and Martin-skin1. The

datasets contain a similar performance with comparable timing by a single actor. They

differ in the amount of make-up painted on the actor’s face: a dense random pattern for

Martin-pattern1 (Figure 4.12), a set of markers for Martin-markers1 (Figure 4.13(top))

and plain skin for Martin-skin1 (Figure 4.13(bottom)).

Example frames from the temporally consistent mesh sequence for the dataset Martin-

pattern1 in Figure 4.12 demonstrate correct capture of facial shape and its change

over time. The shape details such as eye-brows wrinkling are recovered with temporal

consistency (frame 182). The method is able to handle extensive surface deformations

such as puffing out the cheeks or fast moving regions such as forehead and chin (frame

216). The only drawback are small shakes of the mesh in eye and mouth regions at the
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extremes of some expressions. This is due to a significant change of appearance of the

highly deformed regions in comparison to the patch reference textures.

1. 55. 102. 182. 216. 310.

Figure 4.12: Snapshots from the temporally consistent mesh sequence for the dataset
Martin-pattern1.

The dataset Martin-markers1 represents more difficult input and the quality of res-

ults decreases in comparison to Martin-pattern1 as shown in Figure 4.13(top). Mesh

distortions appear during strong deformations and the method is not able to recover

completely. Therefore, local drift increases throughout the sequence (notice the mouth

and eyebrows at the last frame). The reason is that the appearance of plain skin differs

considerably from the reference frame due to wrinkling, stretching etc. The increased

amount of incorrect motion estimates needs to be handled by stronger regularisation

which results in a smoother shape (e.g. eyebrows in frame 291).

The dataset Martin-skin1 poses the most challenging case which the baseline technique

does not cope well with (Figure 4.13(bottom)). During large and rapid deformations

the facial shape is visibly incorrect (e.g. puffing out the cheeks around frame 204 or sur-

prise around frame 234). The mesh gradually degrades due to large distortions at each
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expression. This sequence gives a significantly worse result in comparison to Martin-

markers1 which is caused by the limited number of strong natural features in compar-

ison to markers which provide better motion estimates. The dataset Synthetic-skin1

also contains plain skin as Martin-skin1 and provides even more challenging perform-

ance in terms of speed and amount of surface deformation. Despite that the temporal

consistency is considerably better than for Martin-skin1. This demonstrates than the

considerable variation of skin appearance over time is the main limiting factor for the

method.

4.6 Conclusion

This chapter has described a generic surface tracking method based on the work of

Furukawa and Ponce [36]. The contribution to their method is a different regularisation

of raw motion estimates coming from 3D patch matching. The Laplacian deformation

with soft constraints weighted by the matching errors has a linear formulation, and

therefore can be solved more efficiently. Different variants of the patch matching error

have been analysed in terms of their complexity in the parameter space for varying

amount of the surface texture. A missing feature from [36] is coarse-to-fine optimisation

over an image pyramid which does not improve the quality of tracking according to our

experiments.

The presented baseline method has been evaluated for dense motion capture of a facial

performance which poses a number of challenges such as rapid motion, complex non-

rigid deformations and weak skin texture. The concept of tracking patches in the 3D

space using multiple views has proven to be suitable given sufficient surface texture.

This approach alleviates some issues of methods working primarily in the 2D image

domain such as robustness against head pose change [47, 119] and inconsistent 2D

optic flow estimation for different views [122, 19]. However, good results are achieved

only for a well-textured surface (a face painted with a random pattern) or a surface

without time-varying appearance (a synthetic face with a fixed texture).

The main limitation of the technique is low stability on weakly textured surfaces such

as the skin. The approach does not fully recover from large errors appearing in the
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70. 156. 214. 291. 351. 436.

0. 81. 124. 204. 234. 309.

Figure 4.13: Snapshots from the temporally consistent mesh sequences for the datasets
Martin-markers1 (top) and Martin-skin1 (bottom).
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alignment during fast non-rigid motions which leads to drift of the tracked mesh. The

key observation is that fine skin appearance varies extensively with changing expres-

sions due to folds, wrinkling, pore stretching, etc. This cannot be modelled well by a

deformable patch with a fixed reference texture even if it correctly changes the shape.

The pattern make-up brings the needed constancy of appearance to some extent. But

this also faces the same problem in highly deforming regions such as eyes and lips which

manifests as occasional shakes in the mesh. Initialisation of the patch pose before the

3D matching does not help with this issue because the optimised objective function

is already very ambiguous. The next chapter presents a robust sequential method

which addresses these limitations and achieves superior performance on datasets with

a weaker surface texture (markers, plain skin).



Chapter 5

Robust sequential surface

tracking

In the previous chapter the baseline technique for surface tracking has been presented

which is based on the work of Furukawa et al. [36]. Experimental evaluation identified

limitations of this approach which prevent reliable tracking of the face with plain skin.

Rapid complex motions of the face together with weak skin texture turn the motion

estimation between frames into a difficult and ambiguous optimisation problem. Also,

large variations of skin appearance occur due to expression change which cannot be

modelled by a single reference texture. These factors lead to fast accumulation of

alignment errors throughout a performance causing severe drift and degradation of the

facial model.

Furukawa and Ponce [36, 37] advocate the track-to-first concept with the reference

textures for patches to alleviate the drift problem. But they report accurate motion

capture only for facial performances with an actor painted with a dense random pattern.

The experiments in the previous chapter have demonstrated that this approach is not

stable on the plain skin. Wilson et al. [119] aid tracking on plain skin with surface

normals obtained by photometric stereo. Geometrical skin detail in the stream of

normal maps is richer than skin texture in the original video which helps frame-to-frame

optic flow computation. However, a noticeable drift still appears after concatenating

flow fields over a number of frames (roughly 200 frames according to the authors).

94
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Bradley et al. [19] correct the drift using additional optic flow estimation in the UV

domain of the tracked mesh after an initial deformation. However, the results are not

satisfactory in regions undergoing complex motion such as the mouth (even with a

custom lip tracking algorithm).

To improve the baseline method, it is necessary to abandon the concept of a fixed

appearance template and update the patch textures over time to reflect changes in the

skin appearance. Image alignment of the textures from the previous frame makes the

profile of the matching objective function less ambiguous (Section 5.2). But there is

an increased risk that the patch textures adapt to a different 3D point on or even off

the surface of the face as matching errors accumulate over time. The shape of the

face reconstructed independently at every frame can limit motion of the patches onto

the actual surface [122, 19]. However, drift along the surface needs to be addressed

by an improved frame-to-frame patch matching. Cooperative optimisation of patch

motion across the face proposed in this chapter brings significant improvement over

independent gradient descent (IGD) used in the baseline technique. This optimisation

is inspired by the PatchMatch algorithm from the image editing domain [6, 7].

The PatchMatch algorithm finds dense correspondences between two images. The

correspondence of two pixels is defined by a similarity of square patches around them

according to a chosen distance function. A displacement field with the resolution of the

source image represents pairs of matching pixels which are the nearest neighbours in

terms of similarity of their patches. This nearest neighbour field is computed by a fast

approximate algorithm which iteratively updates the correspondences. The iterative

matching has two phases: propagation which disseminates good solutions to adjacent

pixels and random search which locally perturbs the current solutions. The convergence

of the whole field depends on two key observations. Firstly, adjacent pixels usually

have similar displacement vectors between the images. Secondly, large resolution of the

field provides a high chance that a non-trivial number of pixels finds correct matches

through the random sampling. Correct solutions are then spread across the field by the

propagation. These assumptions are applicable to the problem of matching a dense set

of 3D patches across a surface, thus the correspondence algorithm is relevant as well.
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This chapter proposes a robust surface tracking method which improves over the

baseline method in Chapter 4 for weakly textured surfaces such as skin. An extended

objective function for 3D patch matching is formulated and its characteristics analysed

for varying amount of the surface texture. Novel cooperative optimisation of patches

across the face yields improved motion estimates for subsequent weighted Laplacian

deformation. Coarse-to-fine scheme is proposed to increase robustness of the frame-to-

frame alignment against large motions. Comprehensive evaluation of the robust method

analyses the influence of surface texture and compares against to the baseline method.

Furthermore, different variants of the method are evaluated to identify the importance

of individual algorithmic features.

5.1 3D matching of surface patch

The objective to obtain a temporally consistent mesh sequence {Mt}Tt=1 is the same as

formulated in Section 4.1. However, the input observations Ot at each frame include the

multi-view images {Ict }Cc=1 and the mesh Mg
t which represents a shape estimate of the

surface. The sequence {Mg
t }Tt=1 is temporally unaligned, thus each meshMg

t = (Xg
t ,Γ

g
t )

has time-varying vertex positions Xg
t and also time-varying topology Γ g

t . The unaligned

meshes can be reconstructed by an arbitrary multi-view stereo technique [92]. However,

they should accurately model instantaneous shape of the surface because it constrains

the surface tracking.

Finding correspondence for the patch i between the frames t−1 and t is reformulated as

a two-fold problem in contrast to the baseline approach in Chapter 4. The alignment of

multi-view patch texture {Bc
i }Cc=1 with the images {Ict }Cc=1 at frame t is combined with

fitting the patch to the unaligned geometry Mg
t . The patch textures are updated at

every frame. The texture adaptivity addresses inability of the fixed reference textures

to cope with large changes of the surface appearance due to deformations (in the case

of skin). However, the per-frame update of the textures increases the risk of drift since

the patch can gradually adapt to a different 3D point as the tracking errors accumulate

over time. To limit the drift, the motion of the patch between the frames t − 1 and t

is constrained to be in proximity to Mg
t similar to Zhang et al. [122].
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Equation 5.1 defines a joint error function Egi which consists of image alignment

(1.term) and geometry fitting (2.term) of the patch i.

Egi (pi) =

 1

|Qi|
∑
c∈Qi

NCC(S(Ict ,TiGi), B
c
i (t− 1))

 + wgρ(‖pi − gi‖, σg) (5.1)

The error Egi is minimised by altering directly the patch position pi in comparison to

Equation 4.1. An initial value of pi coincides with a vertex position vi(t − 1) from

Mt−1. The rotation vector ri forming the transformation Ti together with pi has a

fixed value given by the shape of Mt−1. The vector ri could be optimised together

with pi but there is only a marginal improvement of accuracy using the optimisation

scheme explained in Section 5.3. The first term for alignment with the images {Ict }Cc=1

is similar to Equation 4.1 except that {Bc
i }Cc=1 comes from the previous frame t − 1

rather than the reference frame r. Also, the global pose Ti with respect to WCS is not

modified by a local transformation T̂i but it is altered directly through pi instead.

The second term in Equation 5.1 forces the patch position pi (associated with the

central sample point) close to the unaligned mesh Mg
t as depicted in Figure 5.2. The

point gi is an approximation of the closest point to pi on Mg
t . This can be efficiently

computed using depth maps generated for Mg
t in each view. The view from the visibility

set Qi is selected according to the minimal angle between the patch normal and the

flipped viewing direction of a camera. The position pi is then projected into this view

and gi is determined by sampling the respective depth map at the point of projection.

The distance between pi and gi is penalised by the Tukey bi-weight error norm ρ defined

in Equation 5.2 [122].

Figure 5.1: Tukey bi-weight error
norm ρ defined in Equation 5.2.

ρ(x, σg) =

{
3x

2

σ2
g
− 3x

4

σ4
g

+ x6

σ6
g
, |x| ≤ σg

1, |x| > σg
(5.2)
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The profile of ρ suggests that pi is effectively restricted to a valley in the 3D space

around the surface of Mg
t . The limited search space reduces the number of local minima

complicating the optimisation of pi. The penalty is uniform beyond a distance σg which

makes Egi less affected by large outliers in the raw geometry. The geometry fitting term

and the image matching term are linearly combined by the weighting coefficient wg

which balances their influence. The function Egi cannot be evaluated for a particular

value of pi if Qi = ∅, TiGi projects outside the image in any view from Qi or gi cannot

be computed because of missing data in Mg
t .

Figure 5.2: Multi-view alignment of patch textures {Bc
i }Cc=1 from the previous frame

t − 1 with images {Ict }Cc=1 and fitting the patch to an unregistered mesh Mg
t (Qi =

{1, 2, 4}).

5.2 Analysis of matching error

The error function Egi (Equation 5.1) is analysed for an example patch similarly as

in Section 4.3.2. Again, the size of patch is No = 20 and 3D sampling distance do =

0.2mm. The raw mesh Mg
t necessary for geometry fitting is computed by the multi-

view stereo method described in Section 7.3. The fitting parameters are set as follows:

σg = 10mm,wg = 1.0. Rotation of the patch is not evaluated since Egi optimises only

the position pi. The vector pi is not sampled directly for the error evaluation but the

local translation p̂i is used to generate deviations from pi. This does not influence the
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nature of the error function. The components of p̂i are sampled with a step 0.1mm

in the range 〈−10mm, 10mm〉 and the global rotation ri is fixed. The function Egi

is displayed across the 3D space of translations for the following experiments in the

supplementary video.

The error profiles for local translation are computed in two situations. Firstly, the

patch is matched at the starting frame t − 1 where its multi-view texture {Bc
i }Cc=1

is also sampled (using the initial pose Ti). This is the ideal situation since the patch

texture matches the images perfectly at Ti. Secondly, the patch is matched at the frame

t using the texture from the frame t− 1 which is a standard situation for tracking with

the adaptive texture. The starting pose Ti is the same as at t − 1 so the patch is

naturally misaligned with the observations Ot.

(a) (b) (c) (d)

Figure 5.3: Example image from one of 4 views - the face with a random pattern at
the frame t− 1 (a) and t (b); the face with a plain skin at the frame t− 1 (c) and t (d).
The patch used in experiments is visualised in red colour.

Figures 5.3(a,b) show two successive frames from a facial performance of the actor

painted with a random pattern (the dataset Martin-pattern1). The frames selected for

the error analysis have a fair amount of surface motion between them. The error Egi for

the frame t− 1 is visualised in Figures 5.4(a-c) which are slices through the function at

the point of global minimum [0 0 0]Tmm (zero value). The rugged profile with a small

basin around the global minimum is similar to Ei from the baseline approach (Figures

4.4(d-f)) because the image alignment term is the same in this case. The difference is a

clear valley across the examined volume given by the geometry fitting term. The valley

in x, y-slices reflects the shape of Mg
t in this volume. The z-slice is along the tangent

plane to the surface, thus the effect of the geometry term is not so visible. This shows
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that the optimisation over Egi is constrained to the proximity of the true surface which

suppresses many local minima present in the wider volume.

(a) (b) (c) (d) (e) (f)

Figure 5.4: Slices through the error function Egi for the face with a random pattern
at the frame t − 1 (a-c) and t (d-f). Local translation of patch at t − 1 - slice with
p̂i[x] = 0 (a), p̂i[y] = 0 (b) and p̂i[z] = 0 (c). Local translation of patch at t - slice
with p̂i[x] = 0.5 (d), p̂i[y] = 1.0 (e) and p̂i[z] = 1.0 (f). Range of possible error values
〈0, 2〉 is truncated at 1 and mapped into grey scale (0 - black, 1 - white).

The error Egi for the frame t is visualised in Figures 5.4(d-f). The global minimum is

located at p̂i = [0.5 1.0 1.0]Tmm (value 0.014). The strength of the global minimum

and overall quality of the function is comparable to the matching in the same frame

t− 1. This is due to small change of the surface appearance between successive frames.

Therefore, Egi does not become as ambiguous as Ei where the reference texture can be

matched to very different surface appearance at a distant frame (e.g. Figures 4.4(j-l)).

To make a comparison for plain skin, the tests are performed on a facial performance

without any make-up (the dataset Martin-skin1). Example images from the dataset

are shown for the frames t − 1 and t in Figures 5.3(c,d). The error Egi for the frame

t − 1 visualised in Figures 5.5(a-c) has a very localised global minimum similar to Ei

from the baseline approach (Figures 4.5(d-f)). The convergence basin is smaller than

for the random pattern but it is also encompassed by the surface valley. The error Egi

at the next frame t has a similar quality as at t − 1 (Figures 5.5(d-f)). The global

minimum located at p̂i = [0.5 −0.9 0.01]Tmm is still quite clear with the low value

0.06. This is in contrast with the reference texture approach where the global minimum

can often become unrecognisable (for example Figure 4.5(j-l)). Greater clarity of the

error function with the adaptive patch textures over the fixed textures is important for

achieving significantly more stable 3D patch matching on the plain skin than with the

baseline technique.
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(a) (b) (c) (d) (e) (f)

Figure 5.5: Slices through the error function Egi for the face with a plain skin at the
frame t−1 (a-c) and t (d-f). Local translation of patch at t−1 - slice with p̂i[x] = 0 (a),
p̂i[y] = 0 (b) and p̂i[z] = 0 (c). Local translation of patch at t - slice with p̂i[x] = 0.5
(d), p̂i[y] = −0.9 (e) and p̂i[z] = 0.01 (f).

5.3 Optimisation of 3D patch matching

The error function Egi is less ambiguous using adaptive patch textures as reported

in Section 5.2. However, the convergence basin around the global minimum is still

very small and is surrounded by many local minima, especially for the plain skin.

Therefore, minimisation of Egi based on IGD (Section 4.3.3) is likely to reach a sub-

optimal minimum. This results in lower stability of the surface tracking. To tackle

this problem the PatchMatch correspondence algorithm [7] has been extended to the

domain of surface tracking. The concept of matching image patches by cooperative

random sampling (CRS) is adapted for 3D matching of surface patches. The essential

assumption is that neighbouring patches on a surface move in a similar way. Thus,

these patches can share intermediate solutions of their local minimisations performed

by random sampling. This often prevents a descent into sub-optimal minima and

improves the outcome of the local search. Generally, there is an increased likelihood

that the patches across the whole surface converge to their individual global minima.

The initial pose Ti of a patch i is given by the mesh Mt−1 at the previous frame. The

position pi with respect to WCS is directly optimised according to the error function Egi

(Equation 5.1). The rotation ri is fixed because Egi has a clear enough global minimum

in the 3D space. Moreover, the risk of obtaining a sub-optimal solution increases with

additional 3 rotational degrees of freedom. This has been experimentally observed

especially during fast motions when patch error functions become more ambiguous.

The optimisation of positions for all patches across the mesh is performed iteratively

and in cooperation. At first, initial values of matching errors ei are calculated at the
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vertex positions vi(t−1) using the images {Ict }Cc=1. The patches are then processed one

by one in H iterations and their positions pi are modified from vi(t − 1) to decrease

ei. A solution for pi is updated in two subsequent stages for every iteration.

Propagation stage: A patch i tries to adopt the current motion estimates from

the adjacent patches in Vi which have already been processed in the current iteration

(Figure 5.6(a)). A candidate for pi is calculated by adding a displacement vector

pj − vj(t− 1) from the neighbour j to the original position vi(t− 1). If the candidate

has lower error on the function Egi than the current estimate pi, it is taken as a new

solution and ei is updated. Thus, the neighbouring patches are encouraged to have

similar motion but this is not a hard constraint. An advantage of this approach is

the ability to correctly recover motion discontinuities between different surface regions

(such as lips, eye lids).

(a) (b)

Figure 5.6: Cooperative random sampling - propagation stage (a), random sampling
stage (b). In the propagation stage, the patch 1 tests motion estimates from the
neighbours already processed in the current iteration (patches 4, 5, 6). Its position p1

is updated according to the displacement from the patch 4 which gives a lower error
than ei. In the random sampling stage, a set of sample positions is generated for patch
1 around the current p1. Green sample has the lowest error below ei, therefore it is
selected as a new solution.

Random sampling stage: A local minimisation for a patch i is performed in the

area around the current solution pi. New candidate positions are generated by random

perturbation of pi: pi + qmaxα
au. u is a random 3D vector sampled from a uniform

distribution in the interval 〈−1, 1〉 which is scaled by the current search range size. The

size of range exponentially decreases by ratio α ∈ 〈0, 1〉 (α = 0.5 in our experiments)
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with increasing integer exponent a. For each value of a a fixed number U of candidate

vectors is generated (U = 5 in our case) which results in a cloud of samples with

increasing density towards the centre at pi (Figure 5.6(b)). The range of random

sampling is limited by the maximal bound qmax (1mm) and the increase of a from 0 is

stopped when qmaxα
a < qmin (qmin = 0.1mm). The function Egi is evaluated for each

candidate and the one with the lowest error is compared with the current value of ei.

If it is better, pi and ei are updated.

The change of pi from vi(t− 1) by both stages throughout all iterations is limited by

a bounding box around vi(t − 1) with a half size qlim (qlim > qmax). This explicitly

avoids motion estimates with magnitudes beyond possible motion between two frames.

The reason is to prevent large outliers which can occasionally occur due to gradual

traversal on Egi in wrong direction throughout iterations. The matching of a patch

is unsuccessful if Egi cannot be evaluated at the initial position vi(t − 1) and at any

candidate position suggested during the minimisation. The order in which the patches

are processed by the propagation and random sampling stage is given by two rules.

The next patch is selected according to: 1. the highest number of already processed

neighbours in the current iteration, 2. the most promising neighbour in terms of the

current error ei. This ordering increases the impact of the propagation stage.

Interleaving the propagation and random sampling stage allows a patch to optimise on

its own error function incrementally. The result of each local search is challenged by

the motion estimates from the adjacent patches which can lead to further improvement.

The overall solution across the whole surface improves with the increasing number of

samples generated in the local search (influenced mostly by the parameter U) and

increasing number of iterations H. The number H has a bigger influence since it

facilitates greater propagation of estimates. However, all patches usually converge

close to their minima in a few iterations (H = 5). There is no guarantee that all of

them will reach their global minima. The likelihood of optimal outcome across the

whole mesh improves with the resolution. A larger number of patches are more likely

to find their optimal solutions and this is propagated across the surface.

The proposed approach has improved ability to avoid the convergence to local minima
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on Egi than IGD (the variant Robust-IGD in Section 5.5.4). This greatly increases

robustness to rapid non-rigid motions on weakly textured surfaces such as skin (Sec-

tion 5.5.2). However, iterative processing increases computational load depending on

values of U and H. The motion expansion by Furukawa et al. [36] used with IGD

(Equation 4.3) differs from the propagation stage. It passes only a single averaged

estimate and it is performed once before the local optimisation. This does not facil-

itate enough propagation of estimates. CRS is also different from the other non-rigid

surface tracking schemes [86, 26] where all mesh vertices are optimised simultaneously

in a single minimisation task with a large number of variables. Moreover, a global

regularisation term is included which enforces smooth motion fields. CRS represents a

more efficient scheme with small minimisation tasks per vertex which loosely cooperate

with each other. This allows discontinuities in the motion field by separating out the

global regularisation across the whole surface to the Laplacian mesh deformation.

5.4 Coarse-to-fine sequential tracking

Patch matching using CRS on the improved error function Egi is combined with the

weighted Laplacian deformation in the same way as in the baseline method in Chapter 4.

The sequential tracking is performed according to the algorithm described in Section 4.4

with the difference of updating multi-view patch textures. As the last step of processing

at each frame, {Bc
i }Cc=1 are sampled from the images {Ict }Cc=1 after the shape of patch

grids Gi is updated. The texture is obtained only for c ∈ Qi, otherwise it is marked as

invalid and the view is not used in for the matching at the next frame.

The sequential tracking of the mesh can be performed in a coarse-to-fine fashion ex-

tending the described scheme. The alignment between successive frames is iteratively

refined by repeating 3D patch matching and Laplacian deformation across different

mesh resolutions. This can be performed with both the baseline and robust alignment

algorithm.

