High-detail temporally consistent 3D capture of
facial performance

Martin Klaudiny

Submitted for the Degree of
Doctor of Philosophy
from the
University of Surrey

Centre for Vision, Speech and Signal Processing
Faculty of Engineering and Physical Sciences
University of Surrey
Guildford, Surrey GU2 7XH, U.K.

March 2013

(© Martin Klaudiny 2013






Summary

Capturing a realistic digital copy of a facial performance has high importance for film
and television production. This allows high-quality replay of the performance under
different conditions such as a new illumination or viewpoint. The model of performance
can be altered by space-time editing or can be used for building and driving a facial
animation rig. This thesis presents a novel system to capture high-detail 4D models
of facial performances. A geometric model without appearance is reconstructed from
videos of an actor’s face recorded from multiple views in a controlled studio environ-
ment. The focus is on achieving temporal consistency and a high level of detail of the
4D performance model which are crucial aspects for the use in film production.

A Dbaseline method for dense surface tracking in multi-view image sequences is in-
vestigated for facial performance capture. Evaluation shows limitations of previous
sequential methods which provide accurate temporal alignment only for faces with a
painted random pattern. A novel robust sequential tracking is proposed to handle
weak skin texture and rapid non-rigid facial motions. However, gradual accumulation
of frame-to-frame alignment errors still results in significant drift of the tracked mesh.
A non-sequential tracking framework is introduced which processes an input sequence
according to a tree derived from a measure of dissimilarity between all pairs of frames.
A novel cluster tree enables balancing between sequential drift and non-sequential jump
artefacts. Comprehensive evaluation shows temporally consistent mesh sequences with
very little drift for highly dynamic facial performances. Improvements are also demon-
strated on whole-body performances and cloth deformation.

Photometric stereo with colour lights is used for capturing pore-level skin detail. An ori-
ginal error analysis of the technique is conducted for image noise and calibration errors.
The proposed markerless capture system for facial performances combines photometric
stereo with non-sequential surface tracking based on the cluster tree. A practical cap-
ture setup is constructed from standard video equipment without active illumination or
high-speed recording. Errors in the photometric normals are corrected using the tem-
porally aligned mesh sequence. The resulting 3D models enhanced by the normal maps
capture fine skin dynamics such as skin wrinkling. High-quality temporal consistency
of the models is also demonstrated with minimal drift in comparison to the previous
approaches. Qualitative and quantitative comparison with the best state-of-the-art
system shows comparable results.
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Notation

Abbreviations
BRDF Bidirectional reflectance distribution function
CCD charge-coupled device
CRS cooperative random sampling
FACS Facial Action Coding System
HD high definition
1GD independent gradient descent
LCS local coordinate system of a patch
LOD level of detail in hierarchical surface model
MRF  Markov random field
MST minimum spanning tree
MVS multi-view stereo
NCC normalised cross-correlation
PCA Principal component analysis
PSCL  photometric stereo with colour lights
PSGI  photometric stereo with gradient illumination
PSWL photometric stereo with white lights
RGB red, green, blue
RMS root mean square
SAD sum of absolute differences
SNR signal-to-noise ratio
SPT shortest path tree
SSD sum of squared differences
uv 2D parametrisation of surface
VFX visual effects
WCS  world coordinate system



ii Notation

Mathematical symbols

Symbols used in individual chapters are listed and briefly described. Some symbols are
redefined for different chapters.

Typesetting
scalar values lower-case letters in italic type (e.g. j,7;)
vectors lower-case letters in bold type (e.g. 1;,r;)
matrices upper-case letters in bold type (e.g. L, V)
functions upper-case letters in italic type (e.g. E;(\), A(F)))
sets upper-case letters in italic type (e.g. Xy, C)

total numbers of elements upper-case letters in italic type (e.g. J, N)
elements from graph theory upper-case letters in calligraphic type (e.g. £,7)
sequences closed in curly brackets with a range (e.g. {M;}L ;)
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Chapter
J index used for light
J number of lights

grey-scale image acquired under
the light j

light direction vector

grey-scale pixel intensity under
the light j

vector of intensities g;

unit surface normal

grey-scale albedo of a surface
point for PSWL

illumination matrix describing
light directions

interaction matrix describing
light-sensor-material interaction
wavelength

spectrum of the light j

spectral sensitivity of the red
camera sensor (similarly for the
green and blue sensor)

material reflectance of a surface
point

pixel intensity in the red image
channel (similarly for the green
and blue channel)
RGB colour

colour image
wavelength-dependent
maticity of the surface
grey-scale albedo of a surface
point for PSCL

interaction vector of the red,
green and blue sensors with the
light j given a surface material
coefficient from v; for the red
sensor (similarly for the green
and blue sensor)

calibration image acquired un-
der colour light j

binary mask for the face region
in the image I j

chro-

p

Error analysis uses a simulation-reconstruction

pixel in P

chain where subscripts S and R denote ele-
ments associated with simulation and re-
construction part. The subscript * repres-
ents both S and R.