A coarse mesh M ′r provided by a user for the initial frame r gives a basis for the

hierarchical model with L levels of detail (LOD) [79]. The mesh hierarchy {M l
r}Ll=1

is created by uniform subdivision of the mesh on the previous LOD starting from
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M1
r = M ′r (Figure 5.7). After each subdivision the mesh vertices are conformed to Mg

r

to refine the shape of a new mesh M l
r (more details in Section 7.4). Due to uniform

subdivision the meshes on individual LOD share vertices (X1
r ⊂ X2

r ⊂ ... ⊂ XL
r ) but

their topology is different (Γ 1 6= Γ 2 6= ... 6= ΓL). The number of LOD L depends on the

desired density of the finest mesh ML
r = Mr which is tracked over time. Separate sets of

surface patches are created for each M l
r. Because the vertex i can generally be included

in several M l
r, multiple patches can be associated with it. They have different sample

grids Gli which are influenced by different V l
i depending on the topology of M l

r on a

particular LOD l as depicted in Figure 5.7. Therefore, multi-view textures {Bcl
i }Cc=1

of the patches related to the vertex i vary across LOD as well. All patches on every

LOD are initialised at the frame r as described in Section 4.2 with one exception. The

visibility set Qi is shared by the patches related to the vertex i and it is set according

to the finest mesh ML
r .

Figure 5.7: Hierarchical model with L = 3 LOD where a topology of M1
r is given

by a user. The tracked full-resolution mesh M3
r is drawn in grey, the meshes M l

r on
individual LOD in black. Green set of vertices V l

i shows the triangle fan around vertex
vi (red) which influences the patch associated with LOD l.

The tracking of ML
t between the frames t − 1 and t is performed incrementally by

descending through the hierarchical model from the LOD 1 to L. On the LOD l the

set of patches associated with M l
t is matched between Ot−1 and Ot and subsequently

their displacements drive the Laplacian deformation of the full-resolution mesh ML
t .

Afterwards, the pose of patches associated with M l+1
t is updated to align them with

new shape of ML
t . Progressing through LOD, the network of patches becomes denser

as depicted in Figure 5.7 and the deformation of ML
t is constrained by an increasing

number of vertex displacements. On the LOD L every vertex has a patch providing a

deformation constraint (as for the case without a hierarchical surface model). When
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the final shape of ML
t is obtained, the pose of all patches on every LOD can be updated

accordingly. Their visibility sets are initialised for the next frame with respect to ML
t

as well. Finally, the sample grids of patches are recomputed according to respective

M l
t to reflect a change of the shape of related triangle fans.

During coarse-to-fine processing two key parameters vary: the patch size No and the

smoothness coefficient s. Between two successive LOD No decreases by a factor ψo and

s by factor ψs. The reason is that larger patches combined with stronger regularisation

establish the correct overall motion of the surface on a coarser LOD (useful especially for

large, fast deformations). Smaller patch size and weaker regularisation allows refining

the surface motion on finer LOD.

The result is a temporally consistent mesh sequence {Mt}Tt=1 where Mt corresponds to

the finest LOD ML
t of the mesh hierarchy. The coarse-to-fine processing provides mar-

ginal improvement when combined with the robust technique proposed in this chapter.

The robustness of CRS is sufficient for motion estimation on the full-resolution mesh

directly. There is a benefit in combining IGD with coarse-to-fine scheme as demon-

strated in Section 5.5.5.

5.5 Evaluation

Evaluation of the robust surface tracking is conducted on the same set of facial per-

formances as in Chapter 4 and an additional dataset Martin-skin2 which is more chal-

lenging terms of performance pace. Technical description of the datasets used (Martin-

pattern1, Martin-markers1, Martin-skin1, Martin-skin2, Synthetic-skin1) can be found

in Appendix G. All of them provide multi-view image sequences together with camera

calibration data. Additionally, unaligned mesh sequences necessary for geometry fit-

ting are pre-computed by the multi-view stereo method described in Section 7.3. The

resolution of temporally consistent mesh computed for all datasets is 2689 vertices and

5248 faces.

Surface tracking results are standardly assessed visually in terms of temporal con-

sistency (the reader is referred to the supplementary video). The reason is a lack of
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quantitative measures for real data which would reliably evaluate drift in the obtained

mesh sequences. In this work, two measures are tested for comparison of the results

by different tracking methods - SAD error on unwrapped surface textures described

in Section 5.5.3 and average Euclidean distance between equivalent frames in mirrored

sequence described in Appendix B.

A common parameter configuration for all datasets is: NCC on grey-scale, do = 0.2mm,

No = 11, wg = 1.0, σg = 10mm. Note that coarse-to-fine processing is not used

in the following experiments unless it is explicitly mentioned. Patch size No is fairly

insensitive parameter for the robust method because larger textures sampled at the

previous frame do not improve matching of a patch. Only small patch sizes (No < 5)

cause more unstable results because of the lack of information content. Fitting to

the unaligned mesh Mg
t has equal importance to the image alignment term by setting

wg = 1.0 (Equation 5.1). There is some loss of shape detail in the tracked mesh Mt in

comparison to the raw Mg
t due to lower resolution and motion regularisation. Also the

texture adaptation can gradually flatten larger wrinkles to some extent over a period

of time. Stronger fitting (wg > 1.0) can preserve more shape detail from Mg
t but it also

causes more drift on the surface because of weakening the image matching term.

s ξe δe qlim(mm)

Martin-pattern1 0.1 0.03 0.01 10
Martin-markers1 0.5 0.125 0.05 5

Martin-skin1 1.0 0.15 0.05 5
Martin-skin2 9.0 0.15 0.05 10

Synthetic-skin1 1.0 0.15 0.05 10

Table 5.1: Parameters for the robust surface tracking across the evaluated datasets.

Table 5.1 shows differences in certain parameters across the evaluated datasets depend-

ing on the surface texture. The smoothness coefficient s increases for weaker surface

texture to strengthen the regularisation to deal with less accurate estimate of motion

field. However, the regularisation is increased much less than for the baseline method

(Table 4.1) because the patch matching is significantly better. The parameters ξe and

δe for constraint weighting are lower for the datasets Martin-pattern1 and Martin-

markers1 due to generally lower matching errors. The limit qlim on magnitude of patch
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displacements between frames is set to allow correct motion estimation of the fastest

sections of the performance.

5.5.1 Synthetic facial performance

Quantitative evaluation is performed on the synthetic dataset Synthetic-skin1. Snap-

shots from the temporally consistent {Mt}Tt=1 are presented in Figure 5.8. They demon-

strate that the shape and motion are well recovered across the whole face. Local drift

of the mesh in the mouth region is caused by severe distortion of the UV texture during

mouth opening. The accuracy of results is illustrated by heat maps of the difference

to the ground-truth mesh sequence in Figure 5.8(fourth row). Average ground-truth

error across all vertices is plotted per frame in Figure 5.9. The overall error across all

vertices in every frame has a mean of 0.740mm and a standard deviation of 0.981mm.

The per-frame error fluctuates over time with peaks at the extremes of different ex-

pressions. The tracking does not fully recover after each expression change, thus there

is an increasing trend which suggests accumulation of errors (visible in the heat maps

in Figure 5.8 as well). This is caused by the adaptive patch textures which gradually

adjust to different surface points, particularly during fast motions. The baseline tech-

nique achieves better overall accuracy because unchanging face texture in the dataset

favours tracking with the fixed patch textures. However, error peaks for the baseline are

relatively high due to substantial difference between the face appearance at extremes

of emotions and the textures from the reference frame. This is visible as subtle shakes

of the mesh in video at these points.

5.5.2 Influence of surface texture

The robust surface tracking is evaluated in terms of the level of surface texture on

the datasets Martin-pattern1, Martin-markers1, Martin-skin1 and Martin-skin2 as the

baseline approach in Section 4.5.2. Figure 5.10 demonstrates accurate capture of facial

shape and its change over time for the dataset Martin-pattern1. Due to the strong tex-

ture, the result is comparable to the baseline surface tracking (Figure 4.12). However,
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0. 40. 66. 146. 228. 354.

Figure 5.8: Snapshots from the temporally consistent mesh sequence for the dataset
Synthetic-skin1: input images from one of the views (first row), meshes rendered with a
uniform material (second row) and meshes rendered with a fixed UV texture attached
at the reference frame (third row) and difference to the ground truth (fourth row).
Euclidean distance to corresponding vertices in the ground truth is visualised across
the face (blue = 0mm, red = 2mm). The left most column represents the start/reference
frame and the right most column the end frame of the sequence. Actual frame numbers
are denoted.
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Figure 5.9: Average Euclidean distance across vertices to the ground truth for the
dataset Synthetic-skin1.

small shakes observed during large deformations with the baseline method do not occur

with the proposed robust method.

Despite weaker texture in the dataset Martin-markers1 the resulting mesh sequence

(Figure 5.11(top)) has a similar quality to Martin-pattern1. The amount of shape detail

is the same but there is a bit more local drift on the lips. CRS successfully propagates

good matches from strong features such as markers to the skin areas between them.

This leads to better temporal consistency and more precise facial shape than for the

baseline method (Figure 4.13).

The dataset Martin-skin1 with plain skin is too challenging for the baseline approach

(Figure 4.13). The proposed robust tracking is able to deal with weakness and large

variation of skin texture over time and yields significantly better temporal alignment

of the performance without large mesh distortions (Figure 5.11(bottom)). The reduced

amount of strong features such as markers results in slightly smoother shape due to

stronger regularisation. There is also a bit more mesh distortion in the mouth region

than in the dataset Martin-markers1. The fast performance in the dataset Martin-

skin2 (Figure 5.13(top) - variant Robust) shows limitations of the robust technique

where noticeable drift is accumulated around the eyes and mouth.
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1. 55. 102. 182. 216. 310.

Figure 5.10: Snapshots from the temporally consistent mesh sequence for the dataset
Martin-pattern1.

5.5.3 Quantitative evaluation using unwrapped surface textures

The temporal consistency of the aligned mesh sequence {Mt}Tt=1 can be quantitatively

evaluated according to stability of facial appearance projected onto Mt at every frame

t. The tracked mesh Mr at the initial frame is unwrapped into a 2D planar domain.

Given a fixed topology Γ of {Mt}Tt=1 this unwrapping provides a fixed UV domain for

time-varying facial textures. At every frame the images {Ict }Cc=1 are projected from

their views onto the mesh Mt and a single texture for Mt is stored in the UV domain.

To avoid introduction of any additional error to the evaluation measure described later,

the texture should contain the original image information with minimal alteration and

without any time-varying artefacts. Therefore, each half of the face is textured from a

single side view and there is no blending between the halves (a seam is visible across

the face in the video). The result is a sequence of unwrapped facial textures with the

same texture coordinates in 1000× 1000-pixel UV domain (note this is a bounding box

around the unwrapped mesh and the effective texture area is smaller).
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70. 156. 214. 291. 351. 436.

0. 81. 124. 204. 234. 309.

Figure 5.11: Snapshots from the temporally consistent mesh sequences for the datasets
Martin-markers1 (top) and Martin-skin1 (bottom).
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The facial appearance in the texture sequence should be stable over time if the surface

is tracked accurately. Drift in the temporally aligned mesh sequence translates to

drift of the texture in the mesh UV domain. Thus, comparison of the texture at the

initial frame r with the textures at all other frames should reflect a per-frame quality

of temporal alignment. However, this comparison is affected by changes of the facial

appearance itself due to skin wrinkling, shading changes, etc. Even with a perfect

temporal alignment the texture sequence is not the same throughout a performance.

Therefore, any fluctuation of a texture comparison measure around peaks of facial

expressions is caused to some extent by the appearance changes. For the comparison

between the initial frame and the rest of the frames a sum of absolute differences (SAD)

is used. This is computed across all pixels in the effective texture area and differences

in RGB channels are added together. Afterwards, the sum is normalised by the number

of pixels so that the absolute difference is expressed per pixel. This error measure only

expresses a difference between textures and does not directly reflect the true magnitude

of drift in the UV domain which is unknown. Optic flow would be a better option from

this perspective but issues of the flow algorithms would add a systematic error into the

measure.

Figure 5.12(a) shows a profile of per-pixel SAD error for the proposed robust technique

and the baseline technique on the dataset Martin-pattern1. The error fluctuates for

both techniques with local maxima at extremes of facial expressions which are different

from the initial neutral expression. The baseline method recovers after each expression

to a similar level of error thanks to the use of reference patch textures from the initial

frame. The robust method has generally higher error which increases towards the end of

performance. This indicates drift of the mesh which gets worse after every expression.

The reason is adaptivity of patch textures which are updated to slightly different points

during fast surface deformations. However, a relatively large quantitative difference

between the methods maps to qualitatively similar results with a bit larger drift for

the robust technique. The nature of the pattern texture where bright and dark areas

alternate densely across the face causes that even slight mesh misalignment to have

a strong response in SAD. The amount of texture generally influences a magnitude of

SAD. Therefore, it is invalid to compare the error values between surfaces with different



114 Chapter 5. Robust sequential surface tracking

textures (the plain skin has always lower values than the pattern because of its uniform

texture).

(a) (b)

(c) (d)

Figure 5.12: Per-pixel SAD error on the sequence of unwrapped facial textures for
the datasets Martin-pattern1(a), Martin-markers1(b), Martin-skin1(c) and Martin-
skin2(d). The error is summed across RGB channels and the unit is a channel level.
Also note that its magnitude cannot be compared across varying surface texture.

The dataset Martin-markers1 exposes drawbacks of the evaluation measure. The robust

method produces coherent tracking with a bit of drift across the whole face which

gradually builds up towards the end. The baseline method provides accurate alignment

of the facial expressions similar to the neutral reference but there are significant wobbles

in the unwrapped texture during the other expressions. However, this fact is largely

concealed in SAD which is already high at those points due to appearance difference.



5.5. Evaluation 115

This is the reason why the magnitude of error peaks is similar for the both methods

in Figure 5.12(b). Moreover, the robust method has a higher error later on because of

the small drift in the regions with more stable appearance over time (e.g. cheeks). The

comparison to the initial frame has an implicit bias towards it. Even a well-aligned

segment of performance which is a bit off from the reference appearance is penalised

more than large short-term distortions, although it is perceptually more acceptable.

Despite the error measure favouring the baseline technique because of the kind of er-

rors it introduces, there is a clear quantitative improvement by the robust technique for

the plain skin. The baseline technique has significant problems with the less challen-

ging dataset Martin-skin1 (Figure 4.13(bottom)). This is illustrated in Figure 5.12(c)

by increasing error and larger fluctuations than the robust method. For the dataset

Martin-skin2 the robust technique (Figure 5.13(top))is significantly better in Figure

5.12(d) since the baseline technique fails on fast expression changes. The error profile

of the robust approach is higher than in Martin-skin1 due to higher difficulty of the

performance.

5.5.4 Variants of frame-to-frame alignment

Several features of the frame-to-frame non-rigid alignment presented in this chapter

make surface tracking successful on the face with plain skin. These are cooperative

random sampling used for 3D patch matching, adaptive patch textures updated at every

frame and shape prior in the form of raw mesh Mg
t constraining the matching. This

section compares different variants of the robust method omitting individual features to

demonstrate their influence. The omitted features are replaced by their equivalents from

the baseline method which shows their importance for accurate surface tracking. Table

5.2 describes configurations of two main methods - Baseline, Robust and additional

variants - Robust-IGD, Robust-NoPrior, Robust-FixedTexture.

Evaluation of the variants is performed on the dataset Martin-skin2 which provides

more difficult performance than the dataset Martin-skin1. An actor performs at faster

pace with a larger variety of facial expressions. The parameters defined in Table 5.1

are the same for all variants of the method. The variants Baseline and Robust-IGD
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Variant optimisation shape prior patch texture

Baseline IGD no fixed
Robust CRS yes adaptive
Robust-IGD IGD yes adaptive
Robust-FixedTexture CRS yes fixed
Robust-NoPrior CRS no adaptive

Table 5.2: Variants of frame-to-frame alignment with their configuration of main al-
gorithmic features.

with IGD optimisation do not use the expansion of motion estimates for initialisation

(Equation 4.3) because of instability reported in Section 4.5.2. The variant Robust-

IGD also does not employ the initialisation by multi-view stereo optimisation (Equation

4.2) because the fitting to Mg
t reconstructed by multi-view stereo has a similar effect.

The variant Robust-NoPrior optimises only the image alignment term of Equation 5.1

(wg = 0). The variant Robust-FixedTexture uses the reference patch textures {Bc
i }Cc=1

in the image alignment term in Equation ?? (same as in Equation 4.1 for the baseline

technique).

The best result is achieved by the complete method Robust as can be seen in Figure

5.13(top). However, the difficulty of the dataset Martin-skin2 exposes limits of the

method as well. There is noticeable mesh distortion in the most deforming regions

(eye sockets, lips) which accumulated over time. Shape details are a bit smoother

than for the dataset Martin-skin1 (Figure 5.11(bottom)) because of the stronger reg-

ularisation necessary for coping with more challenging motions. In comparison to the

dataset Synthetic-skin1 created from the performance Martin-skin2, there is a bit worse

temporal alignment in the most problematic regions. But this still proves that the ro-

bust method addresses the problem with large skin appearance variation. The method

Baseline from the previous chapter performs the worst. Figure 5.14(bottom) depicts

major deformations of facial shape and poor temporal alignment.

The variant Robust-IGD improves over the variant Baseline by means of the texture

adaptation and the constraint by raw geometry. Figure 5.14(middle) shows more pre-

served facial shape and less severe distortions. However, IGD still yields significant

drift and mesh deformations (e.g. distorted chin at frame 67). CRS proves to be the
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0. 67. 146. 228. 298. 354.

Figure 5.13: Snapshots from the temporally consistent mesh sequences for the dataset
Martin-skin2 - the variant Robust (top) and the variant Robust-NoPrior (bottom).
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feature with the biggest impact. The variant Robust-FixedTexture achieves even bigger

improvement over the variant Baseline (Figure 5.14(top)). However, it still suffers from

distortions of the mesh at the peaks of expressions as the baseline method. This is

caused by matching the patch textures from the reference frame to very different facial

appearance at different expression. In some cases, the tracking is not able to recover

and the mesh stays locally distorted (e.g. root of the nose and lips in Figure 5.14(top)).

The adaptive textures ensure more coherent motion over time but have less importance

than CRS optimisation. The variant Robust-NoPrior provides the results closest to the

variant Robust in terms of temporal consistency. But the shape of the face degrades

throughout the performance as is visible in Figure 5.13(bottom). This is caused by

the patch texture update even if there are alignment errors occurring. A patch can

then gradually adapt to a 3D point away from the actual surface. However, this prob-

lem is mostly supressed by robust CRS optimisation which finds the global minima

even though the search space is not constrained by the unregistered mesh. Thus, the

shape prior has the least but still important influence on the quality of resulting mesh

sequence.

Figure 5.15 shows a comparison of the algorithmic variants using SAD error on un-

wrapped facial textures. The variant Baseline is clearly the worst with Robust-IGD

also providing low-quality tracking. The variant Robust and Robust-NoPrior have sim-

ilar profile because the lack of shape prior has the least impact on the robust technique.

Also, moderate shape distortions, which are the main difference between their results,

do not distort significantly textures projected onto the mesh. According to Figure 5.15

the variant Robust-FixedTexture has the lowest error throughout the performance in

contrast to visual assessment of unwrapped textures where significant shakes appear

during the peaks of expressions. These shakes are similar to the baseline technique

which also uses fixed patch textures. Thus, the SAD measure favours the variant

Robust-FixedTexture over Robust for the reasons mentioned before.
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0. 67. 146. 228. 298. 354.

Figure 5.14: Snapshots from the temporally consistent mesh sequences for the data-
set Martin-skin2 - the variant Robust-FixedTexture (top), the variant Robust-IGD
(middle) and the variant Baseline (bottom).
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Figure 5.15: Per-pixel SAD error on unwrapped facial textures for the variants of
frame-to-frame alignment (the dataset Martin-skin2).

5.5.5 Coarse-to-fine processing

Coarse-to-fine processing using a hierarchical surface model does not improve the final

temporally consistent mesh sequence when used with the robust technique (the variant

Robust). The aim of coarse-to-fine alignment has been to overcome limitations of the

baseline technique (the variant Baseline). However, CRS optimisation combined with

other improved features erases benefits of the coarse-to-fine scheme and does not need

a more complex hierarchical model. But the coarse-to-fine processing is relevant for

the baseline IGD optimisation and an improvement is demonstrated for the method

variants Baseline and Robust-IGD on the dataset Martin-skin2.

Both variants work with the same resolution of tracked meshMt as their non-hierarchical

counterparts. The user-defined mesh M ′r is subdivided the same number of times when

the patch surface model is built (yielding 3 LOD). The patch size No = 15 is decreased

by the factor ψo = 0.75 giving the patches with 15, 11, 8 sample rings across LOD

(the largest size on the coarsest LOD). The regularisation is relaxed towards the finest

LOD by downscaling the smoothness coefficient s with the factor ψs = 0.5. The variant

Baseline uses s = 52 (sequence 52, 36, 13 across LOD) which higher than s = 36 (se-

quence 36, 18, 9 across LOD) for the variant Robust-IGD because of lower capabilities.

Figure 5.16(top) illustrates low-quality temporal alignment for the variant Baseline.
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However, the mesh sequence is more stable over time and contains less severe shape

distortions than the non-hierarchical version (Figure 5.14(bottom)). Clearer improve-

ment can be seen for the variant Robust-IGD in Figure 5.16(bottom). Coarse-to-fine

processing helps with fast and large motions such as surprise where IGD struggles on

the single mesh resolution (frame 67 in Figure 5.14(middle)). Generally, the result

with the coarse-to-fine scheme is more stable and has less distorted mouth and eye

regions. Comparing to the variant Robust (Figure 5.13(top)), there is still more local

drift created at the peaks of expressions. Therefore, IGD optimisation combined with

coarse-to-fine processing performs worse than CRS optimisation.

0. 67. 146. 228. 298. 354.

Figure 5.16: Snapshots from the temporally consistent mesh sequences for the dataset
Martin-skin2 using coarse-to-fine processing with the variant Baseline (top), the variant
Robust-IGD (bottom).
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5.6 Conclusion

This chapter has proposed a robust surface tracking method which enables more accur-

ate temporal alignment of facial performances where no markers or pattern are used.

This is achieved by introducing several key extensions to the baseline method presented

in Chapter 4. Firstly, matching of surface patches is performed by a novel optimisation

scheme using cooperative random sampling. Iterative propagation of motion estimates

across the surface significantly increases robustness against rapid non-rigid motions and

weak surface texture. Also, it is sufficient to optimise only patch position instead of the

full six degrees of freedom as for independent gradient descent optimisation. Secondly,

the matching objective function is reformulated such that the appearance of the patch

from the previous frame is used for alignment with the current frame. Adaptivity of the

patch textures helps to overcome instability of the fixed reference textures on expres-

sions with very different appearance from the reference frame. Thirdly, increased risk

of drift due to patch texture updating is mitigated by the shape prior in the form of

an unregistered mesh sequence reconstructed beforehand. Limiting the patch motion

around the unaligned geometry together with adaptive textures makes the objective

function less ambiguous in the case of weak surface texture according to the analysis

undertaken. This further improves estimation of raw motion vectors by the robust

cooperative optimisation, hence accumulation of tracking errors is reduced over longer

performances with complex non-rigid deformations. Lastly, a coarse-to-fine approach is

proposed for the frame-to-frame alignment of the tracked mesh but this brings marginal

benefit combined with the robust cooperative patch optimisation.

The proposed robust approach has been evaluated on a synthetic facial performance

and several real performances with varying amount of make-up on an actor’s face. Com-

parison to the baseline technique shows slightly more drift but still accurate tracking

for a well-textured surface (a face painted with a random pattern) or a surface without

time-varying appearance (a synthetic face with a fixed texture). There is a signific-

ant improvement over the baseline for a weakly-textured surface (the face with plain

skin), especially when undergoing fast, complex deformations. This demonstrates a

clear advance over previous sequential motion capture methods such as [23, 79, 36, 37]
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on surfaces with a weak texture. Several variants of the frame-to-frame alignment have

been compared to identify the importance of individual extensions. The cooperative

patch optimisation provides the largest improvement followed by adaptive patch tex-

tures and shape prior with the least but still important influence. The coarse-to-fine

processing proves to be redundant combined with the cooperative random sampling,

but it is beneficial for the baseline independent gradient descent optimisation. Apart

from visual assessment of the results quantitative evaluation has been conducted in

spite of the lack of standard evaluation measures for surface tracking. Two error meas-

ures are used: correlation of the projected textures in the UV space of the tracked

mesh over time; and mesh distance between corresponding frames of mirrored input

sequence (Appendix B). Both error measures have their limitations, but can be used

for approximate quantitative evaluation of tracking results.

The main drawback of the proposed method remains the accumulation of alignment

errors while tracking sequentially through an input sequence. Smoothing of shape

details and local drift in the most deforming regions such as the eye sockets and the

lips gradually appear over time. These artefacts become significant after long chains

of frame-to-frame alignments due to robustness of the proposed method but they are

inevitable because of sequential traversal. The next chapter addresses this problem

by introducing non-sequential tracking which aligns the input sequence along multiple

paths of reduced length.



Chapter 6

Non-sequential surface tracking

The previous chapter presented a new robust technique for surface tracking which

handles fast non-rigid deformations of plain skin. Despite the increased robustness of

frame-to-frame alignment, there is still drift over longer periods of time in areas with

the most deformation. This is due to the nature of sequential tracking which chains

frame-to-frame alignments throughout an input sequence. Sequential traversal is also

prone to failure of the alignment method which prevents tracking of subsequent frames.

Non-sequential methods for surface tracking have been proposed which reorder the in-

put sequence to alleviate the problems of drift and failure. Beeler et al. [13] identify

anchor frames similar to the neutral expression in a reference frame across a facial per-

formance using direct image correlation. Initial alignments are made from the reference

frame to the anchor frames and the segments between anchors are tracked sequentially

in both directions. The result at each frame is selected from two hypotheses according

to an estimate of tracking error. Tracking of the facial mesh is based on per-frame 3D

reconstructions and multi-view optic flow. Global alignment of multiple unregistered

mesh sequences of whole-body performance is tackled by Huang et al. [52]. The frames

across all sequences of the same actor are compared using a dissimilarity measure based

on the shape of unregistered meshes. Their comparison is performed through differ-

ence of shape histograms as recommended in [54]. Sequences are linked through a few

pairs of the most similar frames. Each sequence and the links between them are se-

quentially tracked by a geometry-based alignment method. The shortest path tree is
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calculated among frames using the dissimilarity to establish the optimal way of com-

bining the tracking results. A mesh with fixed topology is propagated according to the

tree through the sequences using the computed temporal correspondence. This yields

a temporally consistent representation across the multiple input mesh sequences. In

contrast, Budd et al. [22] optimise the traversal among all frames of several whole-body

performances based on the minimum spanning tree. This is calculated on a fully con-

nected graph among all frames using the shape-histogram dissimilarity. Therefore, the

minimum spanning tree minimises the total path through the whole shape dissimilarity

space rather than the sub-space limited to a few non-sequential links as in [52]. The

traversal of the input data is then less sequential and also directly guides the actual

surface tracking in contrast to [52].

The approach using the minimum spanning tree [22] has been chosen as a basis for the

non-sequential tracking framework presented in this chapter. The concept is for the

first time used in the scenario of facial performance capture. This requires a different

dissimilarity measure which is more suitable for relatively subtle motion of the face

than the shape histogram. Thus, calculation of the minimum spanning tree is based

on the dissimilarity derived from the motion of a sparse set of strong facial features.

The tree then guides the robust frame-to-frame alignment method from the previous

chapter throughout the input sequence. Although, the tree traversal provides shorter

alignment paths and thus less drift, it can suffer from alignment inconsistencies where

different paths meet. The independent accumulation of errors along different paths can

lead to jumps in the final mesh sequence.

It has been observed that there is a trade-off between drift and jump errors. There-

fore, a novel cluster tree is proposed to balance these two types of errors. The cluster

tree enforce sequential tracking inside clusters of similar successive frames, but still use

non-sequential transitions between them based on the minimum spanning tree. Gran-

ularity of the frame clustering influences the shape of the tree which allows selection

of the optimal tree for a given input sequence. Although, the cluster tree reduces the

number of places where different alignment paths meet, the jumps may still occur. Fu-

sion of tracking results across tree branches is proposed to eliminate the jumps in the

temporally consistent mesh sequence.
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This chapter presents a formulation of the non-sequential surface tracking and calcu-

lation of several types of traversal trees (minimum spanning tree, shortest path tree,

cluster tree). Characteristics of optimal traversal tree are discussed from a theoretical

perspective. The proposed surface tracking framework is generalised to any frame-to-

frame alignment method with an associated dissimilarity measure. It is not limited

to the face application and comprehensive evaluation shows the suitability for other

non-rigid surfaces such as cloth and whole body. Two different frame-to-frame align-

ment methods with respective dissimilarity measures are investigated to demonstrate

wider applicability of the framework. The image-oriented method proposed in Chapter

5 is combined with the dissimilarity from sparse features for facial performances and

cloth deformation. The geometry-oriented method from [22] is combined with the

dissimilarity from the shape histogram for whole-body performances. The validity of

the dissimilarity measures used is empirically assessed for their respective alignment

methods.

6.1 Problem formulation

The input is a sequence of observations {Ot}Tt=1 of a deforming surface for frames

{1, ..., T} where Ot is defined in Section 5.1. The sequence can consist of multiple seg-

ments from independent motions of the surface and T is then the total number of frames

in all segments. Conventionally, a temporally consistent mesh sequence {Mt}Tt=1 is ob-

tained by sequential tracking which concatenates frame-to-frame non-rigid alignment

between successive frames t − 1 and t. The frame-to-frame alignment estimates the

correspondence between observations Ot−1 and Ot. Any errors in the correspondence

influence subsequent alignments which leads to drift in {Mt}Tt=1.

Non-sequential tracking processes the input sequence {Ot}Tt=1 in an order different from

the temporal order. A traversal of {Ot}Tt=1 is guided by a measure which estimates the

difficulty of non-rigid alignment of observations Ot between any pair of frames. Intuit-

ively, the difficulty of transition between frame i and j is represented by a dissimilarity

d between respective observations Oi and Oj (example measures are described in Sec-

tion 6.2). Given a symmetric measure d between all pairs of frames, alignment paths



6.1. Problem formulation 127

to every frame are jointly optimised to have minimal length according to the dissimil-

arity. The tracking is then performed along multiple paths of shorter length than fully

sequential traversal which reduces the accumulation of alignment errors.

A traversal of the input sequence is represented by a traversal tree T = (N , E) which is a

spanning tree with the nodes N = {ni|∀i ∈ [1..T ]} corresponding to all frames (Figure

6.1). The directed edge set E ⊆ {(ni, nj)|∀i, j ∈ [1..T ]; i 6= j} has the size |N | − 1

and connects all nodes. The edges are weighted by d between individual observations

Oi and Oj . The tree T has a defined root node nr which sets directionality of the

edges towards the leaf nodes. An alignment path nr → ni for the frame i starts at

nr and follows the tree structure towards ni. Non-sequential tracking of the whole

sequence chains frame-to-frame alignments from nr along tree branches towards all leaf

nodes. Tracking using a tree leads to the presence of cuts in the sequence at places

where two different alignment paths meet (marked red in Figure 6.1). Independent

accumulation of alignment errors along these paths can potentially manifest as jumps

or glitches in the resulting sequence {Mt}Tt=1. Consequently, there is a trade-off between

the minimisation of alignment path length and a number of cuts. Longer paths lead

to larger gradual drift but a large amount of cuts results in many jumps and jitter.

The proposed method reflects this trade-off and allows calculation of the traversal tree

which balances between these two kinds of artefacts.

Figure 6.1: A traversal tree T on the input frame sequence {1, ..., T}. The cuts separate
adjacent frames which have different alignment paths along tree branches.

The non-sequential traversal of the input sequence using T can be combined with any

frame-to-frame surface alignment technique working with {Ot}Tt=1. For calculation of

T it is assumed that the dissimilarity measure d is proportional to the alignment error
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of the technique used. However, d is designed as an approximate measure which is

significantly easier to compute than actual alignment of the mesh M . The relationship

between d and the alignment error is usually non-linear to some extent (Section 6.6.6).

Low dissimilarity values map to a similar level of alignment quality. The mid-range is

proportional to the alignment error. Above a certain dissimilarity value the alignment

algorithm starts to fail and the errors become disproportionately large. This non-

linearity partially biases the calculation away from the optimal tree T for the frame-

to-frame alignment method.

6.2 Dissimilarity measure

Image-oriented frame-to-frame alignment proposed in Chapter 5 is coupled with the

dissimilarity measure dI . The dissimilarity is based on a sparse set of surface points

which approximates the overall motion of a surface. The motion estimation for the small

amount of points is significantly faster than the full frame-to-frame alignment of the

mesh. The points are manually chosen by a user and they are tracked in the 3D space

throughout the sequence. At first, each surface point is sequentially tracked in one of the

image sequences {{Ict }Cc=1}Tt=1 where it is the best visible. Afterwards, 2D trajectories

of the points are back-projected from the respective views onto unregistered geometries

{Mg
t }Tt=1. This yields their 3D trajectories over time which represent a sparse motion

field of the surface.

Although, the sparse surface motion is derived by a sequential tracking process, this

does not introduce a bias into subsequent computation of a non-sequential traversal.

The reason is Linear predictor tracker [81] used for the 2D tracking which has the abil-

ity to recover from errors, hence suffers from a limited drift. The method is also robust

against a weak texture and complex non-rigid deformations which allows accurate mo-

tion estimation particularly in the face application. These properties are achieved by

learning appearance variance of the point and creating a specific tracker. This requires

manual landmarking of the point at distinct surface poses during its motion (in the case

of faces these are extremes of expressions and midpoints between them). The number

of landmarked frames depends on the complexity of the observed motion but it is a
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small fraction out of the whole sequence. The tracker is trained on examples from dif-

ferent time instances which provides the important additional capability in comparison

to standard sequential trackers without any prior learning. After training phase, the

actual tracking of the point is fully automatic with the ability to recover from moderate

failures. Additionally, the learned tracker can be reused for different sequences of the

same surface as long as the variety of motion is similar to the original sequence.

The dissimilarity dI between two frames is defined as an average Euclidean distance

between 3D positions of the tracked points at these frames. This assumes that the

spatial difference between the point configurations indicates the difficulty of full mesh

alignment. To encourage transitions between similar instances of the surface with just a

different global pose, the sets of 3D positions are rigidly aligned before the comparison.

This is performed by Ordinary Procrustes analysis [34], which minimises the Euclidean

distance between the corresponding points using least squares. The resulting rigid

transformation initialises the frame-to-frame non-rigid alignment algorithm during the

actual tracking. In the case of facial performance, this approach effectively discards

the influence of head pose and the traversal is based on facial expressions only.

The dissimilarity dI is an approximate measure so it does not have to accurately rep-

resent the surface motion. The scores typically contain imprecisions due to errors in 2D

tracking or artefacts in the unregistered meshes. Also, it is influenced by the number

of surface points used and their individual motion variations. A large number of points

with limited motion can dilute the influence of distinct ones and flatten the resulting

dissimilarity matrix among frames. On the other hand, a few points with a distinct

motion can encompass smaller amount of motion nuances which can lead to worse dis-

crimination between relatively similar frames. Furthermore, the prior rigid alignment

can be inaccurate if the number of points used is too small. Typically, a small set of

points is sufficient (for example 15−20 for the face). Despite more complex calculation,

the measure dI is more valid than direct image correlation among frames used by Beeler

et al. [13]. The correlation does not directly reflect the amount of surface motion in

the 3D space.



130 Chapter 6. Non-sequential surface tracking

Another example of a dissimilarity measure is proposed by Budd et al. [22] for whole-

body performance tracking. An unregistered sequence of body meshes {Mg
t }Tt=1 is non-

sequentially aligned using a geometry-oriented frame-to-frame method. A traversal tree

is determined by the dissimilarity dG which makes use of a shape histogram [54]. This

is a volumetric histogram using a spherical partitioning of the 3D space which encodes

the surface shape. The dissimilarity dG between frames i and j is SSD between the

histograms for meshes Mg
i and Mg

j . The position and orientation of the spherical grids

for both histograms are optimised to minimise SSD. A side product of the optimisation

is a rigid alignment between the meshes which discards different overall pose. This

transformation is used to initialise the frame-to-frame non-rigid alignment. The meas-

ure dG does not directly describe the surface motion between frames, but a change in

the surface shape. There is an implicit assumption that motion is generally associated

with shape changes. This is not correct for motions such as shrinking or stretching but

these are not common for the whole body movement.

6.3 Traversal tree

A traversal tree T for non-sequential tracking can have different forms. Fully sequential

traversal is the special case of tree with a single branch starting at the initial frame.

The following sections present several types of the traversal tree - minimum spanning

tree, shortest path tree and cluster tree which are calculated according to different

objective functions.

6.3.1 Minimum spanning tree

A non-sequential traversal of an input sequence based on the minimum spanning tree

(MST) has been introduced by Budd et al. [22]. It is computed in a dissimilarity space

based on shape histogram comparison and used for geometric alignment of unregistered

mesh sequence. This concept is generalised here for an arbitrary dissimilarity d between

multi-modal observations Ot at every frame. The space of all possible pair-wise trans-

itions between frames of the sequence is represented by a dissimilarity matrix D of size
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T × T where both rows and columns correspond to individual frames (Figure 6.2(a)).

An element D(i, j) is a dissimilarity d between Oi and Oj which defines a cost of align-

ment between frames i and j. The matrix D is symmetric and has zero diagonal. The

optimal traversal in this space can be found through graph formulation of the problem

as suggested in [22].

A fully-connected undirected graph G = (N ,D) is built from the matrix D. The nodes

N are associated with all frames and the edges D = {(ni, nj)|∀i, j ∈ [1..T ]; i 6= j}

have the weight D(i, j). A traversal visiting all frames is described by an undirected

spanning tree T ′ = (N , E ′) where E ′ ⊂ D. The optimal tree T ′MST is defined as the

minimum spanning tree (MST) which minimises the total cost of pair-wise alignment

given by d as outlined in Equation 6.1. This objective approximates the total non-rigid

deformation of the surface which has to be overcome following the traversal tree.

T ′MST = argmin
T ′⊂G

 ∑
(ni,nj)∈T ′

D(i, j)

 (6.1)

Equation 6.1 is optimised using Prim’s algorithm [88]. Note that MST does not define

a root node, thus it has to be selected to set directions of the traversal. The tree TMST

is the directed version of T ′MST with the optimal root node selected by Equation 6.8.

(a) (b)

Figure 6.2: The dissimilarity matrix D for the dataset Synthetic-skin1 (blue - low
values, red - high values) (a). The traversal tree TMST depicted in D (each directed
edge (ni, nj) is marked black at respective location D(i, j)) (b).
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The benefit of MST is that low-cost transitions are at the centre of the tree because

of their priority during the tree construction. The edges with larger d are therefore

pushed towards the leaf nodes. This reduces the accumulation of errors along the

branches and also limits the extent of failure due to large inter-frame dissimilarity to

the ends of branches. The drawback of MST is that it does not take into account

the introduction of cuts and tends to temporally over-fragment the sequence. This

is depicted in Figure 6.1 of a generic traversal tree T . Notice temporal reshuffling of

frames on the single branch on the right and the short offshoot on the leftmost branch.

This happens mostly in slow-motion segments where TMST over-fits on small changes

of the surface (notice in the lower right corner of Figure 6.2(b)). The fluctuation of d

values in these segments can also be a consequence of inaccuracies in the dissimilarity

measure which is approximate by design. The sensitivity of MST to noise in d is not

desirable. Tracking results obtained using MST can contain many noticeable jumps

throughout the sequence and jitter of the mesh during static poses or slow motions.

6.3.2 Shortest path tree

The minimum spanning tree minimises the total dissimilarity between frames which

has to be overcome during the non-sequential tracking. However, this objective does

not explicitly optimise path dissimilarity lengths to individual frames which indicate

potential error accumulation from frame-to-frame alignments. The shortest path tree

(SPT) used in [52] minimises directly the path length to all nodes from the selected

root which reflects total amount of potential drift at each frame. TSPT is a directed

tree, in contrast to TMST , calculated from the same graph G. Equation 6.2 defines the

optimisation of a directed spanning tree T with a given root node nr according to SPT

criterion,

TSPT = argmin
T ⊂G

∑
nt∈T

∑
(ni,nj)∈nr→nt

D(i, j)

 (6.2)

where nr → nt is a path between the root nr and an arbitrary node nt. This is computed

by Dijkstra’s algorithm [30]. The tree TSPT is optimal with respect to the given root

nr, thus the best nr has to be selected to obtain the final tree for the whole sequence.

Equation 6.2 is evaluated for all nodes taken as the root and the tree with the lowest
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total path length is selected as the optimal TSPT .

SPT favours a large number of short branches with relatively high dissimilarities in

comparison to the MST. Thus, it introduces many cuts in the sequence which increases

the risk of alignment inconsistencies. Edges with relatively high dissimilarities often

lead to gross tracking errors because the dissimilarity measure does not reflect well

that the alignment algorithm fails above a certain level of dissimilarity between frames.

Therefore, MST provides better traversal by prioritising low-dissimilarity transitions

and creating less cuts.

In practice, SPT produces the extreme case where there are direct edges from the root

node to all other nodes as illustrated in Figure 6.3(b). This is because the evaluation

datasets do not contain very high dissimilarities in their matrices which would make

branches with multiple edge more optimal in some cases. Figure 6.3(a) demonstrates

the single-step SPT for the dataset Synthetic-skin1 by a single line at the row of the

root node in the dissimilarity matrix. The aligned mesh sequence using this tree suffers

from a lot of jitter because there are cuts between all adjacent frames. Also many gross

errors are present because of edges with high dissimilarity which lead to alignment

failures.

(a) (b)

Figure 6.3: The traversal tree TSPT depicted in D for the dataset Synthetic-skin1 (a).
An example illustration of TSPT on the input sequence (b).
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6.3.3 Cluster tree

Both MST and SPT introduce many cuts into the input sequence reordering which

results in jumps and jitter in the temporally consistent meshes {Mt}Tt=1. This is caused

by the fact that these tree algorithms do not consider the temporal order of frames,

thus they are not aware of introducing the cuts. To illustrate, if the input sequence

{Ot}Tt=1 is randomly shuffled, the weights of edges in the fully-connected graph G do

not change, and therefore the trees TMST , TSPT are calculated the same way.

To address shortcomings of MST and SPT the notion of temporal order of frames needs

to be incorporated into the algorithm generating the traversal tree. A novel cluster

tree is proposed which enforces sequential tracking locally to reduce fragmentation

of the sequence. Sequential tracking is favoured in slow-motion segments where the

non-sequential traversal does not bring any benefit due to low difficulty of frame-to-

frame alignments. This addresses over-fragmentation in these segments by both MST

and SPT. The MST approach is still used to link the sequential segments together to

obtain global non-sequential traversal of the sequence. Therefore, high-dissimilarity

transitions are not likely to be included as in the case of SPT. The cluster tree shape

is simpler with a smaller number of cuts which reduces the jumps and jitter in favour

of relatively smooth sequential drift which is perceptually more acceptable.

Increased sequential traversal can also alleviate issues with possible inaccuracy of the

approximate dissimilarity measure. Noise observed in nearly-static segments of the sur-

face motion does not influence the tree shape because sequential tracking is enforced.

General bias in tree calculation due to the non-linear relationship between the dissim-

ilarity and capabilities of the alignment method is also mitigated. Sequential tracking

over low dissimilarity values effectively assumes their mapping to the same level of

alignment difficulty which often the case in practice. On the other hand, high dissimil-

arity transitions are generally avoided by MST between sequential sub-sequences which

reduces risk of complete alignment failure often associated with high dissimilarities.
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Frame clustering

Intuitively, segments traversed sequentially should contain little or no deformation of

the surface, so there is a minimal accumulation of errors. Clusters of similar successive

frames form blocks with low d around the diagonal in the matrix D (Figure 6.2(a)).

Ideally, large clusters should be generated in slow-motion segments and small clusters

(even down to individual frames) in the segments with significant surface motion. The

summarisation method by Huang et al. [53] is modified for the purpose of frame

clustering. The clusters do not have any representative key-frames but all frames are

compared to each other to measure overall intra-cluster consistency. This provides a

more general clustering approach which suits our purpose better than grouping frames

around a few distinct exemplars.

A sequence of frames {1, ..., T} can be represented by a clustering U = {Fk|∀k ∈

[1..K]} where K is a number of non-overlapping clusters. A frame cluster Fk is a

sequence of frames {tk −∆tk, ..., tk + ∆tk} ⊂ {1, ..., T} where tk is a central frame and

∆tk is a half-size of the cluster. The clustering U has to fulfil following conditions:
K⋃
k=1

Fk = {1, ..., T} ∧ Fk ∩ Fl = ∅; k 6= l. The inconsistency of frames within

cluster A(Fk) is defined in Equation 6.3 as the sum of pair-wise dissimilarities which is

the main difference to [53].

A(Fk) =
1

2

tk+∆tk∑
i=tk−∆tk

 tk+∆tk∑
j=tk−∆tk

D(i, j)

 (6.3)

The clustering U is described by two costs: total intra-cluster inconsistency for all

clusters and the number of clusters K. The costs are weighted against each other by

the parameter β ∈ 〈0, 1〉 to provide a combined cost which is minimised as:

Uβ = argmin
U

βK + (1− β)
∑
Fk∈U

A(Fk)

 (6.4)

The optimal set of clusters Uβ for the matrix D depends on β which influences granu-

larity of the clustering (Figure 6.4(a)). Values closer to 1 return a smaller number of

large clusters and values closer to 0 return a larger number of small clusters.
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For a given β Equation 6.4 is solved through a graph-based formulation. A directed

graph is built in the space of all possible frame clusters where each node represents a

cluster of consecutive frames. Edges link only the nodes for which clusters are tem-

porally adjacent to each other. The clusters containing the first frame are connected

to the source node and the clusters containing the last frame to the sink node. The

direction of all edges is forward in time. The weight of an edge is determined according

to the target cluster Fk: β + (1 − β)A(Fk). The shortest path from the source to the

sink found by the Dijkstra’s algorithm [30] minimises Equation 6.4. The resulting chain

of nodes represents the optimal clustering Uβ for the matrix D which is given by the

parameter β.

Tree calculation

A non-sequential traversal can be computed on the sequence of clusters instead of the

original frame sequence using MST as described in Section 6.3.1. The dissimilarity

matrix D is collapsed to a cluster dissimilarity matrix DF of size K ×K where rows

and columns correspond to the individual clusters from Uβ (Figure 6.4(b)). Equation

6.5 defines the dissimilarity DF (k, l) between the clusters Fk and Fl as the minimal

cost of transition between the respective clusters in the full matrix D.

DF (k, l) = min(D(i, j)) ∀i ∈ Fk,∀j ∈ Fl (6.5)

A cluster pair (Fk, Fl) is then linked by the pair of frames (i, j) with minimal dissimil-

arity ((Fk, Fl) ∼ (i, j)). The matrix DF is symmetric with zero diagonal elements as for

D (Figure 6.3(b)). A fully-connected graph GF = (NF ,DF ) with nodes corresponding

to the clusters Fk is built from DF . An undirected spanning tree which minimises the

total cost of transitions among the clusters is calculated as in Equation 6.1. The res-

ulting minimum spanning tree T ′F = (NF , E ′F ) has the same properties as T ′MST . The

tree with edges E ′F ⊂ DF is illustrated in Figure 6.4(c).