L. illumination matrix

V. interaction matrix

n, unit normal

Oy grey-scale albedo

N, albedo-scaled normal
(D, = a4 ny)

d difference vector (d = g — nig)

d; difference vector for the light j
(d:d1+...+dj)

L. light direction vector from L,

Vix interaction vector from V,

ms3  normalised vector 11z X Ior
(similarly for other m;)

Vi angle between m; and 1,z

B angle between ng and (I?S —I?R)

ug normalised vector vig X Vap
(similarly for other u;)

0 angle between u; and v;g

Ul angle between ng and 1;

A noise vector from a Gaussian
distribution N(0, 02)

o standard deviation of noise

0; slant of the light j

¥ tilt of the light j

A@  discrepancy in slant

A¢  discrepancy in tilt

Chapter

i index used for vertices/patches

c index used for camera/view

t frame

r reference frame

T number of frames

O; observations at the frame t

C number of cameras/views

c
t

image at the frame ¢ for the cam-
era ¢
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M;  temporally aligned mesh at the S(If,p) operation projecting a 3D
frame ¢ point p into the image I and

X set of vertex positions of the sampling a colour value
mesh M, d; displacement vector of the patch

r set of edges of the mesh M; i (motion estimate)

N number of vertices in M; d; displacement vector of the ver-

Vi position of the vertex @ tex ¢ (final motion)

Vi set of adjacent vertices around L matrix of Laplacian operator
the vertex L matrix of mixed bi-Laplacian

X5, Y, Z; axes of LCS and Laplacian operator

Xw, Yw, Zy axes of WCS 1 mixing coefficient for Laplacian

Pi position of patch LCS with re- operator
spect to WCS W  matrix of constraint weights

r; rotation of patch LCS with re- s smoothness coefficient
spect to WCS w; weight of patch displacement

T; transformation matrix between e half-width of linear ramp map-
LCS and WCS ping between e; and w;

Pi local translation in LCS & centre of linear ramp mapping

r; local rotation in LCS between e; and w;

T,  transformation matrix for local MET mesh at the frame ¢ from tem-
modification in LCS (formed porally aligned ground-truth
from p;, #;)

G; vector of 3D sample points of
the patch ¢ Chapter

Q; visibility set of the patch ¢ g .

Bf texture of the patch i from the M temporally unaligned mesh- at
camera ¢ the frame ¢

g o .
do 3D distance between rings of X st of vge rtex positions of the
sample points in G; mesh M;
: ! I set of edges of the mesh M/
0 index of sample ring g . )
. E7() patch error function for multi-

N, number of sample rings Q . . .

. . view alignment and fitting to

E;() patch error function for multi- p
view alignment the mesh M,

E?() patch error function for multi- %9 half-width “of Tukey bi-weight
view stereo error norin

e patch matching error p(z,o4) . Tukey ‘bl—welght error norm

. with a variable x

Te threshold for matching error e; . .

. . . R Wy weight of geometry fitting term
in motion estimate initialisation i B9

VT subset of V; for motion estimate 5

¢ e H number of iterations in CRS
initialisation :
. . . Q ratio of range decrease for ran-

a; weight for adjacent motion es- .

. dom sampling
timate .
a integer exponent of «
U number of samples per range

size in random sampling
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u random vector from a cube
(=1,1) x (=1,1) x (—=1,1)

Qmar Mmaximal range for random
sampling

Gmin, ~minimal range for random
sampling

Qiim  half size of bounding box limit-
ing possible motion estimates

[ index used for LOD

L number of LOD in hierarchical
surface model

M} mesh on LOD [ at the frame ¢

Gl sample grid of the patch on the
LOD [ for the vertex 7

v} set of adjacent vertices around
the vertex ¢ on the LOD [

Bfl texture of the patch on the LOD
[ associated with the vertex i
from the camera c

Yo scaling factor for patch size N,
across LODs

Vs scaling factor for smoothness
coefficient s across LODs

Chapter [6]

i,7,u indices used for frames (respect-

<

F3Igxrc«c ”i

SISO

3

ive graph nodes)

root frame

indices used for frame clusters
(respective graph nodes)

index used for nodes
dissimilarity

dissimilarity matrix

tree/graph node

root node

directed traversal tree among
frames

set of nodes of the tree T

set of edges of the tree T
fully-connected undirected
graph among frames

set of edges of the graph G
undirected spanning tree among
frames

St Oy Z; il 3

<

set of edges of the tree T’
undirected minimum spanning
tree among frames

directed minimum spanning tree
among frames
directed shortest
among frames
frame cluster
central frame of the cluster Fj
half-size of the cluster Fj
intra-cluster inconsistency for
the cluster F}

granularity parameter for frame
clustering

clustering of frames for given 3
number of frame clusters
cluster dissimilarity matrix
fully-connected undirected
graph among clusters

set of nodes of the graph Gr

set of edges of the graph Gp
undirected minimum spanning
tree among frame clusters

set of edges of the tree T}
undirected cluster tree among
frames given

set of edges of the tree T3
directed cluster
frames given 3
length of branch
across cuts

directed tree extended from T
across cuts

set of nodes of the tree T

set of edges of the tree T

node of the tree T

blending weight for a tracking
solution at the node n,
dissimilarity for image-oriented
frame-to-frame alignment
dissimilarity = for  geometry-
oriented frame-to-frame align-
ment

path tree

tree among

extension
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vi

er average patch matching error for
image-oriented frame-to-frame
alignment

eq average patch matching error
for geometry-oriented frame-to-
frame alignment

Chapter

I rectified reference image

fg” rectified matching image

G,  grid of image points in f{

G, grid of image points in f[”

sa size of grids G, G,

P binary mask for the face region
in the reference image f[

pP,q Dpixel in P

%4 set defining a 4-point neighbour-
hood over pixels in P

A smoothness coefficient

d disparity value (horizontal)