Afterwards, the tree among clusters T ′F needs to be transformed to a full spanning tree

T ′β = (N , E ′) interconnecting all frames {1, ..., T}. The set of edges E ′ consists of two

edge groups E ′1 and E ′2. Firstly, E ′1 is constructed from sparse links (Fk, Fl) ∼ (i, j)
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interconnecting the original clusters at frame level. Equation 6.6 transforms the edges

E ′F between clusters into their respective frame-to-frame edges E ′1 where nodes nk, nl ∈

NF and ni, nj ∈ N .

E ′1 = {(ni, nj)|∀(nk, nl) ∈ E ′F ; (Fk, Fl) ∼ (i, j)} (6.6)

Secondly, E ′2 links the rest of the frames within the clusters to T ′β. Because of low

intra-cluster dissimilarity of frames sequential traversal is enforced among them. Thus,

Equation 6.7 defines chains of frames in temporal order for all clusters.

E ′2 =
⋃

Fk∈Uβ

{(ni, nj)|i, j ∈ Fk; |i− j| = 1} (6.7)

The construction of T ′β does not strictly create cuts at all boundaries between the

clusters. Often, the minimal transition between temporally adjacent clusters is the

one linking the last frame of the first cluster to the first frame of the second cluster.

Therefore, the algorithm has an option to chain together several neighbouring clusters

into a single sequential segment if it is deemed optimal.

(a)

(b)

(c) (d)

Figure 6.4: A clustering Uβ illustrated in the matrix D for the dataset Synthetic-skin1
(white squares mark individual clusters) (a). A cluster dissimilarity matrix DF created
by collapsing D according to Uβ (b). A tree T ′F among clusters is calculated from DF

(c) and then is expanded into full traversal tree Tβ (d). Notice less fragmentation and
longer sequential segments than for TMST (Figure 6.2(b)) or TSPT (Figure 6.3(a)).



138 Chapter 6. Non-sequential surface tracking

The tree T ′β does not exactly define a traversal of the input sequence because it is

undirected and has no root node (similar to T ′MST ). The root node nr has to be

selected to set directions along the paths in T ′β. The selection is made by minimisation

of Equation 6.8 which is derived from the criterion for SPT (Equation 6.2). The length

of weighted paths nu → nt from a candidate root node nu to all other nodes nt has to

be minimal. This is again calculated by the Dijkstra’s algorithm.

nr = argmin
nu∈N

 ∑
nt∈T ′β

∑
(ni,nj)∈nu→nt

D(i, j)

 (6.8)

The final traversal tree Tβ = (N , E) (Figure 6.4(d)) is created from T ′β by setting the

direction of the edges in E ′ according to the expansion of breadth-first search from nr

towards the leaves.

The shape of Tβ is influenced by the clustering parameter β. The granularity of cluster-

ing Uβ influences the number of branches for Tβ and consequently the number of cuts

created. The cluster tree T0 for β = 0 is equivalent to TMST because all clusters contain

one frame. With increasing β trees become generally thinner with longer sequential

branches. This is depicted in Figure 6.5 where the low number of clusters causes the

simple shape of the tree with few cuts. The tree T1 for β = 1 is equivalent to purely

sequential traversal because a single cluster for the whole sequence is generated. How-

ever, the spectrum of trees between MST and the sequential traversal is not completely

consistent in terms of a simpler shape with increasing β. Different frame clusterings can

lead to similar trees because the successive clusters can be chained together during the

tree calculation and effectively produce a similar result to a coarser clustering. Hence,

a large part of the β-range next to 0 produces trees which are similar to TMST . Values

of β close to 1 do not result in almost sequential trees. It is not possible to create SPT

by adjusting β because the cluster tree calculation stems from MST criterion.

The spectrum of possible cluster trees allows a selection of Tβ which best balances

the trade-off between the drift and the jumps/jitter for a given dataset. The optimal

value of β has to be manually tuned according to visual evaluation of the tracked mesh

sequence. Although, the approximation of the alignment error by the dissimilarity



6.4. Non-sequential tracking using a tree 139

Figure 6.5: A cluster tree Tβ on the input sequence clustered into three frame clusters.
Notice cleaner tree structure in comparison to T in Figure 6.1.

can bias the tree calculation away from the optimal result, this can also be practically

alleviated by adjusting β.

6.4 Non-sequential tracking using a tree

Various traversal trees T described can be combined with an frame-to-frame alignment

technique working with the input observations Ot = ({Ict }Cc=1,M
g
t ). The alignment

technique is associated with a dissimilarity measure reflecting its capabilities. Given

T , a user manually specifies the shape and topology of the mesh Mr = (Xr,Γ ) for the

root node nr. The mesh Mr is subsequently tracked between the pairs of frames along

the branches of T from nr towards the leaves. The result is a temporally consistent

sequence {Mt}Tt=1 over the input sequence {Ot}Tt=1. Multiple captured sequences of the

same surface can be provided as an input and T spanning all of them is calculated the

same way as for a single sequence.

Two different alignment techniques are used for evaluation of the non-sequential frame-

work on various types of deformable surfaces.

6.4.1 Image-oriented frame-to-frame alignment

The frame-to-frame alignment proposed in Chapter 5 is primarily based on image in-

formation {Ict }Cc=1. This is aimed at open surfaces captured by a narrow-baseline camera

setup where the fields of view are significantly overlapping and the capture volume is re-

latively small. The precision of surface alignment is high but moderate motion between
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frames is assumed. Therefore, this approach is suitable for facial performances and

cloth deformation. The technique is used without coarse-to-fine processing extension.

6.4.2 Geometry-oriented frame-to-frame alignment

The frame-to-frame alignment proposed by Budd et al. [22] is primarily based on geo-

metry information Mg
t . This is aimed at closed surfaces captured by a surrounding

wide-baseline camera setup. The spacious capture volume allows large free-form mo-

tion of the surface between frames. The focus of this approach is robustness against

fast frame-to-frame non-rigid deformations rather than high tracking accuracy. This

technique is applied to whole-body performances.

The body surface is tracked non-sequentially based on MST exploiting unregistered

sequence of meshes {Mg
t }Tt=1 reconstructed by multi-view stereo. MST is calculated

using the dissimilarity dG described in Section 6.2. The template mesh Mr is created

automatically by decimation of Mg
r at the root frame r of MST and subsequently

tracked along tree branches. Between each pair of frames it is deformed according to

geometrical correspondences.

An unregistered mesh Mg
t−1 at the source frame t− 1 is separated into surface patches

of a given radius in terms of mesh topology. These rigid patches are fitted by the

Iterative closest point algorithm (ICP) to Mg
t at the target frame. This provides 3D

displacement vectors for the patch centres which are used as constraints in Laplacian

deformation of Mt−1. ICP and Laplacian deformation are repeated iteratively to refine

the alignment of Mt with Mg
t . Coarse-to-fine refinement is performed by increasing

the number of patches between iterations to provide finer correspondence. The process

stops when the individual patches contain single triangle fans.

6.5 Multi-path temporal fusion across tree branches

A drawback of non-sequential tracking based on a tree [22] is the presence of cuts

between adjacent frames with different alignment paths (Figure 6.6) which can cause

jumps in the final mesh sequence. To ensure smooth transitions, the original tree T can
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be expanded with branches of a length m which extend the tracking across each cut in

both directions. The expanded tree T̃ = (Ñ , Ẽ) includes the tree T (N ⊂ Ñ , E ⊂ Ẽ)

as illustrated in Figure 6.6. New branches are added for every pair of adjacent frames

(t − 1, t) where a cut is located: (ñt−1, ñt) ∧ (ñt, ñt−1) /∈ E . A chain of new nodes

with interconnecting edges is created for the frames {t−m, ..., t− 1} and linked to the

original node ñt ∈ N (similarly for the frames {t, ..., t − 1 + m} and the node ñt−1).

The new edges have weights from the respective positions in the matrix D.

Figure 6.6: The original traversal tree T on the frame sequence {1, ..., T} has blue nodes
and full arrows as edges. Red cuts separate adjacent frames with different alignment
paths. New nodes of the expanded tree T̃ with m = 1 are marked green and new edges
have dotted arrows. Vertical dashed lines join the nodes which are fused into a single
result for a respective frame.

After the expansion a frame t can have multiple nodes ñv associated with it yielding

multiple solutions Xv through different alignment paths (vertical dashed lines in Figure

6.6). To combine them, every node ñv ∈ Ñ is weighted by a coefficient ηv defined in

Equation 6.9. The first term represents a tracking confidence from the root ñr to ñv as

an inverse of accumulated dissimilarity. The second term linearly decreases the weight

along the additional branches where ñt is the last node from the original T on the path

ñr → ñv (this term equals 1 for ñv ∈ N ).

ηv =

 1∑
(ñi,ñj)∈ñr→ñv

D(i, j)

 ·
1−

∑
(ñi,ñj)∈ñt→ñv

1

m+ 1

 (6.9)

The final vertex positions Xt for the mesh Mt are blended from all candidate positions

Xv for the frame t. Equation 6.10 defines simple linear blending with the normalised

coefficients ηv. According to experiments this is sufficient to produce visually pleasant
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fusion across the cuts for the facial performance. An overlap of a few frames (m = 3)

produces smooth temporally consistent mesh sequence {Mt}Tt=1.

Xt =
1∑

ñv∈t
ηv

∑
ñv∈t

ηvXv (6.10)

The temporal fusion across cuts can be used with any type of traversal tree but it is

only able to eliminate small jumps. Thus, the tree should not create large alignment

inconsistencies. Also, a large number of jumps in close neighbourhood often leads to

less accurate fusion which manifests as smooth local drift. From the perspective of

computational overhead, more cuts introduced by a tree require more additional nodes

in an expanded tree. The number of frame-to-frame alignment steps can easily exceed

the original number without the fusion even for moderately fragmented traversals.

According to these observations the cluster tree is favoured over MST or SPT because

it generates less cuts with smaller potential inconsistencies.

6.6 Evaluation

The non-sequential approach has been evaluated for facial performance application

but also for other deformable surfaces undergoing complex non-rigid motions. Table

6.1 summarises the datasets used which contain facial performances (Synthetic-skin1,

Martin-skin2, DisneyFace), cloth deformation (Garment) and whole-body performances

(StreetDance). The datasets DisneyFace [13] and StreetDance [101] are publicly avail-

able. All datasets provide multi-view image sequences with camera calibration and an

unregistered mesh sequence (detailed description in Appendix G).

Table 6.1 specifies the configuration of experiments across the datasets. The resolu-

tion of the tracked mesh M varies between them. Also, two different frame-to-frame

alignment techniques mentioned in Section 6.4 are applied according to the nature of

individual datasets. The image-oriented surface alignment with the dissimilarity dI is

used for the face and cloth datasets. The geometry-oriented surface alignment with the

dissimilarity dG is used for the whole-body performance.

The image-oriented alignment has a common parameter configuration: NCC on grey-
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Dataset Nv Nf N∗v T ∗(T ) s qlim(mm) σg(mm)

Synthetic-skin1 2689 5248 22 - 0.1 5 10
Martin-skin2 2689 5248 22 11(355) 1.0 5 10
DisneyFace 2700 5332 15 11(346) 0.5 5 5
Garment 425 768 12 9(320) 1.0 10 10
StreetDance ∼3484 ∼6964 - - - - -

Table 6.1: Experimental configuration across the evaluated datasets: Nv - a number of
vertices of the tracked mesh M ; Nf - a number of faces of M ; N∗v - a number of surface
points tracked for dI ; T

∗ - a number of landmarked frames for tracking of the surface
points (T - total number of frames); s, qlim, σg - parameters for robust image-oriented
surface tracking. The mesh resolution for StreetDance changes slightly depending on a
traversal tree because of different mesh decimation in individual root frames.

scale, do = 0.2mm, No = 11, wg = 1.0, ξe = 0.15 and δe = 0.05. The varying parameters

are listed in Table 6.1. Multi-path temporal fusion across cuts is not applied unless

mentioned explicitly. This is to compare directly different traversal trees without any

additional enhancement step. The dissimilarity dI is computed from N∗v surface points

tracked initially in 2D by linear predictor tracker. Training of this tracker required

landmarking T ∗ frames out of total length T of a sequence. In the case of the dataset

Synthetic-skin1 the surface points are not tracked in image sequences but their 3D

trajectories are directly sampled from the ground-truth mesh sequence. The geometry-

oriented alignment starts with surface patches of 7-edge radius from the central vertex.

Therefore, there is 7 iterations during coarse-to-fine refinement. The dissimilarity dG

is computed using the shape histogram with 1000 bins.

Figure 6.7 visualises dissimilarity matrices constructed for the datasets based on the

respective measures. They reflect the nature of a surface motion such that cross-

like segments with similar colour pattern represent individual phases of the motion.

The pattern along rows or columns determines how dissimilar the phase is to other

movements. Blue colour marks zero dissimilarity and warmer colours increasing value.

Different traversals through the dissimilarity space D have been evaluated across all

datasets. The following reorderings of the input sequence are compared: the standard

sequential traversal (β = 1), the non-sequential traversal according to MST (β = 0),

the non-sequential traversal according to SPT (no association with β) and the non-

sequential traversal according to a cluster tree (β = (0, 1)). Multiple traversal trees Tβ
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(a) (b)

(c) (d)

Figure 6.7: Dissimilarity matrices for the dataset Martin-skin2(a), DisneyFace(b), Gar-
ment(c) and StreetDance(d) (Synthetic-skin1 in Figure 6.2(a)). Colour mapping is for
all datasets the same (blue = 0, red = 15) except StreetDance which uses the dissim-
ilarity dG (blue = 0, red = max value).

are generated for the proposed cluster-based approach to explore the spectrum of pos-

sible tree shapes between the sequential traversal and MST. The clustering parameter

β is sampled in the way that distinct clusterings Uβ with varying number of clusters are

created for a given D. This produces a variety of cluster trees with different structures.

Appendix C contains tables which list traversal trees evaluated for each dataset. Each

tree is described by several properties: β value, the number of clusters, the number of

branches, average branch length and the number of cuts. A few trends can be observed

across the spectra of trees in all datasets. The number of frame clusters increases from
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one cluster for β = 1 (sequential traversal) to the number of clusters equal number

of frames for β = 0 (MST). SPT is not compatible with the cluster tree algorithm,

therefore no clustering Uβ is related to it. However, it operates directly at the level of

individual frames. The spectrum of trees starts from a single branch with no cut for

the sequential traversal (β = 1). The branching structure becomes more complicated

introducing more cuts as β decreases. For β < 0.6 the trees are very similar to MST

(β = 1) which closes the β-range. SPT is an extremely branched tree which has direct

transitions from the root to all other nodes, and therefore cuts between all frames.

The temporal consistency of mesh sequences resulting from the evaluated traversals has

been visually assessed from the perspective of drift versus jumps. This visual assessment

takes into account the fact that sudden jumps of the mesh are more distracting for a

viewer than smooth local drift. Several main observations have been made for all

datasets. Sequential traversal inevitably leads to significant accumulation of errors

and latter parts of the sequence have imprecise temporal consistency. Direct frame-

to-frame alignment from the root frame to all other frames often fails in the case

of SPT, especially during non-neutral expressions, resulting in very unstable mesh

sequence. MST reduces drift in comparison to the sequential traversal significantly

because difficult motions are approached by tracking from both sides in time. Thus,

alignment errors occurring during these motions do not influence subsequent frames.

However, there is often a large number of jumps because MST over-fragments the

sequence. The best cluster tree is selected from the range β = (0, 1) according to the

tracking result (marked in tables in Appendix C). This is compared to MST which is

the best previous non-sequential approach. The comparison favours the cluster tree in

all datasets and discussion in following sections focuses on this point. Due to the visual

nature of all results the reader is encouraged to watch the supplementary video.

SAD error on unwrapped surface textures introduced in Section 5.5.3 is used for quant-

itative comparison of the traversals on real-world datasets. The reference texture to

compare the rest of a sequence to is taken from the root frame of the tree. Per-frame

SAD error does not quantify visual severity of alignment inconsistencies across cuts.

However, it still indicates accumulation of tracking imprecision and its distribution over

the input sequence. A weakness of this measure is that alignment errors can be over-
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ridden by appearance change during large deformation. Despite this fact, differences

between different traversals are visible even at extremes of expressions.

6.6.1 Synthetic facial performance

The dataset Synthetic-skin1 is derived from the real performance Martin-skin2 to

provide a ground-truth sequence with realistic facial dynamics. The dissimilarity

matrices of Synthetic-skin1 and Martin-skin2 are similar in Figures 6.2(a) and 6.7(a).

The cyclic structure with high-dissimilarity cross-like segments illustrates alternation

between different emotive expressions and the neutral expression. The dissimilarity dI

is computed using 3D trajectories of vertices selected from the ground-truth sequence

{MGT
t }Tt=1. Thus, the dissimilarity is ideal in the sense of perfect motion estimation

for the surface points used.

Figure 6.8 illustrates temporal consistency achieved by the individual traversals. MST

achieves temporal alignment with a few minor glitches which is superior to both the

sequential and SPT traversals. The best cluster tree T0.99 yields visually similar result

to MST because the image-based frame-to-frame alignment achieves high accuracy on

this sequence. Generally, there are small differences among the majority of the tested

cluster trees due to the lower complexity of synthetic data.

The synthetic dataset allows quantitative evaluation of the traversals with respect to

the ground truth. The ground-truth error defined earlier as the average Euclidean

distance between corresponding vertices does not explicitly capture perceptual quality

of tracking across the cuts. But this shows whether a tree improves globally the tracking

accuracy throughout the whole sequence. The difference of the mesh sequences to the

ground-truth sequence is depicted in Figure 6.9. The sequential tracking accumulates

alignment errors gradually (Figure 6.9(first row)) whereas SPT has large errors during

extrema of expressions (Figure 6.9(fourth row)). This is also visible in the average

per-frame error plotted across the whole sequence (Figure 6.10).

The MST result has small imprecisions predominantly around the eyes and mouth

and the errors do not accumulate significantly over time (Figure 6.9(second row)). The

cluster tree T0.99 has a similar error distribution across the face as MST (Figure 6.9(third
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0. 40. 66. 146. 228. 354.

Figure 6.8: Snapshots from the temporally consistent mesh sequence for the dataset
Synthetic-skin1: input images from one of the views (first row), sequential (second
row), MST (third row), cluster tree (fourth row) and SPT (fifth row). The left most
column represents the start/reference frame and the right most column the end frame
of the sequence. Actual frame numbers are denoted.
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0. 40. 66. 146. 228. 354.

Figure 6.9: Difference of the temporally consistent mesh sequence to the ground truth
for the dataset Synthetic-skin1: sequential (first row), MST (second row), cluster tree
(third row) and SPT (fourth row). Euclidean distance to corresponding vertices in the
ground truth is visualised across the face (blue = 0mm, red = 2mm).
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row)). The trend of per-frame error in Figure 6.10 fluctuates for both traversals with

maxima at the peaks of facial expressions. But T0.99 yields a lower error than MST in

some cases.

Figure 6.10: Average Euclidean distance across all vertices to the ground truth for the
dataset Synthetic-skin1. The error axis has a logarithmic scale. Minima of individual
curves are situated at the root frames.

Figure 6.11 plots overall ground-truth error for the whole sequence across the full

spectrum of traversals evaluated (Table C.1). The sequential and SPT traversals are

extremes with large inaccuracy on both ends of the spectrum. The cluster trees in

between achieve much better results and the majority of them have similar average

imprecision 0.25− 0.26mm per vertex which shows high quality of the tracking. A few

trees surpass MST, T0.99 gives the best visual result and also has the lowest vertex

error: mean = 0.250mm, standard deviation = 0.409mm. Although, the ground-truth

error does not quantify explicitly glitches due to the cuts, the graph in Figure 6.11

correlates well with the visual assessment of the mesh sequences.

6.6.2 Facial performance

The dataset Martin-skin2 provides a real-world performance with fast changes between

various exaggerated emotions which is visible in the dissimilarity matrix in Figure

6.7(a). The matrix is computed from the same set of surface points as in Synthetic-

skin1 but they are actually tracked which leads to increased noise in the dissimilarity.
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Figure 6.11: Overall ground-truth error for the dataset Synthetic-skin1 across different
traversals.

Figure 6.12 compares temporally consistent mesh sequences for different traversals

where the sequential traversal suffers from local drift around the eyes and lips and

SPT traversal from large mesh deformations. The fragmentation in MST does not

show as visible jumps in most cases because of accurate tracking in spite of weak skin

texture. The qualitatively best cluster tree T0.95 improves over MST by eliminating

several small glitches around the eyes and on the lips which is visible in the video.

Snapshots in Figure 6.12(fourth row) illustrate accurate temporal alignment through-

out the performance in spite of its challenging nature. SAD error on unwrapped facial

textures in Figure 6.13 has a similar error profile for MST and the cluster tree T0.95

but T0.95 is slightly better in some emotions. Despite the real-world complexity of

Martin-skin2, the quality of temporal consistency is comparable to Synthetic-skin1.

Different tracking traversals are also evaluated for the dataset DisneyFace released

by Beeler et al. [13]. They are compared to the result of non-sequential tracking

method by Beeler et al. which produces temporally consistent mesh sequence with

high resolution (∼ 1200000 vertices). This resolution is sub-sampled to 2, 700 vertices

for the comparison purposes to make computational time for our processing tractable.

The initial mesh at the root frame is taken from the decimated mesh sequence so that

motion of the same surface points is tracked by both approaches. The performance

contains natural speech with little motion outside of the mouth area. The relatively

slow overall motion is visible in the corresponding dissimilarity matrix in Figure 6.7(b)

which does not have a strong structure.
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0. 67. 146. 228. 298. 354.

Figure 6.12: Snapshots from the temporally consistent mesh sequence for the dataset
Martin-skin2: input images from one of the views (first row), sequential (second row),
MST (third row), cluster tree (fourth row) and SPT (fifth row).
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Figure 6.13: Per-pixel SAD error on unwrapped facial textures for different traversals
on the dataset Martin-skin2.

Figure 6.14(second row) illustrates only accurate tracking according to the best cluster

tree T0.98. The reason is that all traversals are visually similar apart from SPT which is

inaccurate. Differences between them are more visible in the quantitative comparison

using SAD error (Figure 6.15). The tree T0.98 achieves slightly lower error than MST

over the majority of the sequence. However, the average pixel difference summed across

all channels is in the range of 4− 8 colour levels which confirms high-quality temporal

alignment. The sequence is not challenging enough for the robust alignment algorithm

to demonstrate the benefits of the proposed cluster tree traversal.

Comparison to the result by Beeler et al. is calculated in the same way as for the

ground truth on the dataset Synthetic-skin1. Note that the difference between mesh

sequences may be due to the tracking errors in either approach. The per-frame average

distance for the evaluated traversals in Figure 6.16 shows that the best mesh sequence

by T0.98 is also the closest one to the mesh sequence by Beeler et al. The average vertex

distance across all frames for T0.98 is 0.192mm with the standard deviation 0.225mm.

Spatial distribution of the difference is visualised across the face at the selected frames

in Figure 6.14(third row). Qualitatively, the tree T0.98 yields a slightly larger drift

on the inner lip than Beeler’s result in some situations, otherwise they are hard to

distinguish visually.
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48. 114. 186. 258. 333. 394.

Figure 6.14: Snapshots from the temporally consistent mesh sequence for the dataset
DisneyFace: input images from one of the views (first row), cluster tree (second row)
and difference between cluster tree and Beeler et al. [13] (third row). The difference is
visualised as the Euclidean distance of corresponding vertices across the face (blue =
0mm, red = 2mm).

Figure 6.15: Per-pixel SAD error on unwrapped facial textures for different traversals
on the dataset DisneyFace.
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Figure 6.16: Average Euclidean distance across all vertices to the result by Beeler et
al. on the dataset DisneyFace. The distance axis has a logarithmic scale. Minimal
distances on individual curves are zero because initial meshes at the root frames are
sampled from Beeler’s mesh sequence.

6.6.3 Cloth deformation

The dataset Garment contains deforming cloth as an example of different type of surface

which can be handled by the proposed tracking framework. The sequence captures

motion of a loose textured top on upper torso of an actress. The top completely

fills the field of view for all cameras, hence only a rectangular area in the centre is

tracked (marked in Figure 6.17(first row)). The dissimilarity matrix in Figure 6.7(c)

illustrates that the first half of the sequence contains fast largely repetitive motion

(cyclic waving across the top) and the second half contains little non-rigid deformation

(mostly translational movement during slow deep breathing).

Figure 6.17 shows example meshes from temporally consistent sequences for the differ-

ent traversals where sequential and SPT traversal provide low-quality results (visible

in the video). MST achieves better temporal alignment but there are many noticeable

jumps due to excessive branching in repetitive motions. The cleaner structure of the

best cluster tree T0.994 largely eliminates these artefacts. This is noticeable in frames

350, 388 and 451 where errors are accumulated close to the cuts in MST. SAD error

on unwrapped cloth textures in Figure 6.18 has also slightly lower profile for T0.994

than MST. The improvement over MST by the cluster tree is visually bigger for the
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310. 350. 388. 451. 484. 629.

Figure 6.17: Snapshots from the temporally consistent mesh sequence for the dataset
Garment: input images from one of the views (first row), sequential (second row), MST
(third row), cluster tree (fourth row) and SPT (fifth row). Corners of the tracked area
are marked red in the input images.
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cloth than for the face datasets because of more challenging surface motion. Drift and

jumps are generally more severe than for the faces because of the higher deformation

complexity and motion blur which complicates the image-oriented alignment.

Figure 6.18: Per-pixel SAD error on unwrapped cloth textures for different traversals
on the dataset Garment. Minima of individual traversals are situated at their root
frames.

6.6.4 Whole-body performance

The dataset StreetDance represents another type of data where the proposed non-

sequential approach is beneficial. This features whole-body performance of a break-

dancer in loose uniform clothing. The sequence is composited from 3 different takes

(Free, KickUp, FlashKick) to demonstrate the ability of non-sequential traversal to

align the data across separate motions of the same surface. In this case, a closed mesh

is tracked on unregistered mesh sequence reconstructed from 8 cameras surrounding a

performer. The raw meshes capture the shape of the body, but do not contain details

such as fingers or facial features. Their quality occasionally suffers from motion blur

or self-occlusions during complicated break-dance moves. Moreover, the geometry-

oriented frame-to-frame alignment (Section 6.4.2) is challenged by changes in surface

topology such as the limbs joining the body if they are in close proximity.

The dissimilarity matrix in Figure 6.7(d) shows many fast movements spanning short

frame segments which are generally quite different from each other. The matrix contains
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0. 167. 298. 799. 800. 868. 1049.

Figure 6.19: Snapshots from the temporally consistent mesh sequence for the dataset
StreetDance: input images from one of the views (first row), sequential (second row),
MST (third row), cluster tree (fourth row) and SPT (fifth row). Corners of the tracked
area are marked red in the input images.
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more noise, especially in slow-motion parts, than in the other datasets due to less precise

dissimilarity dG. Because of over-fitting to dG, MST is very branched with many more

cuts than cluster trees (Table C.5).

Figure 6.19(second row) shows large drifts which twist and crease up the mesh for the

sequential traversal. SPT results in many failures of direct alignment from the root

frame (Figure 6.19(fifth row)). The MST result contains significantly less drift but

over-fragmentation of slow-motion segments causes jitter of the mesh. The gross errors

such as deformed limbs in frames 167, 298, 868 in Figure 6.19(third row) are due to

frequent transitions in the middle of complicated movements.

The best cluster tree T0.996 enforces sequential tracking in slow-motion segments and in

large parts of complicated movements. This eliminates distracting jitter and removes

the majority of gross errors (e.g. frame 868 in Figure 6.19(fourth row)). The increased

local drift at the peaks of complicated movements is perceptually more plausible than

fast alternation between differently distorted meshes. Even the best result by T0.996 does

not approach the precision of tracking in the face or cloth datasets. This is given by

much more challenging surface motion and less accurate geometry-oriented alignment.

Figure 6.20: Per-pixel SAD error on unwrapped body textures for different traversals
on the dataset StreetDance. Minima of individual traversals are situated at their root
frames.

To compute SAD error, the surface texture is back-projected into the UV domain of

the aligned meshes differently than for the previous datasets. Assignment of views

for regions in the UV domain changes over time due to changes of the body pose
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with respect to all cameras. Also, some mesh triangles are occasionally invisible to all

cameras so they are excluded from texture comparison between frames. Figure 6.20

shows low performance by the sequential and SPT traversal. Profiles for MST and the

cluster tree T0.996 favour slightly the cluster tree, mostly during complex motions.

To quantitatively judge temporal coherence of the tracked mesh in slow-motion seg-

ments, acceleration across all vertices is observed. Any fast changes in the acceleration

indicate jitter or jumps in the aligned mesh sequence better than SAD error. This

evaluation is applicable for the whole-body dataset because of the larger magnitude of

the errors than in the other datasets. Figure 6.21 shows average acceleration across

all vertices for MST and T0.996 for a segment where the dancer stands still. The peaks

represent high acceleration related to the jitter of mesh. The tree T0.996 significantly

reduces acceleration spikes in comparison to MST.
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Figure 6.21: Average vertex acceleration for MST and the best cluster tree T0.996 for
a segment in the dataset StreetDance where the dancer stands still. The acceleration
peaks correspond to high-frequency jitter in the aligned mesh sequence.

6.6.5 Results of multi-path temporal fusion

Multi-path temporal fusion across cuts created by a traversal tree smooths out possible

alignment inconsistencies. The resulting temporally consistent mesh sequence does not

contain abrupt jumps or jitter, thus is visually more pleasing. The effect of fusion

is shown on the best cluster trees for the face datasets Synthetic-skin1 and Martin-

skin2. This also demonstrates the quality of the final results for both datasets using

the complete tracking framework.

Both trees T0.99 for Synthetic-skin1 and T0.95 for Martin-skin2 introduce 19 cuts. The

expansion branches across cuts have the length set to m = 3, therefore the both expan-
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ded trees have 469 nodes in comparison to 355 nodes in the original trees. The available

ground truth for Synthetic-skin1 allows quantitative comparison with/without the fu-

sion across cuts. The comparison to the ground truth over the whole sequence in Figure

6.22 puts the result by the expansion tree T̃0.99 ahead of the original cluster tree T0.99.

The average error for all frames is 0.244mm with standard deviation 0.405mm for the

fusion across cuts and 0.25mm with standard deviation 0.409mm without the fusion.

In the video, per-vertex error across the face is visualised as heat map. The error pat-

tern changes abruptly for the selected cut which indicates a jump in the mesh sequence

when the fusion is not applied. The coherent change of the error pattern for the fusion

means smooth transition between different alignment paths.

Figure 6.22: Average Euclidean distance across all vertices to the ground truth for the
dataset Synthetic-skin1.

The expansion tree T̃0.95 eliminates few minor glitches introduced by T0.95 on Martin-

skin2. An example of smoothing out a glitch in the eyes is presented in the video. The

fixed texture on the face deforms smoothly with the fusion applied instead of a sudden

jump across the cut without the fusion. Note that multi-path temporal fusion only

makes the aligned meshes more coherent locally around a cut and does not globally

fix the drift along alignment paths leading to a cut. Hence, if one or both alignment

paths accumulate a significant error, the fusion between them replaces a jump with

smooth swimming of the mesh on the actual surface. Other traversal trees (MST,

SPT) benefit from fusion as well. The best results are still achieved with a cluster

tree which limits the number of inconsistencies. This has an advantage in terms of
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computational overhead because a smaller number of expansion nodes leads to less

additional tracking.

6.6.6 Relationship between dissimilarity and alignment error

Experiments in this section empirically estimate the relationship between dissimilarity

and alignment difficulty to justify the use of the measures dI and dG for image-oriented

and geometry-oriented alignment respectively. Ideally, the dissimilarity should be com-

pared against the actual amount of error introduced by the alignment between frames.

However, this error is not available because that would require a prior correct solution

of the alignment. Therefore, the error reported by the alignment method is used to

approximate the true error. This is an approximation because no tracking approach

knows its actual accuracy.

The error ēI for the image-oriented alignment method (Section 6.4.1) is derived from 3D

patch matching error ei. The final errors ei after cooperative optimisation are averaged

across all patches to obtain ēI for a particular frame-to-frame transition. The error ēG

for the geometry-oriented alignment method (Section 6.4.2) is derived from patch 3D

trajectories during ICP fitting. A rigid patch is iteratively moved from a pose at the

previous frame to a target mesh in the current frame. The length of this trajectory

reflects the magnitude of the actual surface motion. It is sensible to assume that larger

motion is estimated with larger error. If the convergence of patch fitting is difficult, the

patch trajectory is longer than the surface motion, thus indicating higher error. The

error ēG for a particular frame-to-frame transition is represented by the average length

of all patch trajectories.

The relationship between dI and ēI (or dG and ēG) is observed across all traversals

evaluated for a particular dataset. For each traversal each frame-to-frame transitions

provides a pair of values (dI , ēI) or (dG, ēG). A single scatter plot of all samples across

the traversals shows correlation between the measures.

Figures 6.23(a,b) contain the result for the dataset Synthetic-skin1 (the traversals from

Table C.1). This dataset is an ideal case to some extent because of dissimilarity val-

ues derived from the ground-truth and no changes of surface texture over time. The
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relationship between dI and ēI has a scattered increasing trend. The profile is gen-

erally constant for low dissimilarities (dI < 0.4) which means similar quality of the

alignment. The range dI = (0.4, 3.0) has a linear profile, so ēI proportionally increases

with dI . Beyond dI = 3.0, the samples are much more scattered and do not follow the

previous linear trend. These samples are almost exclusively from SPT which chooses

high-dissimilarity transitions where the alignment often fails. Outliers in the mid-range

of dI come from some non-sequential transitions in MST and cluster trees which shows

that dI sometimes incorrectly predicts the alignment error. Overall, the dissimilarity

dI and the error ēI are not fully proportional because dI is an approximate measure of

alignment difficulty.

The correlation of dI and ēI is also shown for the real-world dataset Martin-skin2

in Figures 6.23(c,d) (the traversals from Table C.2). The scatter plot is similar to

Synthetic-skin1 because the performances are effectively the same. The samples are

less compact because both measures contain more imprecision. The dissimilarity dI

is influenced by noise in feature tracking. The alignment is more complicated with

changes of skin appearance, so the errors ēI are generally higher.

Dissimilarity dG for the geometry-oriented alignment is evaluated across the traversals

for the dataset StreetDance (Table C.5). The monotonically increasing trend between

dG and ēG in Figures 6.23(e,f) is more scattered than for dI and ēI . This indicates that

dG is less reliable measure than dI because some alignment errors are disproportionally

high for relatively low dissimilarity values. The same conclusion is supported by the

samples of SPT (blue colour) which are outliers to a lesser extent than in Figures

6.23(a,c). Their dG values are not much higher than for precise alignments, although

the errors ēG are very high.

The relationship between a dissimilarity and an alignment error is assumed to be linear

for correct traversal tree calculation. Observations across different datasets show that it

is non-linear in practice due to approximate nature of dissimilarity measures. However,

in all cases there is a clear monotonically increasing trend between dI and ēI (or dG

and ēG) which is linear for a large part of effective dissimilarity range. This means

consistent mapping between them which validates the use of dI and dG with their
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(a) (b)

(c) (d)

(e) (f)

Figure 6.23: A relationship of the dissimilarity dI and the alignment error ēI for the
datasets Synthetic-skin1(a,b) and Martin-skin2(c,d). A relationship of the dissimilarity
dG and the alignment error ēG for the dataset StreetDance(e,f). The subfigures (b,d,f)
contain magnified areas from (a,c,e). Colour scheme marks data samples in this order:
the sequential traversal (red), the cluster trees β = 1→ 0, MST, SPT (blue).
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respective alignment methods. If this mapping is known beforehand, the dissimilarity

can be transformed to a more accurate estimate of the actual alignment difficulty and

improve traversal tree computation.

6.6.7 Towards optimal traversal tree

This section discusses a theoretical formulation of the optimal traversal tree in terms of

perceptual quality of the resulting aligned mesh sequence. The experiments presented

above empirically evaluate the quality of results for different traversals through input

sequences. However, the quality of temporal alignment could be estimated from the tree

before the actual tracking. The estimation process needs to assess potential alignment

artefacts such as drift and jumps which can occur during the tracking. This is based on

the structure of the tree and dissimilarities in the edges. Several characteristics of the

traversal tree are investigated to estimate different properties of the temporally consist-

ent mesh sequence. All these characteristics are subject to the non-linear relationship

between the dissimilarity and the alignment error.

The first characteristic describes the total amount of potential errors which can occur

in all frame-to-frame alignments according to the traversal tree T . This is derived from

the optimisation criterion for MST (Equation 6.1), hence the measure SEW is the sum

of weights of all edges in T (Equation 6.11).

SEW =
∑

(ni,nj)∈T

D(i, j) (6.11)

The second characteristic is defined by the measure SPL which estimates the amount

of potential drift accumulated in individual frames. The amount of drift at the frame t

is related to the dissimilarity accumulated along the path nr → nt in T . This is derived

from the optimisation criterion of SPT (Equation 6.2), hence SPL is the sum of path

lengths from nr to all other nodes (Equation 6.12).

SPL =
∑
nt∈T

∑
(ni,nj)∈nr→nt

D(i, j) (6.12)
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Both measures SEW and SPL do not have a notion of temporal order of frames (the

same as the trees MST and SPT), therefore they do not explicitly reflect the presence

of cuts introduced by T .

The third characteristic described by the measure CUT represents the amount and

magnitude of potential alignment inconsistencies at the cuts created by T . The dif-

ference in drift accumulation between adjacent frames t − 1 and t is related to the

dissimilarity accumulated along their individual paths nr → nt−1, nr → nt in T . The

extent of different error accumulation is defined by the length of non-overlapping parts

of both paths (nu → nt−1) ⊂ (nr → nt−1), (nu → nt) ⊂ (nr → nt) where nu is a

branching node which the paths separate at. This is evaluated for all pairs of adjacent

frames which are not linked directly by an edge in E : Ē = {(nt−1, nt)|∀(nt−1, nt) /∈ E}.

Equation 6.13 for CUT defines the total sum of non-overlapping sub-paths for all cuts

created by T .

CUT =
∑

(nt−1,nt)∈Ē

 ∑
(ni,nj)∈nu→nt−1

D(i, j) +
∑

(ni,nj)∈nu→nt

D(i, j)

 (6.13)

All three measures are calculated across all traversals evaluated for individual data-

sets in the previous experiments. Graphs discussed in following text are available in

Appendix D. Figure D.1 shows profiles of SEW measure across the datasets. The gen-

eral trend is a decline from the sequential traversal across cluster trees to MST which

is always the minimum. The cluster trees become more sub-optimal for SEW with

increasing β because more sequential ordering includes transitions with higher dissim-

ilarity. SPT has the maximal value because direct edges to all frames contain a large

amount of high dissimilarities. It is difficult to relate SEW as a theoretical estimate

of the total error in a temporally aligned mesh sequence with visual assessment of the

sequence. The viewer is more susceptible to the distribution of errors over time rather

than their total magnitude.

SPL measure across all datasets is plotted in Figure D.2 where SPT is always the min-

imum. The maximum is the sequential approach which suffers the worst accumulation

of errors across the whole sequence. SPL generally decreases with β towards MST.
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However, some cluster trees have better characteristic than MST for some datasets. A

similar general trend is observed for drift in the tracked mesh sequences in the empirical

results across the datasets.

CUT measure is visualised in Figure D.3 where SPT with the cuts between all adjacent

frames represents the maximum for all datasets. The sequential traversal with no cuts

is the zero-value minimum. Overall, CUT decreases from MST throughout cluster trees

towards the sequential traversal as the number of cuts created decreases. There are

some fluctuations because a smaller number of cuts with big inconsistency can achieve

similar or higher CUT value than larger number of cuts with small inconsistency. Visual

assessment of jumps in the empirical results concludes a similar general trend.

Individual measures reflect certain aspects of the tracking results given a traversal tree,

and therefore favour one of the specialised cases - sequential, MST or SPT traversal.

A combined measure should point at the optimal traversal tree which yields the best

temporally aligned mesh sequence. The opposing trends of SPL and CUT measures

across the spectrum of trees illustrate the trade-off between error accumulation and

cuts. This correlates with the empirical analysis where the best result balancing the

drift and jumps has been obtained using a cluster tree from the middle of the tree

spectrum. A combination of SPL and CUT measures should create a valley-like profile

across the tree spectrum where SPT and sequential traversals have high values and the

bottom of the valley lies among cluster trees. However, this is not the case across the

datasets because SPT is often favoured as the minimum by the combined measures.

Also, the cluster trees are not ranked in an order which correlates well with visual

assessment of the tracking results. Firstly, this could be caused by unsuitable formu-

lation of the measures. Secondly, the non-linear relationship between dissimilarity and

alignment error can bias the measures away from the actual tracking quality. The re-

lationship is different for each type of the surface, dissimilarity measure and alignment

method which could be a reason for inconsistent observations across the datasets.

Definition of a single measure assessing the trade-off between potential drift and jumps

consistently across different datasets is necessary. This would allow to formalise op-

timality of the traversal tree in terms of the resulting quality of temporal alignment.
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The clustering parameter β could be selected automatically before the surface tracking

instead of tuning through experimentation. Alternatively, a new algorithm for tree cal-

culation could be designed with this measure as an optimisation criterion which would

provide the optimal tree directly. Automatic calculation of the optimal traversal tree

with respect to drift and jumps remains an open problem.

6.7 Conclusion

This chapter has introduced a non-sequential approach to dense surface tracking which

is one of the first non-sequential methods to address the drift problem for facial per-

formances. The order in which the tracking progresses through the input sequence is

given by a traversal tree. The tree is based on a fast, approximate dissimilarity measure

which estimates the difficulty of alignment between pairs of frames. Several methods

of calculating the traversal tree in the dissimilarity space have been analysed. The

minimum spanning tree and the shortest path tree used in whole-body tracking [52, 22]

tend to over-fragment the input sequence as there is no penalty for introducing cuts.

A novel cluster tree algorithm has been proposed to reduce jumps in temporal align-

ment caused by a large number of cuts. The temporal order of frames is taken into

account and the sequence is clustered into segments of similar frames based on low mu-

tual dissimilarity. Sequential tracking is enforced in these segments which reduces the

number of cuts. The algorithm allows calculation of a spectrum of trees between fully

sequential traversal and the minimum spanning tree. Thus, trade-off between sequen-

tial drift along tree branches and non-sequential jumps across cuts can be balanced.

To eliminate potential jumps, multi-path temporal fusion across cuts is introduced for

any kind of traversal tree.

The proposed non-sequential surface tracking has a generic framework which can be

combined with any frame-to-frame alignment method and associated dissimilarity meas-

ure. For facial performances, the robust alignment method from Chapter 5 is used for

tracking along branches of a traversal tree. Dissimilarity necessary for tree calculation

is derived from motion of a sparse set of surface points. The traversal tree can be calcu-
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lated over multiple sequences which allows global alignment of multiple performances

by the same actor.

Evaluation was conducted on facial performances, cloth deformation and whole-body

performances to demonstrate generality of the tracking framework. Different traversals

of the input data are compared in terms of visual quality of the temporally consistent

mesh sequence: sequential, minimum spanning tree, shortest path tree and cluster

tree traversal. For all datasets the cluster tree achieves visually the best results with

reduced drift and the limited amount of jitter. Quantitative analysis based on stability

of textures back-projected on the mesh sequence over time supports the qualitative

superiority of alignment based on the cluster trees.

For facial performances, differences between the minimum spanning tree and cluster

tree are relatively small on both synthetic and real data due to the high accuracy of

the image-oriented alignment (Chapter 5). However, the improvement is significant for

VFX applications because of the high-quality temporal consistency required. A com-

parison to a state-of-the-art non-sequential method for facial performances [13] shows

comparable performance. Tracking of cloth deformation and whole-body performances

benefits more from the cluster tree approach than facial performances. This is due

to more difficult movements which are challenging for frame-to-frame alignment tech-

niques. For whole-body performances, geometry-oriented frame-to-frame alignment is

combined with the dissimilarity based on shape histograms [22].

The relationship between dissimilarity and alignment error was empirically analysed

for both image and geometry-oriented methods. In both cases, it is partially non-

linear because the approximate dissimilarity does not reflect exactly capabilities of the

alignment technique. This biases the cluster tree calculation which assumes a linear

relationship. Automatic selection of the optimal cluster tree is also complicated by this

fact, thus balancing of drift and jumps in the tracked mesh sequence is done through

experimentation with a cluster tree structure. Direct calculation of the optimal cluster

tree consistently across different datasets remains an open problem.

In the next chapter, the non-sequential tracking of medium-resolution facial geometry

is combined with high-resolution detail capture from Chapter 3.



Chapter 7

Facial performance capture

In the previous chapters, the focus has been on key aspects of 3D capture of a facial

performance. Chapter 3 deals with reconstruction of skin geometric detail. Chapters

4, 5, 6 propose and evaluate approaches to achieve temporal consistency of medium-

scale facial shape. This chapter describes integration of these techniques and additional

processing blocks to form a complete system for facial performance capture. Design of

the system reflects advantages and drawbacks of the previous work in this area.

Facial performance capture is often treated as a sequence of static reconstructions

which is useful for replay purposes only. Some current systems provide per-frame

normal maps with fine geometric details in real-time using PSCL [110]. However, 3D

models created by integration of the normals maps are deformed due to low-frequency

bias in the normals. A better solution is the combination of a medium-scale shape

reconstructed using multi-view stereo with the detailed normal maps estimated using

photometric stereo. Fyffe et al. [39] use photometric stereo with gradient illumination

which requires high-speed cameras and the Light Stage.

These techniques lack temporal consistency of 3D models across frames which is re-

quired for further manipulation and editing of the captured data in VFX production.

Furukawa and Ponce [36, 37] perform 3D tracking of a facial mesh sequentially on multi-

view image sequences. Use of reference appearance from the first frame alleviates the

drift problem but a dense random pattern painted on the face is required to maintain

169
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stability of the method. Flow-based motion capture [19] deforms the template mesh

using 2D optic flows calculated on the image sequences. The motion of the vertices

between frames is optimised to conform to the flow fields and unregistered meshes com-

puted by multi-view stereo at every frame. The drift due to sequential concatenation of

frame-to-frame flows is partially corrected by additional optic flow in the UV domain

of the mesh after the initial deformation.

Previous methods with temporal alignment do not recover skin details because res-

olution of the facial shape is limited by multi-view stereo capabilities. Wilson et al.

[119] combine surface tracking based on 2D optic flow with Light Stage technology.

Rich geometric detail in the normal maps obtained by photometric stereo is exploited

to improve the optic flow computation between fully lit tracking frames. Temporal

upsampling enables interpolation of the facial model for the frame with different illu-

mination pattern necessary for the photometric stereo. The meshes and normal maps

are merged into a high-resolution mesh sequence which is temporally aligned but suf-

fers substantial drift over time. The sequential tracking across different approaches is

generally unreliable over long and complex performances because of the accumulation

of alignment errors due to weak skin texture. Beeler et al. [13] tackle this problem by

processing the sequence in a non-sequential order using anchor frames. The tracking is

performed on raw meshes from multi-view stereo and 2D optic flows similarly to [19].

Moreover, the geometric detail is approximated from skin appearance under white dif-

fuse illumination based on an assumption that darker colour indicates a cavity. The

temporal alignment is calculated for all vertices of the high-resolution mesh, thus the

facial shape is represented up to the finest scale in temporally consistent mesh sequence.

This chapter presents individual building blocks and a processing pipeline of the novel

capture system which targets the temporal consistency and the high fidelity of the 3D

model of facial performance. Firstly, technical parameters of the capture setup and

data acquisition are described. Secondly, per-frame 3D reconstruction of a face from

stereo camera pairs is explained as a prerequisite for the surface tracking. Thirdly,

combination of the non-sequential tracking framework based on a cluster tree and the

detail capture using PSCL is presented. Furthermore, the temporally aligned mesh

sequence allows correction of artefacts occurring in the normal maps. The resulting 3D
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model consisting of the mesh and a UV normal map sequence is qualitatively assessed

for example performances. The proposed system is also compared to the state-of-the-art

[13] on a publicly available dataset.

7.1 System overview

The objective of this work has been to develop a practical 3D capture system for facial

performance. The output of this system should be a sequence of high-detail 3D models

capturing the facial performance of an actor. The proposed design has followed the

listed requirements to overcome some limitations of existing methods.

• Accurate reconstruction of facial shape up to fine skin structure such as small

wrinkles, pores, etc.

• Reconstruction of a full 3D model at every frame captured.

• Temporally consistent geometric models across the performance.

• Practical capture setup operating at standard video frame-rate and without struc-

tured or time-varying illumination.

• Model-free processing without prior assumption that a human face is captured.

• Layered representation of the geometry consisting of a medium-resolution 3D

mesh and a high-resolution 2D normal map.

• Ear-to-ear coverage of a face focusing on skin areas.

The pipeline of the proposed system is illustrated in Figure 7.1. An actor is captured

by two stereo camera pairs which are synchronised and fully calibrated with respect

to WCS. The actor’s face is illuminated by red, green and blue light from different

directions.

3D reconstruction (Chapter 7): The actor’s face is firstly reconstructed at every

frame using stereo matching in both camera pairs. Disparity maps are obtained by a

graph cut and filtered from outliers according to matching scores. Both maps for each

side of the face are merged into a single mesh by Poisson surface reconstruction. The

output is a temporally unaligned sequence of meshes which constrains the subsequent

surface tracking.
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Figure 7.1: A diagram of the processing pipeline.

Non-sequential surface tracking (Chapter 6): At first, a sparse set of facial

features is sequentially tracked in the 3D space throughout the performance. Pair-wise

dissimilarity between all frames is established according to the spatial configuration of

the points. Non-sequential traversal of the sequence is calculated using a cluster tree

based on the dissimilarity among frames. The user needs to design a facial mesh for

the root frame of the traversal tree which is then tracked along tree branches to all

frames. Tracking is performed using a surface model of textured 3D patches associated

with all mesh vertices. Frame-to-frame alignment produces an initial raw motion field

for the vertices by 3D matching of the deformable patches to images and the unaligned

geometry in the next frame. Motion of the mesh is then regularised with a weighted

Laplacian deformation. Inconsistencies between meshes in adjacent frames aligned

along different tree branches are resolved by multi-path temporal fusion. The output

is a temporally aligned mesh sequence with a fixed topology.
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Geometric detail capture (Chapter 3): Skin detail is reconstructed by PSCL with

the aid of white uniform make-up on the face. Normal maps of the skin are obtained

at every frame for one view in each stereo pair. Shadow artefacts and low-frequency

bias present in the original normals are corrected exploiting the aligned mesh sequence.

The corrected normal maps for each side of the face are combined into a single normal

map by back-projecting onto the mesh. The temporally aligned meshes are textured

by a time-varying normal map sequence stored in a fixed UV space.

The output of the pipeline is a temporally consistent 4D model of the performance

capturing subtle dynamics of the face such as skin wrinkling, pore stretching, etc. The

resulting accuracy of the model depends on the resolution of the base mesh and the

normal map. Both resolutions can be scaled up to achieve high accuracy at the expense

of longer computation time and larger data size. Note that it is possible to create a

common model across multiple performances of the same actor.

7.2 Capture setup

An actor’s performance is recorded by four Grass Valley Viper cameras in HD-SDI

uncompressed 4 : 4 : 4 format for high colour fidelity (Figure 7.2). Video streams are

captured at 25fps in uninterlaced HD resolution (1920× 1080 pixels). All cameras are

synchronised by gen-lock signal. Gamma correction is switched off to preserve a linear

response of R, G, B CCD sensors assumed by PSCL. Colour balancing is performed

across all cameras to achieve similar colour rendition. This is beneficial for matching

image information between the views or calculation of consistent normal maps across

the views. Colour channels of all cameras are balanced by analysing sensor responses

to the grey-scale step pattern and the Macbeth colour checker on a waveform monitor.

The cameras are arranged into two vertical stereo pairs with a narrow baseline of 25cm

to cover both sides of the actor’s face (Figure 7.3). The distance between the centre of

the capture volume and camera plane is 105cm.

Directional colour illumination necessary for PSCL is provided by three Optikinetics

Solar 250 light projectors. They are placed in a circle with a radius of 47cm on the same

plane as the cameras. The projectors point towards the centre of the capture volume
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Figure 7.2: The capture setup for facial performance consists of four HD film cameras
in two vertical pairs and three light projectors with colour filters. The central camera
is auxiliary and is not used in the processing.

with a slant angle 24◦ as illustrated in Figure 7.3. The location of lights is a compromise

between spatial limitations of the whole setup and the orthogonal configuration of

light directions which is optimal for the photometric stereo. Therefore, they are not

equidistantly spaced on the circle. Also, the small slant of the light directions reduces

the size of shadows on the face which complicate calculation of surface normals. The

illumination is colour-filtered to spectrally differentiate the light sources (red, green,

blue light). The light projectors are extended with dichroic colour filters because of

their high transmittance and high working temperature. The spectral transmittance of

the filters approximately matches the spectral sensitivity curves of the R, G, B CCD

sensors. Thus, each light source is almost exclusively captured by the respective sensor

which minimises sensitivity of PSCL to the noise and the calibration errors.

The facial performances used in the previous chapters has been recorded under white

diffuse illumination due to the focus on surface tracking. In this scenario, the actor

is lit by four soft boxes placed around the cameras. The cameras record in HD-SDI

uncompressed 4 : 2 : 2 because of lower requirements on colour accuracy.
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Figure 7.3: A scheme of the capture setup from the frontal and side view. The cameras
are illustrated as rectangles and the red, green and blue lights as circles.

All cameras are fully calibrated with respect to the WCS anchored in the centre of

capture volume. The camera model used is projective and models first order radial

distortion (one radial coefficient). The principal point is fixed in the middle of the

image and the pixel aspect ratio assumed to be one, thus focal lengths along rows and

columns of the sensor are the same. These assumptions hold well for the Viper film

camera which has highly precise build. Intrinsic parameters of individual cameras are

initialised using Zhang’s method [128] on images of checker-board pattern at different

orientations. The radial distortion coefficient is not involved at this stage.

Initial values of intrinsic parameters are passed to wand-based multiple camera calib-

ration [74]. Instead of sampling the capture volume with the actual wand with two

colour markers, corners of the checker-board pattern across different orientations are

used as 3D point samples. Intrinsic and extrinsic parameters of all cameras and the 3D

point cloud are optimised together by a bundle adjustment approach. This minimises a

re-projection error of all 3D points in every view which is typically around 0.25 pixels.

The distortion coefficient estimated at this stage is a part of camera model, however

the image sequences of a performance are undistorted before any processing. Thus, the

camera model used during the processing is simplified to the basic pinhole model to

accelerate operations with the camera. Calibration of the capture setup necessary for

PSCL is described in Section 3.3.
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7.3 3D reconstruction

An actor’s performance is captured in several image sequences {{Ict }Cc=1}Tt=1 from dif-

ferent viewpoints. A shape of the face Mg
t is reconstructed at each frame t from the set

of images {Ict }Cc=1. The mesh sequence {Mg
t }Tt=1 is temporally unaligned, thus there is

a varying number of vertices and a varying mesh topology over time.

At first, a face region is segmented in all sequences {{Ict }Cc=1}Tt=1 using keying in Nuke

[103]. The segmentation is based on a skin colour model which is created from several

sample regions selected by a user . To include non-skin areas of the face such as the eyes

and lips a morphological closing operator is applied to the matte. 3D reconstruction

is based on stereo matching of the face regions in two camera pairs with a narrow

baseline. Images from each pair are rectified at every frame using the approach by

Fusiello et al. [38]. The rectification aligns corresponding epipolar lines into the same

rows in both images to simplify the correspondence search. A disparity map encoding

the correspondences contains single-value horizontal disparities and is estimated only

for the reference view in each camera pair (lower camera in the capture setup).

The correspondence search between the rectified reference image Îrt and matching image

Îmt is formulated as an energy minimisation problem. Equation 7.1 defines an energy

function E for a disparity map D in Îrt which consists of a data term and smoothness

term.

E(D) =
∑
p∈P

NCC (Gr(p), Gm(p−D(p))) +
∑

(p,q)∈V

λ|D(p)−D(q)| (7.1)

The map D contains a horizontal disparity D(p) = [d, 0]T for each pixel p in a binary

mask P which defines the face region in Îrt . The data term is based on a comparison

of two sets of image points Gr(p) in Îrt and Gm(p−D(p)) in Îmt . The sets are square

windows with a size sG centered around the pixel p and its potential correspondence

p −D(p). A matching cost NCC is an inverted normalised cross-correlation of grey-

scale values: NCC = 1−(NCC+1)/2. NCC has been chosen for its robustness against

different camera gain between views unlike SSD. The smoothness term is expressed over

the pairs of adjacent pixels (p,q) where a set V defines 4-point neighbourhood over
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P . An absolute disparity difference between p and q is linearly penalised according to

a smoothness coefficient λ. This enforces global smoothness of D without support for

disparity discontinuities which is a reasonable assumption for the face.

The energy function in Equation 7.1 is minimised by a graph cut as in [90]. The linear

smoothness term allows construction of a volumetric graph with 3D grid topology in

the disparity space. A single minimum cut on this graph optimises E and yields a

disparity map D for all pixels in P . The minimum cut is calculated by a maximum

flow algorithm due to the duality of the problem. The augmenting-path algorithm by

Boykov et al. [18] is used because it is optimised for graphs with a grid topology.

Computational time and memory consumption for the graph cut calculation increase

with the size of the graph, therefore the matching is constrained in several ways. The

pixel set P is sampled by the regular grid with a step of 4 pixels in Îrt and the disparity

is quantised to integer values. The graph is further constrained by the face regions in

both images which define a visual hull envelope for a surface of the face. Lastly, the

disparity range 〈dmin, dmax〉 is given by the nearest and the furthest surface point from

the camera pair which are selected in both views by a user.

The resulting D with integer disparities suffers from noticeable quantisation in the

depth. This is refined by an additional graph cut inside a thin layer around the original

integer solution given by an offset ±1 disparity. Within the layer the resolution of the

disparity is increased to 8 sub-pixel levels and the smoothness coefficient λ is propor-

tionally divided by 8. Because an estimate of D is available, a square window Gr can

be matched to a image point set Gm with adaptive shape. For a pixel p, 2D sample

points of Gr(p) are mapped into Îmt using the estimate of D around p. This creates

a new shape of sample grid Gm which is used for the whole range of disparities tested

at p. The adaptive shape of Gm improves correlation with Gr in comparison to square

windows which leads to more precise calculation of disparity. To avoid the quantisation

of integer D bias a new sub-pixel solution, D is smoothed by Gaussian kernel before

using for the adaptation of Gm. The new disparity map refined by the additional cut

is smoother and contains more detail at expense of small computation overhead.
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The amount of detail in D is influenced primarily by sG and λ. Large windows over-

smooth fronto-parallel areas of the surface and create steps in the slanted areas but

small windows yield a noisy result. The coefficient λ also influences the smoothness of

the surface but on more local scale than the size of correlation window. Overall, the

technique provides fairly accurate disparity map for plain skin because there is enough

skin texture visible in HD resolution. A face with uniform white make-up lit by R,

G, B lights does not pose a problem because the illumination emphasises the fine skin

structure leading to rich texture information. The quality of matching is improved

under these conditions comparing to the plain skin under white illumination and the

facial shape is smoother with clearer details.

(a) (b) (c) (d)

Figure 7.4: Disparity maps from both stereo pairs (a), correlation score maps (b),
disparity masks (c) and a resulting mesh created by the Poisson reconstruction (d).
Brighter colour means larger disparity in (a) and higher correlations score in (b).

Each disparity map has a map of matching scores associated with its disparities (Figure

7.4(a,b)). This score map is thresholded to mask out areas with low accuracy such as

parts observed at an acute angle (Figure 7.4(c)). The disparity map is filtered according

to this mask and turned into a cloud of oriented points. The point clouds from both

stereo pairs are merged into a single mesh Mg
t by the Poisson surface reconstruction

[60] (Figure 7.4(d)). The quality of Mg
t is improved with pre-filtering of disparity maps.

The reconstructed facial shape contains skin folds and larger wrinkles. Because the 3D

reconstruction is performed independently at each frame, there is subtle surface bump-
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iness changing over time. Also, spike artefacts occasionally appear due to instability of

the Poisson reconstruction in some regions. However, this does not cause problems for

the subsequent surface tracking because {Mg
t }Tt=1 is used just as a shape prior.

7.4 Non-sequential surface tracking

Dense tracking of a facial surface over time is based on multi-view image sequences

{{Ict }Cc=1}Tt=1 and unaligned mesh sequence {Mg
t }Tt=1. A dissimilarity derived from a

sparse set of points tracked throughout the sequence is used to calculate the traversal

through the input data (Section 6.4.1). A typical set of points includes around 14 facial

features which motion represents well changes of facial expression (Figure 7.5). These

points are selected by a user and small amount of manual landmarking is necessary to

train linear predictor tracker for them. Once the dissimilarity matrix is computed from

the 3D point trajectories, a cluster tree is obtained using the algorithm in Section 6.3.3.

Afterwards, it is expanded across cuts to allow multi-path temporal fusion (Section 6.5).

Figure 7.5: A sparse set of points tracked for dissimilarity computation.

Given the traversal tree, a user needs to define a topology of the mesh Mr which is

tracked from the root frame throughout the input sequence. To simplify the task, the

user designs a coarse mesh M ′r (∼ 180 vertices) in 2D using the images from the root

frame r. The vertices are placed onto the face in one view for each side and topology

is defined by creating 2D mesh among their positions. The 2D positions are back-

projected to the 3D space using depth maps of the raw mesh Mg
r rendered in each
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view. The mesh M ′r is then iteratively subdivided to reach the resolution required. In

each iteration mesh faces are uniformly subdivided into four triangles and new vertices

are conformed to Mg
r . Position of new vertices are bilinearly sampled from the depth

map of the view which the vertex normal faces the most. The resulting mesh Mr is

tracked along branches of the traversal tree using robust image-oriented alignment from

Chapter 5. The temporally consistent mesh sequence {Mt}Tt=1 is obtained by the fusion

of multiple tracking hypotheses around cuts.

In contrast to the results presented in Chapter 6, the surface tracking operates under

colour illumination and an actor’s face is covered by uniform white make-up. Intuit-

ively, the uniform make-up should complicate the tracking process, such that visual

markers are required to aid. However, colour illumination forms a strong texture from

fine skin detail which has a similar amount of variation as the texture of plain skin lit

by white lights. The actual complication is time-varying appearance of the face which

is more severe under the colour illumination rather than white one. Also, shadows

cast by directional lights move on the face over time. These temporal changes are

handled by the adaptive texture of surface patches used in the frame-to-frame align-

ment. Moreover, the matching cost between images and the patch texture in Equation

5.1 uses colour information instead of grey-scale. The NCC is calculated separately

for each channel and averaged afterwards. Longer computation is outweighed by bet-

ter motion estimates. Previous approaches [68, 119] used normal maps computed by

photometric stereo for the alignment. But experiments have shown that our technique

achieves better results using the original images with colour illumination. The quality

of surface tracking is similar under these conditions to the plain skin lit by white lights.

7.5 Geometric detail capture

Fine skin geometry which is not present in the aligned mesh sequence {Mt}Tt=1 is cap-

tured by PSCL (Section 3.2). High-detail normal maps of the face are computed at

every frame for one view in each stereo pair. To improve the quality of normals, the

make-up is applied on the face as explained in Section 3.5.1. Because the capture

system is focused on accurate reconstruction of the facial shape, the loss of actual ap-
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pearance of the actor is acceptable. Although the sequences of normal maps contain

high-quality skin detail, they suffer from several kinds of artefacts. Firstly, shadow

regions contain normals with incorrect orientation because of missing constraints from

one or more lights which are occluded by the other parts of the face [49]. Secondly,

there is a weak low-frequency bias in the whole normal map due to errors in the pho-

tometric calibration [110]. Thirdly, normals are noisy in dark regions which have low

SNR. These imperfections are corrected using the available mesh sequence {Mt}Tt=1.

7.5.1 Normal map correction

Shadow correction in previous work often requires four or more lights and is tailored

for standard PSWL [8, 24]. The technique for PSCL by Hernandez et al. [49] optimises

the whole normal map such that integrability of the gradient field and smoothness of

pixel colours are enforced in shadow regions. A simpler local approach by Brostow

et al. [20] assumes a constant albedo which reduces uncertainty of the normal to

two possibilities if one colour light is occluded. The final orientation of the normal is

selected according to neighbouring unshadowed area. The proposed method exploits

availability of medium-scale facial shape Mt which allows per-pixel normal correction

assuming spatially varying grey-scale albedo. This is more suitable than the constant

albedo assumption because brightness of the make-up varies due to uneven application.

The base mesh provides a solution for multiple occluded lights as well.

Segmentation of shadow regions relies on the fact that each colour illumination is almost

exclusively captured by the respective sensor. Thus, shadow masks for red, green, blue

lights are obtained separately from each channel of an input image (Figure 7.6(b)). The

segmentation uses similar rule as in [48] but it is performed on per-pixel basis instead

of global Markov random field (MRF) optimisation. A pixel is classified as shadowed

from the light (similarly for green, blue light) if a ratio between colour component

and full vector cr/|c| is under 0.15. To correctly include multiple-shadow regions and

regions with originally dark appearance, the red light is also considered occluded for

the pixel if cr < 17. A raw shadow mask sequence from the pixel classification is noisy

over time. Therefore, morphological opening operator with the size 5× 5× 5 pixels is
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applied across spatio-temporal volume to clean the segmentation. Finally, the shadow

regions are dilated by 3 pixels to include their soft boundaries. An example shadow

map for all three lights is depicted in Figure 7.6(c).

(a)

(b) (c)

(d) (e)

Figure 7.6: A corrected scaled normal amnm calculated from a base mesh normal ne
and constraints by green and blue light (a). A line m is derived from a pixel colour,
green light direction l2 and blue light direction l3. An input image (b) with its shadow
map (c) where a colour indicates the light occluded. An original normal map (d)
computed using PSCL from (b) and its rendered version lit by one frontal light (e).
The shadow-like regions are the result of wrong normal orientation.

Normals in the regions with occluded lights have incorrect orientation because Equation

3.7 assumes contributions from all lights to an observed pixel colour. The normals

are pushed away from the occluded lights which manifests as non-existent shadows

(Figure 7.6(d,e)). Assume a single-shadow case where the red light is occluded for a

particular pixel. After removing red-light components v1 and l1 from Equation 3.7,

the linear system provides only two linear constraints from green and blue light. These

constraints define a line m in the space of albedo-scaled normals (Figure 7.6(a)). A

corrected albedo-scaled normal amnm lies on the line m as defined in Equation 7.2.

amnm = om + vm v =
((nTe ·m)ne −m)oTm

1− (nTe ·m)2
(7.2)
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The direction of the line m is denoted m and the point om is an intersection between

m and xy-plane. A normal ne from the base mesh Mt can be used as an additional

constraint (Figure 7.8(a)). This is represented by a line e with the direction ne starting

from the origin of WCS in Figure 7.6(a). The coefficient v in Equation 7.2 defines a

point on the line m which is the closest to the line e. This is taken as an end point

of the corrected amnm. Note that only the unit normal nm is stored in the corrected

normal map. Correction of normals using Mt is applied independently to all pixels in

the single-shadow regions. This results in three additional normal layers correcting for

each light as visible in Figure 7.7(c-e). One extra layer is added for regions with multiple

lights occluded or regions with very dark appearance where the incorrect normals are

replaced by the mesh normals.

(a) (b) (c) (d) (e)

Figure 7.7: A shadow map (a) for the original normal map (b). Shadow-corrected
normal layers for red, green and blue light (c, d, e) are overlaid onto (b) according to
the segmentation in (a). This shows visible seams between the corrected regions and
the original normal map due to different low-frequency bias.

The original normal map and the new shadow-corrected layers contain weak low-

frequency bias. This is eliminated by the first stage of Nehab’s technique [77] which

conforms overall orientation of the normals to the mesh Mt. A photometric normal

map and the mesh normal map (Figure 7.8(a)) are equally smoothed by Gaussian ker-

nel (81 × 81 pixels, σ = 13 pixels) to acquire a low-frequency component from both

sources. Subtraction of the photometric normals from their smoothed version yields

high-frequency geometrical information such as skin structure and wrinkles. These de-

tails are transferred via a rotation field onto the smoothed mesh normals to form a high-

detail normal map without the bias. The bias correction is applied separately to the
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original normal map (Figure 7.8(c)) and each shadow-corrected layer (Figure 7.8(c-e))

because they are biased differently. The multiple-shadow layer does not need the cor-

rection because it contains mesh normals. This procedure makes all normal layers

consistent with the mesh and each other and hence improves their subsequent fusion.

(a) (b) (c) (d) (e)

Figure 7.8: A normal map of the base mesh Mt (a) used to eliminate bias from the
the original normal map (b) and shadow-corrected layers for red, green and blue light
(c, d, e). The additional layers are overlaid onto (b) to show better consistency of
shadow-corrected regions with the rest of normal map after the bias correction. Also
notice different overall orientation of normals compared to Figure 7.7.

Finally, all normal layers are fused together according to the shadow mask into the final

normal map (Figure 7.6(c)). Individual regions are linearly blended with each other

over a 10-pixel range to prevent visual seams. The blending range requires the results of

corrections bit beyond the region boundaries in the shadow mask. The resulting normal

map sequence is constrained to the face area covered by the aligned mesh sequence.

Figure 7.9 shows bias-free alignment of the corrected normal map with the base mesh

and elimination of shadow artefacts.

7.5.2 Normal mapping

The corrected normal maps are back-projected from their views onto the mesh sequence

{Mt}Tt=1 at every frame (similarly to Section 5.5.3). Both maps, one for each side of

the face, are merged together in a common UV domain of the mesh. This domain

is created by unwrapping the reference mesh Mr onto 2D plane using a least squares

conformal map in Blender [16]. Because the mesh topology does not change over time,

texture coordinates of the vertices are fixed and only content of the UV space varies
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(a) (b) (c) (d)

Figure 7.9: An original normal map (a), a mesh normal map (b), the resulting corrected
normal map (c) and its rendered version lit by one frontal light. The rendering shows
well-lit face without phantom shadows as expected from the frontal illumination in
contrast to Figure 7.6(e).

between frames. At every frame the normals for each half of the face in the texture

space are sampled from normal maps in respective side views (Figure 7.10). Although

the normals are reasonably consistent across views because of bias correction, linear

blending is applied across the border between halves of the face in the texture space

(7-pixel range) to ensure completely seam-less transition. The resulting sequence of

UV normal maps can have an arbitrary resolution. But to preserve the amount of skin

detail observed in the image sequences, the effective area of the normal map should

have similar resolution to the facial region in the images.

Facial performance is captured as a temporally consistent mesh sequence textured by

high-resolution normal maps. The meshes provide medium-scale facial geometry and

the normal maps fine skin geometry. The geometric detail is temporally aligned up to

vertices of the base mesh and within mesh faces the alignment is bi-linearly interpolated.

Precision of the alignment can be improved by increasing resolution of the mesh at

expense of computation time. However, the interpolation does not cause any visible

errors at the medium resolution used. The temporal consistency enables editing of the

geometry over time. Any modification of the mesh at any frame can be propagated

across the sequence exploiting vertex correspondence. Similarly, any modification of

normals can be propagated between frames exploiting the fixed texture area in the

common UV space. Rendering of the 3D facial model is primarily based on the normal
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map which influences shading of the surface but the mesh provides underlying shape.

Alternative representation of the facial model is to include all geometrical detail into

the mesh sequence at the expense of high mesh resolution [19, 13]. This leads to a

much higher storage footprint than the combination of a medium-resolution mesh and

a high-resolution normal map. The representation selected is also commonly used in

the VFX industry because it is easier to work with. A typical facial animation rig

deforms a mesh with a moderate number of vertices which drives various detail layers

stored in a high-resolution 2D domain. Also, editing of geometric detail is simpler in

the 2D UV space than the actual 3D space.

(a) (b) (c)

Figure 7.10: Corrected normal maps from side views for each half of the face (a,b)
merged into a single UV normal map.

7.6 Evaluation

The system has been evaluated on performances of two actors (one male, one female).

New datasets Martin-makeup1 and Alaleh-makeup1 captured with the colour lights

and the make-up are described in Appendix G. Both are around 325 frames long (13s)

and contain a variety of exaggerated expressions changing at a fast pace with small

head motion. The resulting 4D performance models consist of a temporally consistent

mesh sequence (2689 vertices and 5248 faces) and associated UV normal map sequence

(1500 × 1500 pixels). Information about computation time through the processing

pipeline is available for the dataset Martin-makeup1 in Appendix F.
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(a) (b) (c)

Figure 7.11: Input images from 4 views (a), a temporally consistent mesh Mt (b) and
the mesh Mt with a UV normal map (c).

Dissimilarity computation has required landmarking of 14 facial features (Figure 7.5 ) in

13 frames for linear predictor tracking. Stereo matching uses windows with a size sG =

15 pixels and a smoothness coefficient λ = 0.01. The resolution of raw unaligned meshes

is approximately 89000 vertices for Martin-makeup1 and 61000 vertices for Alaleh-

makeup1. Robust frame-to-frame alignment has a common parameter configuration:

NCC on colour, do = 0.2mm, No = 11, wg = 1.0, σg = 5mm, qlim = 10mm, ξe = 0.15,

δe = 0.05. The only difference between the datasets is in the smoothness coefficient s

which is 0.5 for Martin-makeup1 and 1.0 for Alaleh-makeup1. Weaker regularisation

for the male actor is due to the presence of more wrinkles. The cluster trees calculated

for the non-sequential tracking are described in Table 7.1. The dataset Alaleh-makeup1

has more branched tree because the performance is less exaggerated and dynamic as

in Martin-makeup1. Thus, there are more points with a similar expressions which

encourage non-sequential jumps. This results in more cuts and a larger number of

expansion nodes added for multi-path temporal fusion.

The final temporally consistent 3D models for both datasets are showcased by example

frames in Figures 7.12, 7.13. Due to the dynamic nature of the results the reader is

encouraged to watch the supplementary videos. The 3D models are rendered using

a combination of OpenGL [61] and Cg shading language [80]. Projection of the base

mesh onto an image plane is handled by OpenGL and final shading based on the normal
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Dataset β Num.
clust.

Num.
br.

Min.
br. l.

Avg.
br. l.

Max.
br. l.

Num.
cuts

Num.
ex. n.

Martin-makeup1 0.998 20 16 2 27.88 98 9 54
Alaleh-makeup1 0.99 37 28 8 19.36 39 15 90
DisneyFace 0.98 47 22 7 31.95 71 14 84

Table 7.1: Information about cluster trees for the datasets Martin-makeup1, Alaleh-
makeup1 and DisneyFace: the granularity parameter β, number of clusters, number
of branches, minimal branch length, average branch length, maximal branch length,
number of cuts and number of expansion nodes.

map is produced by a shader programme using the Phong reflection model. The face is

visualised with a uniform colour to demonstrate geometric detail and with a checker-

board pattern to demonstrate temporal consistency. It is lit by a single directional light

from the front and self-shadows are not modelled.

Temporally consistent mesh sequences presented in the video show correct base shape of

faces without normal maps. The shape is recovered up to skin folds and larger wrinkles.

The eyeballs and inside of the mouth are not properly modelled because of a view-

dependent appearance which complicates the 3D reconstruction. The mouth interior is

not included in the defined mesh topology at all, hence the smooth patch between the

lips. It can be noticed in the video that the unaligned mesh sequences contains more

detail than the aligned sequences such as better pronounced wrinkle shape. The reasons

are the mesh resolution which is about an order of magnitude higher and filtering out

some details together with outliers during motion regularisation.

Despite challenging performances the temporal alignment of meshes has high accur-

acy. The surface tracking is able to handle extensive deformations changing at a fast

pace. This is demonstrated by a fixed checker-board texture locked down onto the face

throughout the performance (Figures 7.12, 7.13(third row)). Another way of demon-

strating the quality of temporal consistency is stability of normal maps in UV texture

space over time. Noticeable swimming of the mesh occurs on the inner lips and around

the eyeballs because they are undergoing the most complex motions. Also, there are

parts of the face appearing and disappearing such as teeth and eyelids which are not

explicitly considered in the surface model used for the tracking. Thus, blinks, eyeball or

teeth movement are not properly estimated. Small drift is visible in some skin regions
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0. 25. 40. 70. 120. 158.

165. 183. 222. 250. 283. 299.

Figure 7.12: Snapshots from the temporally consistent 3D model for the dataset Martin-
makeup1 - input images from one of the views (first row), meshes rendered with normal
maps (second row) and meshes rendered with normal maps and a fixed UV texture
(third row). The left most column represents the start/reference frame and the right
most column the end frame of the sequence. Actual frame numbers are denoted.
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42. 61. 111. 156. 210. 232.

258. 284. 314. 344. 370. 382.

Figure 7.13: Snapshots from the temporally consistent 3D model for the dataset Alaleh-
makeup1.
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in a few cases when the fusion across cuts has to blend between significantly different

alignment chains (noticeable during winks in Martin- makeup1).

Figures 7.12, 7.13(second row) illustrate correct reconstruction of fine details of the face

in normal maps (magnified examples in Appendix E). Skin deformation and structure

is captured to the full extent observed in original images. Close-ups in Figure 7.14(a,b)

show rich skin wrinkling on the forehead and around the nose. Fine features such as

eyebrow hair (Figure 7.14(b)) or creases on the lips (Figure 7.14(c)) are also present.

The smallest skin details such as individual pores and blemishes are visible in Figure

7.14(d). There are also imperfections noticeable in the final models. Eyes (Figure

7.14(a)) and teeth (Figure 7.15(a,b)) have inaccurate and noisy normals because of their

non-Lambertian properties. The geometric detail is well corrected in shadow regions

but it appears smoother than surrounding area if light comes from a similar direction

to the original occluded light source (Figure 7.15(c,d)). The smoothness coming from

the underlying mesh is also visible when shadow segmentation occasionally includes

parts of deeper skin folds (under the lower lip in Figure 7.15(a), on the lower cheek in

Figure 7.15(b)).

(a) (b) (c) (d)

Figure 7.14: Geometric details present in the final 3D models for the datasets Martin-
makeup1 (a,b) and Alaleh-makeup1 (c,d).

7.6.1 Comparison to the state-of-the-art

The proposed system is compared to the state-of-the-art system by Beeler et al. [13].

Differences in key properties are listed in Table 7.2. Dissimilarity measure derived from
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(a) (b) (c) (d)

Figure 7.15: Imperfections present in the final 3D models for the datasets Alaleh-
makeup1 (a) and Martin-makeup1 (b,c,d) - wrong shape of teeth in (a,b); skin folds
smoothed out under the lower lip in (a) and on the cheek in (b). The same region
illuminated from different directions in (c,d) shows partial smoothness of corrected
normals under former shadows. Areas on the side of face and around the nose appear
smooth under one light direction and contain many details under the other direction.

3D trajectories of facial points reflects the actual motion of the face better than direct

correlation among the images in [13]. Non-sequential traversal in [13] makes direct

transitions from the root frame to all anchor frames and then sequential processing

between the anchor frames. This can be seen as a suboptimal traversal tree in com-

parison to the cluster tree which considers a much larger set of possible transitions

among frames. In the proposed approach, temporal alignment is interpolated for the

skin details in normal maps from motion of the closest mesh vertices. This is not a

source of noticeable inaccuracy in practice. Beeler et al. have direct alignment of

all details because they are fully included in the temporally consistent high-resolution

meshes. However, the solely mesh-based representation leads to large data size and it

is more difficult to work with. PSCL provides metrically correct normals in contrast to

an approximate skin structure derived from facial appearance by Beeler et al.

The results for the dataset DisneyFace have been released by Beeler et al. Because their

system estimates the geometric detail using diffuse white illumination, it is not possible

to make a comparison of final models with the proposed system which requires colour

illumination. However, a partial comparison can be made for temporal consistency

of the mesh sequence without quantitative assessment of geometric detail. This is

performed in the same way as in Section 6.6.2, but using the cluster tree with multi-path
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Proposed system Beeler et al. [13]

Capture
conditions

directional colour illumination,
make-up

diffuse white illumination,
no make-up

Dissimilarity 3D point set comparison global image correlation

Non-sequential
traversal

cluster tree anchor frames

Temporal
consistency

interpolated alignment of
details

direct alignment of details

Geometric
detail

metrically accurate approximate

3D model
representation

medium-res. mesh
(∼ 3000 vertices),
high-res. normal map
(1500× 1500 pixels)

high-res. mesh
(∼ 1200000 vertices)

Table 7.2: Comparison of the proposed system and the system by Beeler et al. [13].
Bold font marks an advantage over the other system.

temporal fusion. Also, resolution of the aligned meshes is higher (20000 vertices and

39810 faces) to show a result with finer facial shape. Dissimilarity is based on 15 facial

features landmarked in 11 frames for linear predictor tracking. The high-resolution

mesh sequence by Beeler et al. is used as a shape prior for surface tracking. The

tracking has the following parameter configuration: NCC on grey-scale, do = 0.2mm,

No = 5, wg = 10.0, σg = 5mm, U = 3, H = 2, qlim = 5mm, s = 0.1, ξe = 0.15,

δe = 0.05. In comparison to the experiments in Section 6.6.2 the parameters are

adjusted to decrease the amount of computation per vertex and thus overall processing

time for the denser mesh. Properties of the cluster tree used are described in Table 7.1.

A fixed texture overlaid on the aligned mesh sequence in Figure 7.16 demonstrates

good-quality alignment. A few minor errors can be noticed such as small drift on the

chin at the beginning or rougher inner lip contour on few occasions. The results are

compared quantitatively to Beeler’s result sub-sampled to the same mesh resolution.

The overall difference computed as an Euclidean distance averaged across all vertices

for all frames has mean = 0.24mm, standard deviation = 0.313mm. The spatial dis-

tribution of the difference is depicted in Figure 7.16 where lips and edges of the neck

are the most dissimilar. Visually, both techniques achieve accurate temporal alignment
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48. 76. 114. 143. 186. 199.

233. 258. 278. 333. 356. 394.

Figure 7.16: Snapshots from the temporally consistent mesh sequence for the dataset
DisneyFace - input images from one of the views (first row), meshes rendered with
a fixed UV texture (second row) and difference to the result by Beeler et al. [13]
(blue = 0mm, red = 2mm) (third row).
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of comparable quality (note that the discrepancy may be due to the errors in either

approach). The proposed method suffers from slightly larger drift on the inner lips in

some situations.

7.7 Conclusion

A novel 3D capture system for facial performance has been proposed in this chapter.

This provides a full solution from a capture rig to rendering of final 3D models. A

practical acquisition setup has been constructed from off-the-shelf equipment and does

not require active illumination. Raw facial geometry used as a shape prior for sur-

face tracking is reconstructed by a combination of stereo and Poisson reconstruction.

A user-specified mesh is tracked non-sequentially by a image-oriented frame-to-frame

alignment. New non-sequential traversal given by a cluster tree is introduced to the

dense facial tracking.

The surface tracking framework is combined with PSCL which obtains normal maps

on the face. It is demonstrated that the tracking works reliably under specific condi-

tions required by PSCL (colour illumination, uniform make-up). The original normal

maps computed directly from the images contain artefacts such as low-frequency bias,

incorrect orientations in shadows and very dark areas. A correction process is proposed

which exploits the available tracked meshes to improve the facial normals. The normal

maps from several views are merged to a single time-varying map in the UV space of

the aligned mesh sequence. This map contains metrically accurate skin structure which

is coherent over time.

Output is a sequence of temporally consistent meshes and associated normal maps pro-

duced at standard camera rate. This representation of the performance naturally arises

from the techniques used. However, it is also typically used in VFX industry because

of smaller storage footprint and easier manipulation than a sequence of high-resolution

meshes. It is possible to have a common representation across multiple separate per-

formances of the same actor. Also note that there are no explicit assumptions about

a face in the processing pipeline. Therefore, the system can be used for high-fidelity

capture of other dynamic surfaces with large amount of detail.
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Results demonstrate the ability of the system to acquire fine skin dynamics such as

skin wrinkling, pore stretching etc. All details observed in the input image sequences

is present in the final models. The system also achieves high temporal consistency of

the facial models for challenging performances. Robust non-sequential tracking handles

fast, complex changes of expressions in contrast to the previous sequential techniques.

This approach also copes well with a substantial head motion and self-occlusions. The

final model of a performance allows realistic rendering under different environmental

conditions or space-time editing of the captured content. A comparison with the state-

of-the-art system by Beeler et al. [13] shows similar quality of the results. However,

the dataset used for the evaluation is not challenging enough to truly test capabilities

of the both systems.

The main limitation of the approach is the make-up applied onto the actor’s face

which stems from the uniform chromaticity assumption of PSCL. The make-up is not

necessary but greatly improves quality of the details recovered at the expense of the lost

facial appearance. The correction of normal maps in shadow regions is too influenced

by the mesh shape, such that the skin appears smooth under some light directions.

The eyes and interior of the mouth do not have accurate stereo reconstruction and

photometric normals due to their non-Lambertian reflectance. There is occasional

minor drift of the mesh on the lips and in the eye sockets during complex deformations.

Moreover, parts of the face not included in the mesh (e.g. the eyelids, teeth) appear and

disappear which complicates the tracking. The temporal alignment of the geometric

detail is given by the base mesh, hence it is interpolated inside mesh faces. However, this

is not very noticeable in practice and can be alleviated by increasing the mesh resolution.

Lastly, the skin normals are represented in WCS so they are not locally related to the

base mesh. Because of that modification of the mesh does not automatically alter the

normal map.
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Conclusions and future work

This thesis introduces a novel system for 3D facial performance capture including a full

pipeline from capturing an actor to rendering a digital copy of the performance. The

focus of this research is on achieving a high level of detail and temporal consistency for

the geometric 4D model of a performance which is crucial for film production. This

enables a change of viewpoint or relighting of the actor. The model of performance

can be altered by space-time editing or can be used for building and driving a facial

animation rig.

8.1 Conclusions

Chapter 3 demonstrates that photometric stereo with colour lights captures geomet-

ric detail up to skin-pore level. Time-varying normal maps are obtained at camera

frame-rate and their quality is comparable to photometric stereo with white lights

when uniform make-up is applied on the face. Photometric calibration of light-sensor-

material interaction has been improved over Hernandez et at. [48]. Error analysis of the

photometric stereo with colour lights formulates analytically the relationship between

accuracy of the albedo-scaled normal and various input discrepancies (image noise, cal-

ibration error in light directions, calibration error in interaction between lights, sensors

and a surface). This advances previous work in literature which has predominantly

addressed image noise in standard photometric stereo with white lights. The analysis
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also provides practical guidelines for constructing a capture setup, such that accuracy

of the normal maps is maximised.

A baseline sequential surface tracking method using multi-view image sequences is

presented in Chapter 4. This is based on the approach of Furukawa et al. [36, 37] where

3D matching of textured surface patches provides frame-to-frame 3D displacements for

a template mesh. Motion of the mesh is regularised by weighted Laplacian deformation

taking the displacements as soft constraints which gives more efficient linear solution

than [36]. The objective function of 3D patch matching is empirically analysed for

varying amounts of the surface texture to investigate limitations of previous techniques.

This shows that the objective function is ambiguous for plain skin which results in drift

for faces without markers or pattern. However, the baseline approach achieves accurate

temporal alignment as [36] if a dense pattern is applied on the face.

A novel approach for robust sequential tracking is proposed in Chapter 5. This over-

comes the limitations of the baseline approach for weak and time-varying texture which

occurs in the case of plain skin without pattern make-up. 3D patch matching uses ad-

aptive patch texture instead of track-to-first concept as [36]. The approach jointly

optimises patches based on cooperative random sampling [6] which have not been ap-

plied to the surface tracking problem before. The estimated 3D displacements are con-

strained by a shape prior provided by per-frame stereo reconstruction. These extensions

overcome the ambiguity of matching patches of plain skin over time. Clear advance on

this type of data is demonstrated over the baseline tracking method (Chapter 4) and

previous sequential 3D tracking methods [23, 79, 36, 37]. Sequential accumulation of

frame-to-frame alignment errors over time still remains, especially during fast non-rigid

movements of the face.

A non-sequential surface tracking framework is introduced in Chapter 6. This is one of

the first non-sequential methods tackling drift in facial performance capture. Frame-to-

frame alignments are performed along branches of a traversal tree which is defined over

input frames. Different types of traversal trees can be calculated based on a dissimilarity

measure between frames. A novel cluster tree approach is proposed which achieves

improved tracking results over the minimum spanning tree [22] and shortest path tree
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[52] previously used for whole-body tracking. The cluster tree takes into account the

temporal order of frames allowing a balance between drift along tree branches and

jumps where the branches meet. This greatly reduces drift and the impact of failure

in comparison to sequential tracking [19, 119] and reduces the excessive number of

jumps in comparison to other non-sequential traversals [52, 22]. Potential jumps are

eliminated by multi-path temporal fusion between tree branches. The non-sequential

approach also allows automatic global alignment of multiple performances by the same

actor which has not been addressed by previous facial performance techniques.

The non-sequential framework is generalised to any frame-to-frame alignment method

with an associated dissimilarity measure. Image-oriented alignment from Chapter 5

combined with dissimilarity based on sparse facial features achieves temporally consist-

ent mesh sequences with very little drift. The temporal consistency of facial perform-

ances is comparable to non-sequential approach based on anchor frames [13]. Benefits

of the non-sequential tracking are also demonstrated on cloth and whole body datasets.

For whole-body performances, geometry-oriented alignment method with dissimilarity

based on shape histograms [22] is used to show the flexibility of the framework.

Chapter 7 describes the whole 3D capture system for facial performance which combines

methods from the previous chapters. A practical capture setup has been constructed

using HD cameras with a standard frame-rate and static colour lights. Raw facial geo-

metry used as a shape prior for surface tracking is reconstructed by a combination of ste-

reo and Poisson reconstruction. Non-sequential surface tracking using the cluster tree

(Chapter 6) is employed to obtain reliable temporal alignment for faces with uniform

make-up under colour illumination which is required by photometric stereo (Chapter

3). Low-frequency bias and shadow artefacts in photometric normals are corrected by

exploiting the underlying mesh. The normals from multiple views are merged to a

single UV normal map sequence which textures the temporally aligned mesh sequence.

Evaluation of the system demonstrates high-detail 4D geometric models of facial per-

formances with accurate temporal consistency. The results are superior to other facial

performance capture methods in terms of temporal alignment [19, 119, 39, 110] or ac-

curacy of the facial geometry [19, 110]. Qualitative and quantitative comparison is

made with the best state-of-the-art system by Beeler et al. [13] and temporal consist-
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ency of 4D performance model has a comparable accuracy. The proposed system using

photometric stereo has the advantage of metrically accurate surface normals.

This work represents a significant step towards practical 3D capture of facial perform-

ances. The state-of-the-art is advanced in high-detail capture of facial geometry and

robust, accurate temporal alignment of facial performances. This is required for wider

use of 4D performance models in film production.

8.2 Future work

High-resolution capture of geometric detail with the proposed approach requires the

use of uniform make-up on the face. This is a consequence of the uniform chromaticity

assumption for photometric stereo with colour lights. Hernandez et al. [46] propose a

self-calibration method which optimises parameters for the dominant chromaticity of

the surface. This could replace the current calibration which is less robust and practical.

Vogiatzis et al. [110] extend previous work [20, 46] by replacing Lambertian reflectance

with a Phong model but they still assume constant chromaticity. This improves results

on faces without make-up but there is a bias in normals for non-dominant chromaticit-

ies. Anderson et al. [4] recently alleviated this problem by handling multiple piece-wise

constant chromaticities. This has been evaluated for facial performance capture [3] but

a limited number of chromaticities is not sufficient for high-quality normal maps. How-

ever, these techniques represent an interesting research direction which can completely

eliminate the need for make-up and thus improve comfort of the actor.

Traversal of input data in non-sequential surface tracking is calculated from an approx-

imate dissimilarity measure. The dissimilarity is only approximately proportional to

the error of actual alignment between two frames. The relationship is non-linear which

results in a sub-optimal traversal tree for the alignment method used. An interesting

research avenue would be learning this relationship for a given combination of dissimil-

arity measure, alignment method and surface. The dissimilarity could be transformed

by the learnt function and the calculated traversal tree and subsequent surface tracking

would be improved.



8.2. Future work 201

Automatic calculation of the optimal traversal tree with respect to drift and jump

tracking artefacts remains an open research problem. The cluster tree currently needs

to be tuned for the granularity of frame clustering to achieve the best surface tracking.

It would be beneficial to define a single measure for the traversal tree which explicitly

describes the trade-off between potential drift and jumps based on dissimilarity. The

optimal cluster tree could then be automatically selected omitting experimentation with

surface tracking results. Furthermore, the measure could be used as an optimisation

criterion for a new algorithm calculating a traversal tree in the dissimilarity space.

The presented surface tracking does not explicitly handle self-occlusions. If a region

of the face becomes invisible to all cameras during a head motion, the related part of

the template mesh starts to drift. This is because the patch matching error does not

reliably indicate an occlusion and the patch texture incorrectly adapts to a different

surface area. In the non-sequential framework, this failure is often limited to the period

of occlusion if tracking approaches the occlusion from both directions in time. However,

a more rigorous mechanism is required such as invalidation of patches based on sudden

appearance change with respect to the past observations [91]. Another problem is re-

detection of regions when they become visible again such that temporal consistency is

preserved. Proper handling of self-occlusions would allow larger head motion with the

same camera coverage and improve tracking of complex lip movements.

The problem of self-occlusions is related to the problem of appearing and disappearing

parts of the face which are not included in the template mesh. The proposed approach

does not model the eyelids or interior of the mouth and thus does not recover their

motion. The user could create more detailed mesh including these regions but their

tracking would require robust occlusion handling. Another research direction would be

evolution of the 3D model of the face during the tracking as surface topology changes.

Initial steps have been taken by geometry-based methods. Li et al. [64] do not alter

the template mesh but evolve displacement maps over time as new details appear. A

template-free method by Popa et al. [87] incrementally builds the surface mesh based

on facial shapes occurring in a performance.
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Capture of non-skin regions such as the eyes, facial hair, teeth is not directly tackled

by the proposed system. Because of their complex properties shape reconstruction and

motion estimation are not accurate. Specialised techniques targeting these features

would substantially improve realism of the final performance model. An important

step in this direction was taken by Beeler et al. [11] who introduced coupled 3D

reconstruction of facial hair and skin for static capture of the face. This thesis also

did not address facial appearance which is an important part of performance capture.

However, advances in photometric stereo with colour lights could make it possible in

the future. Alternatively, non-sequential surface tracking can be combined with other

detail capture techniques such as shape-from-shading or Light Stage.

Facial performance capture has many research challenges left before creating a true

digital double of an actor. Technologies developed in the process will have a great

impact in film production and other areas related to understanding human faces.



Appendix A

Marker-based facial performance

capture

This appendix presents an early version of facial performance capture system. The

presented approach was the first to combine stereo 3D reconstruction with PSCL for

facial performance application. Resulting 3D models have coarse temporal consistency

based on motion of markers painted on the face.

A.1 Overview

The pipeline of the marker-based system is illustrated in Figure A.1. An actor with

markers painted on the face is recorded using the capture setup described in Section 7.2.

Input of the pipeline are multi-view image sequences of the performance.

Surface tracking: Coarse measurement of facial shape and deformation over time

is extracted from the motion of point markers on the face. Linear predictor tracking

provides 2D tracks of the markers in individual views. Triangulation of the tracks

between views in stereo pairs is performed according to user-defined correspondence.

Temporally aligned coarse meshes are constructed from 3D trajectories of markers given

a mesh topology specified by the user.

203
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3D reconstruction: Medium-level facial geometry is reconstructed at every frame

using stereo matching in both camera pairs. The coarse mesh of the face is used to

constrain the correspondence search and merge resulting disparity maps into a single

surface. A dense model is created by iterative coarse-to-fine subdivision and refinement

of the coarse mesh according to the disparity maps. Output is a sequence of dense

meshes with coarse temporal alignment.

Geometric detail capture: Fine skin detail is obtained at every frame using PSCL

with the aid of white uniform make-up on the actor’s face. Normal maps from one

view in each stereo pair are corrected using the dense mesh sequence. The corrected

normals are mapped onto the dense meshes to produce highly detailed 3D models.

Output of the pipeline is a sequence of high-resolution 3D models capturing subtle

dynamics of the performance such as skin wrinkling, pore stretching, etc. However, the

temporal consistency of the models is approximate due to the sparse set of the markers.

3D reconstruction  

stereo 
matching 

surface 
reconstruction 

dense meshes 

Surface tracking 

marker  
2D tracking 

mesh 
construction 

Geometric detail capture  

photometric 
stereo 

normal map 
correction 

normal 
mapping 

normal maps 

high-detail 3D models 

multi-view image sequences 

coarse aligned meshes 

Figure A.1: A diagram of the processing pipeline for the marker-based capture system.
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A.2 Surface tracking

A coarse temporally aligned model of facial performance is reconstructed from markers

painted on the face. The markers are easier to track in comparison to arbitrary points

on plain skin or uniform make-up. They are placed on the face such that their spatial

positions provide a good approximation of the facial shape in any expression.

Initially, positions of the markers are manually selected in individual views at the first

frame. Linear predictor technique [81] is used for sequential 2D tracking in each view.

To handle drift and non-rigid deformations, this technique has a training stage requiring

some manual landmarking (more explanation in Section 6.4.1).

Correspondence between the markers across views is established by the user during the

landmarking. A 3D trajectory of a marker over time is reconstructed from correspond-

ing 2D tracks in the closest camera pair. The trajectory can be noisy over time because

of independent 2D tracking in each view. 3D positions of all markers at each frame are

converted to triangle meshes according to the user-defined connectivity between the

markers. The result is a sequence of coarse 3D meshes which are temporally aligned.

A.3 3D reconstruction

Disparity maps are computed for reference views in both stereo camera pairs as de-

scribed in Section 7.3 with few differences. Firstly, segmentation of the face is auto-

matically given by projection of the coarse mesh from markers into images. Secondly,

the coarse mesh provides an estimate of disparity map which can warp sample grid

in the matching image to improve correlation calculation. Thirdly, the coarse mesh is

used to constrain a volume of interest in the disparity space for correspondence search.

The 3D graph is constructed within a layer defined by an offset from the disparity

map of the coarse mesh. The minimum graph cut computed on this reduced graph

saves a considerable amount of time and memory compared to the reduction by a fixed

disparity range.

Each stereo pair provides a sequence of disparity maps for its reference view. These

two sequences are merged into dense meshes of the whole face at every frame using
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the coarse mesh sequence. The coarse mesh is iteratively subdivided and conformed

to both disparity maps as explained in Section 7.4. This process is repeated until the

mesh captures well the facial shape present in the disparity maps. Figure A.2 illustrates

reconstruction of the dense mesh in 3 iterations.

Figure A.2: Iterative reconstruction of a dense facial mesh using the coarse mesh among
markers and disparity maps. The coarse mesh (left most) is subdivided 3 times to
achieve the resulting dense mesh (right most).

The resulting sequence of dense meshes has the same resolution and topology in all

frames due to the same number of subdivisions. But the temporal consistency of the

sequence is approximate because only the initial coarse meshes are temporally aligned.

The coarse temporal alignment is interpolated for new mesh vertices in the final meshes.

Thus, there is no guarantee that corresponding vertices at different frames represent

the same surface points.

A.4 Geometric detail capture

Geometric detail capture is similar to the approach described in Section 7.5. However,

this is an earlier version of the method, so there are differences which led to latter

improvement. Computation of initial normal maps is the same using PSCL aided with

white uniform make-up. Artefacts in normal maps are corrected exploiting the dense

facial meshes but the correction steps are bit different to Section 7.5.1.

Markers introduce many artefacts as their normals are very noisy due to dark appear-

ance. They are segmented by special rule |c|/|cwhite| < 0.025 within 12-pixel radius
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from their 2D positions obtained during the tracking. Shadow maps are only morpho-

logically dilated at each frame to include boundary pixels of individual regions. Thus,

they are more noisy and less stable over time in comparison to Section 7.5.1.

Single-shadow regions corrected according to Equation 7.2 are linearly blended with

their surroundings to prevent visual seams. The blending occurs within a 10-pixel

range outside of the refined regions. Because there is different low-frequency bias in

individual regions due to calibration errors, the blending transitions are noticeable in

the resulting normal map.

Bias correction is performed once for the shadow-corrected normal map with blended

regions instead of separate processing of normal layers from the shadow correction as

in Section 7.5.1. The bias is eliminated by transferring high-frequency detail from

the photometric normal map onto smooth normal map of the base mesh. The lowest

frequency in the transferred detail is limited by the blending range in the shadow

correction because the transitions between the regions should not be transferred. This

causes a loss of medium-scale information in the bias-free normal map.

Lastly, incorrect normals in the multiple-shadow regions and markers are completely

substituted by the normals from the underlying mesh. Because of the previous bias

elimination, these regions can be consistently blended into the final normal map.

The detail capture produces two sequences of high-resolution normal maps for one view

in each stereo pair. At every frame a dense mesh is projected to both views to obtain

texture coordinates for the vertices. Each half of the face is textured by the normal

map from the closer view. The 3D facial model consists of the dense mesh and a pair of

the normal maps from camera viewpoints stored in one texture image (example would

be Figures 7.10(a,b)). This is different from Section 7.5.2 where the normals are stored

in a single UV normal map.

A.5 Evaluation

The dataset Martin-makeup2 (Appendix G) has been processed by the described marker-

based approach. Figure A.6(first row) shows several frames from the captured perform-
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ance in one of the views. The actor is painted with 142 markers and their 2D tracking

requires manual landmarking in 9 distinct facial expressions in each view. Temporally

aligned coarse meshes have 142 vertices and 254 triangles. Stereo matching is restricted

to the volume within 2cm from the coarse meshes. Dense meshes are created by triple

subdivision of the coarse sequence (8241 vertices and 16256 triangles).

(a) (b) (c) (d)

Figure A.3: A 3D model of the face at frame 214 from the dataset Martin-makeup2.
The dense mesh is textured with the original normal maps by PSCL (a, b) and the cor-
rected normal maps (c, d). Normals are colour-coded (a, c) and rendered under frontal
directional light (b, d). One of the input images for frame 214 is in Figure A.6(first
row).

(a) (b) (c) (d)

Figure A.4: Close-up of the model in Figure A.3 to show the captured skin detail -
original normal maps (a, b) and corrected normal maps (c, d).

Figures A.3 and A.4 demonstrate accurate facial shape up to skin structure at an

example frame. Original normal maps by PSCL are compared to the outcome of normal

correction which successfully eliminates bias in overall orientation, phantom shadows

(e.g. around the nose) and markers. Figure A.4 shows the preserved skin detail in
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shadow-corrected regions but partial smoothness propagated from the underlying mesh

(e.g. under the nose). Smooth smudges at the place of markers are due to substitution

with mesh normals.

Figure A.6 depicts 3D models of the face in different expressions from the captured

performance. Larger skin details such as wrinkles look bit flat in comparison to the

results of newer marker-less system from Chapter 7 (Figure 7.12). This is due to

some loss of medium-scale shape information during normal map correction. Borders

of the corrected regions are noticeable and not coherent over time. Deformation of a

UV texture fixed to mesh topology in Figure A.6(third row) is correct for large facial

movements. But the temporal alignment is approximate between positions of individual

markers. This is noticeable as crooked sides of texture squares in Figure A.5.

(a) (b)

Figure A.5: Close-up of the meshes with a fixed UV texture at frames 102 (a) and 157
(b) in Figure A.6.
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0. 55. 102. 157. 214. 249.

Figure A.6: Snapshots of 3D facial model for the dataset Martin-makeup2 - input
images from one of the views (first row), meshes rendered with normal maps (second
row) and meshes rendered with a fixed UV texture and without normals (third row).
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Quantitative evaluation using a

mirrored sequence

In Chapter 5 quantitative evaluation of temporally consistent mesh sequences is per-

formed using SAD error on unwrapped surface textures (Section 5.5.3). Alternative

quantitative measure proposed by Furukawa et al.[36] is presented in this section. This

is used to compare the baseline and robust sequential tracking on the datasets Martin-

pattern1, Martin-markers1, Martin-skin1 and Martin-skin2.

Evaluation of drift proposed in [36] does not use directly image information and focuses

on the mesh sequence {Mt}Tt=1. The input sequence of observations {Ot}Tt=1 is reversed

and concatenated to the original one (not repeating the last frame T ). This creates a

new sequence with 2T −1 frames where the observations Ot are the same at the frames

T −∆t and T + ∆t (frame pair index ∆t is from the range 〈0, T − 1〉). The mirrored

sequence is tracked and the corresponding meshes MT−∆t and MT+∆t are compared

across all frame pairs.

Comparison of the meshes uses an average Euclidean distance between corresponding

vertices. Good temporal alignment is indicated by a small difference between the

initial mesh M1 and the last mesh M2T−1 after forward-backward pass through the

performance. The errors for the frame pairs in-between demonstrate stability of the

tracking over time. However, this measure cannot be seen as an estimate of tracking
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accuracy for every frame because of the varying number of transitions between the

frame pairs. The mesh distance generally enlarges with increasing pair index ∆t because

likelihood of accumulating errors increases with the number of transitions in between

the frames. Only a difference between the meshes M1 and M2T−1 can be considered

as an accuracy for the frame T (the end of the original performance) since the same

sequence of observations is tracked forwards and backwards as in the actual processing.

Note that this approach cannot be used for non-sequential tracking in Chapter 6. The

non-sequential tracking does not take the forward-backward path between the mirrored

frames as assumed. Thus, the comparison of respective meshes does not reflect the

amount of drift in between.

Figure B.1 shows graphs of average vertex distance with increasing ∆t for the baseline

and robust tracking method on mirrored datasets. The robust method performs worse

overall on the dataset Martin-pattern1 because of small incremental drift (Figure B.1(a)).

In comparison the distance is lower for the baseline method but it fluctuates more. This

is caused by shakes of the mesh at extremes of the expressions. However, the maximal

error for the robust approach after returning at the beginning of performance is be-

low 0.9mm which demonstrates still good accuracy. For the more challenging dataset

Martin-markers1 the robust technique yields approximately 1.5mm maximal vertex dis-

tance after gradual rise (Figure B.1(b)). The baseline technique has a similar increasing

trend but the maxima are higher which shows higher instability of tracking. On the

dataset Martin-skin1 the robust method yields slightly higher final error ∼ 1.7mm as

for the markers (Figure B.1(c)). The baseline technique is clearly worse because severe

mesh distortions appear early in the tracking of mirrored sequence. The robust method

has a sharper increase of the vertex distance for the more complex dataset Martin-skin2

(Figure B.1(d)). This is caused by significant mesh distortions accumulated in the eye

and mouth regions. The baseline method failed completely in the first half of the

mirrored performance, thus it was not possible to make a comparison between the

frame pairs.
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(a) (b)

(c) (d)

Figure B.1: Average vertex distance between corresponding frame pairs on the mirrored
sequence for the datasets Martin-pattern1(a), Martin-markers1(b), Martin-skin1(c) and
Martin-skin2(d). The unit is mm. Note that the baseline method failed for the dataset
Martin-skin2.



Appendix C

Traversal trees

Non-sequential surface tracking is evaluated for different traversals through the input

sequences of several datasets in Section 6.6. The following tables list the traversal trees

sampled from the tree spectrum for each dataset. Each tree is described by several

properties: β value, the number of clusters, the number of branches, average branch

length and the number of cuts. Bold font style denotes the traversal tree resulting in

the best temporally aligned mesh sequence.

β No. of clusters No. of branches Average branch
length

No. of cuts

1(SEQ) 1 1 354 0
0.9998 11 6 76.33 3
0.9992 21 16 45.06 8
0.996 31 27 18.3 19
0.99 41 28 18.32 19
0.97 61 27 21.07 17
0.94 83 30 20.7 20
0.9 97 32 17.97 24
0.8 135 37 19.11 32
0.7 175 38 19.87 34
0.6 213 38 19.18 34
0(MST) 355 41 19.24 38
SPT - 354 1 352

Table C.1: Information about the evaluated traversal trees for the dataset Synthetic-
skin1.
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β No. of clusters No. of branches Average branch
length

No. of cuts

1(SEQ) 1 1 354 0
0.9998 11 10 63.9 5
0.9992 21 23 25 12
0.996 31 24 25.17 15
0.99 41 27 22.52 17
0.98 59 31 23.1 20
0.95 79 31 22.71 19
0.9 99 39 21.62 28
0.8 139 45 22.53 38
0.7 183 43 21.33 40
0.6 217 45 20.93 44
0(MST) 355 55 20.73 62
SPT - 354 1 352

Table C.2: Information about the evaluated traversal trees for the dataset Martin-skin2.

β No. of clusters No. of branches Average branch
length

No. of cuts

1(SEQ) 1 1 345 0
0.9994 11 12 52.92 5
0.999 15 12 42.33 6
0.998 21 18 37.33 9
0.996 27 18 39 11
0.99 37 21 30.62 12
0.98 47 22 31.95 14
0.96 61 27 32.63 19
0.93 79 29 32.41 18
0.9 91 30 30.6 20
0.8 117 38 27.29 30
0.6 181 41 26.22 42
0(MST) 346 44 26.61 56
SPT - 345 1 344

Table C.3: Information about the evaluated traversal trees for the dataset DisneyFace.
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β No. of clusters No. of branches Average branch
length

No. of cuts

1(SEQ) 1 1 319 0
0.999 18 18 39.06 8
0.997 30 20 27.1 9
0.994 40 27 31.44 16
0.98 60 26 31.58 19
0.96 80 28 28.39 23
0.92 104 32 31.69 33
0.9 118 39 31.15 39
0.8 188 37 32.65 41
0(MST) 320 39 31.08 43
SPT - 319 1 317

Table C.4: Information about the evaluated traversal trees for the dataset Garment.

β No. of clusters No. of branches Average branch
length

No. of cuts

1(SEQ) 1 1 1049 0
0.999 22 17 112.41 8
0.998 30 25 131.84 12
0.996 42 29 127.03 16
0.994 52 37 126.95 23
0.99 62 34 124.53 22
0.97 102 59 122.48 39
0.95 130 62 121.99 46
0.93 152 66 91.23 50
0.9 176 66 90 55
0.8 250 81 102.96 76
0.6 328 97 104.62 98
0(MST) 1050 138 74.69 249
SPT - 1049 1 1047

Table C.5: Information about the evaluated traversal trees for the dataset StreetDance.



Appendix D

SEW , SPL and CUT measures

Section 6.6.7 in Chapter 6 defines SEW , SPL and CUT measures which describe

different characteristics of traversal trees. The following graphs present experimental

results for individual measures which are discussed in Section 6.6.7.
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Figure D.1: SEW measure across different traversals for the datasets Synthetic-
skin1(a), Martin-skin2(b), DisneyFace(c), Garment(d) and StreetDance(e). The best
cluster trees empirically selected for Synthetic-skin1 (β = 0.99), Martin-skin2 (β =
0.95), DisneyFace (β = 0.98), Garment (β = 0.994) and StreetDance (β = 0.996).
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Figure D.2: SPL measure across different traversals for the datasets Synthetic-skin1(a),
Martin-skin2(b), DisneyFace(c), Garment(d) and StreetDance(e). The best cluster
trees empirically selected for Synthetic-skin1 (β = 0.99), Martin-skin2 (β = 0.95),
DisneyFace (β = 0.98), Garment (β = 0.994) and StreetDance (β = 0.996).
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Figure D.3: CUT measure across different traversals for the datasets Synthetic-
skin1(a), Martin-skin2(b), DisneyFace(c), Garment(d) and StreetDance(e). The best
cluster trees empirically selected for Synthetic-skin1 (β = 0.99), Martin-skin2 (β =
0.95), DisneyFace (β = 0.98), Garment (β = 0.994) and StreetDance (β = 0.996).



Appendix E

Facial performance capture -

additional results

Example frames from the temporally consistent 3D model of the face for the datasets

Martin-makeup1 and Alaleh-makeup1 are depicted in Figures E.1 and E.2. Large fig-

ures showcase the amount of geometric detail obtained by the proposed capture system.
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Figure E.1: The temporally consistent 3D model of the face at the frame 120 from the
dataset Martin-makeup1.
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Figure E.2: The temporally consistent 3D model of the face at the frame 111 from the
dataset Alaleh-makeup1.



Appendix F

Computation time

Analysis of computation time is performed for individual algorithmic tasks in the

pipeline of the proposed system for facial performance capture (Chapter 7). The test

dataset is a performance Martin-makeup1 with 300 frames (details in Appendix G).

Algorithmic implementation is single-threaded C++ code which is processed on Intel

CORE i5 processor (3.3GHz). Table F.1 lists the tasks computed for each frame of the

performance and their contributions to per-frame computation time of 1.80min. Table

F.2 lists the tasks performed once for the whole sequence and the total contribution of

per-frame computation. This amounts to the overall computation time of 838.13min

for the dataset Martin-makeup1.

Certain tasks can be performed in parallel because they are view-dependent. This is

reflected by the columns Total time and Effective time in Tables F.1,F.2 where the total

time sums all processing across views and the effective time is the actual time spent

with tasks running in parallel if possible. Note that non-sequential tracking makes

one frame-to-frame alignment per frame only if the multi-path temporal fusion across

cuts is not used. With the temporal fusion, the overall number of alignments is higher

because some frames are tracked multiple times (643 alignments in this case). Thus,

the temporal alignment contribution per frame in Table F.1 is not entirely correct but

the computation time for non-sequential tracking is separated in Table F.2 to highlight

the difference. The time with the temporal fusion is added to the total time for the

whole sequence.
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Processing of a performance sequence involves prior steps which need some user inter-

action. The capture setup requires camera calibration and calibration for photometric

stereo. A coarse version of the facial mesh which is tracked needs to be designed by

the user. Also, linear predictor tracker necessary for dissimilarity computation requires

manual landmarking of sparse set of points in several frames.

Task Total time Effective time

Stereo matching 0.90min 0.45min
Poisson reconstruction 0.32min 0.16min
Frame-to-frame alignment 0.82min 0.82min
PSCL 0.08min 0.04min
Normal correction 0.50min 0.25min
Normal mapping 0.08min 0.08min

Total 2.70min 1.80min

Table F.1: Computational time for individual tasks per frame.

Task Total time Effective time

Linear predictor training 20.00min 10.00min
Linear predictor tracking 9.76min 4.88min
Dissimilarity computation 0.20min 0.20min
Frame clustering 1.02min 1.02min
Cluster tree calculation 0.02min 0.02min

Non-seq. tracking (without temporal fusion) 246.35min 246.35min
Non-seq. tracking (with temporal fusion) 528.01min 528.01min
Other per-frame computations 564.00min 294.00min

Total 1123.01min 838.13min

Table F.2: Computational time for individual tasks over the whole sequence Martin-
makeup (300 frames). The first block are the tasks performed once for the sequence.
The second block contains aggregated times from per-frame computations.



Appendix G

Datasets

Technical description of datasets used for evaluations throughout this thesis is provided.

Table G.1 lists individual datasets with information about multi-view image sequences

captured. Camera calibration data and per-frame 3D reconstructions of an actor are

also available for all datasets.

The datasets Martin-pattern1, Martin-markers1, Martin-skin1, Martin-skin2 and Gar-

ment were acquired under white diffuse illumination in HD-SDI uncompressed 4 : 2 : 2

format by the capture setup described in Section 7.2. The datasets Martin-makeup1

and Alaleh-makeup1 were captured under directional colour illumination in HD-SDI

uncompressed 4 : 4 : 4 format by the same capture setup. The dataset Synthetic-skin1

is a synthetic facial performance rendered into views of a similar virtual capture setup.

The dataset DisneyFace has been released by ETH/Disney Research Zurich [13] and

the facial performance was recorded by 7 cameras under white diffuse illumination.

The dataset StreetDance is publicly available thanks to Centre for Vision, Speech and

Signal Processing at University of Surrey [101]. A studio setup with 8 HD cameras

surrounding an actor was used. This dataset is a concatenation of 3 separate full-body

performances by a breakdancer - Free, KickUp, FlashKick.
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Dataset No. of
cameras

Resolution Fps No. of
frames

Frame
range

Synthetic-skin1 4 800× 950 25 355 0 - 354
Martin-pattern1 4 1920× 1080 25 310 1 - 310
Martin-markers1 4 1920× 1080 25 367 70 - 436
Martin-skin1 4 1920× 1080 25 310 0 - 309
Martin-skin2 4 1920× 1080 25 355 0 - 354
Martin-makeup1 4 1920× 1080 25 300 0 - 299
Martin-makeup2 4 1920× 1080 25 250 0 - 249
Alaleh-makeup1 4 1920× 1080 25 341 42 - 382
DisneyFace 7 1176× 864 46 347 48 - 394
Garment 4 1920× 1080 25 320 310 - 629
Free 500
KickUp 300
FlashKick 250
StreetDance 8 1920× 1080 25 1050 0 - 1049

Table G.1: Description of the datasets used for evaluations.
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