D() disparity map for the reference

image I/
energy function for the disparity
map D



Chapter 1

Introduction

Capture and analysis of human faces is an area of great interest because it has ap-
plications in a number of fields. The face is used as a biometric modality for person
identification or verification. 3D scans of a patient’s face serve as an important aid for
surgery planning or prosthesis design. Automatic analysis of facial movement helps to
diagnose various medical disorders. Digital avatars controlled by user’s expressions are
demanded in online communication and telepresence. Game industry, television and

film production strive for believable digital characters.

There has been a huge effort in the film industry to create digital doubles of real actors.
Digital doubles would allow seamless integration of real-world content coming from
traditional film shooting with virtual worlds created by computer graphics. The digital
double can be placed into environments or situations which would not be possible for
an actor. This gives tremendous creative freedom to the director who can influence
every aspect of the performance recorded. Moreover, the digital double can be used
to produce new performances without the presence of the actor. Development of this
technology has a big impact on areas of post-production, facial modelling, texturing
and animation. Progress over the last decade has been driven by a number of films
such as Final Fantasy: The Spirits Within (2001), The Matrix series (1999 - 2003), The
Lord of the Rings series (2001-2003), The Polar Express (2004), Beowulf (2007), The
Curious Case of Benjamin Button (2008) and Avatar (2009).

1



2 Chapter 1. Introduction

1.1 Motivation

Creating realistic digital double of the face remains a major challenge for computer
graphics and animation because of its sheer complexity. The face contains intricate
details such as pores, blemishes and fine wrinkles. The skin interacts with incident
illumination in a complex way which defines the appearance. Movements of the face
are driven by a complicated system of bones, muscles, connective tissues and skin which
results in highly non-rigid deformations of the surface. Features such as eyes, hair, teeth

or tongue have very different properties compared to the rest of the face.

Creation of a digital model of the face is also complicated by human sensitivity to
faces. People observe and analyse faces from an early age because they are the key
component of non-verbal communication. Hence, any imperfection or unusual detail
in shape, appearance or motion of the face is noticed and can even cause adverse
emotions. This phenomenon have been first documented in robotics and is described
as the Uncanny valley. Mori [75] observed that robots very dissimilar from humans do
not trigger any emotional reaction. As their human likeness increases, people find them
more familiar and respond positively. But beyond a certain level of robot realism the
reaction becomes negative, because there is something uncanny about it which indicates
a potential danger. When the robot starts to be completely like a real person, the
familiarity sharply increases and people’s emotions are positive. This can be depicted
as a curve with the Uncanny valley in Figure [I.1} The same observations has been

made for virtual characters in computer animation.

Automatic synthesis of believable facial performance for film and television production
is impossible with the current technology. Physical simulation of an anatomically cor-
rect model of the face is intractable on the level of accuracy required. Thus, digital
faces are modelled and animated manually which is a laborious task requiring highly
skilled artists. However, it is extremely difficult to avoid the Uncanny valley even for
an experienced artist if the digital character is created from scratch. It is common
practice to base the character on a real actor and their performance to improve the

realism. The artist effectively creates a digital double of the actor.

Actor’s performances are recorded and videos can be used as a reference for the artist.
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Figure 1.1: Uncanny valley in robotics [75]. Note that movement of the robot emphas-
ises the valley as it is an important cue for judging human likeness.

A better option is to obtain a 4D model of facial performance representing changes in
the 3D shape and appearance of the face over time. The term 4D model’ refers to a
sequence of reconstructed 3D models with temporal consistency such that points on
the models are in correspondence with the same points on the face at each captured
frame. Such model is provided by 3D capture systems for facial performances which
can significantly reduce the manual work of the artist required to create the digital
double. The 3D models of the actor can speed up or completely replace the model-
ling phase. Motion of the models during the performance can provide correct facial
dynamics for animation. The captured performance can be directly replayed with only
manual modification of environmental conditions. Although, this approach improves
the quality of digital characters, they still fall into the trap of the Uncanny valley (the
film Beowulf being a typical example). Promising results have been demonstrated by
The Digital Emily Project [2] or the film The Curious Case of Benjamin Button both
of which featured some of the most realistic facial performances by digital doubles so
far. But there has not yet been a digital character which would cross the Uncanny

valley and significant amounts of manual interaction are still required from artists.

To achieve realistic digital doubles, it is necessary to improve 4D spatio-temporal cap-
turing of facial performance to aid the artist. Thus, facial performance capture needs
to advance in two key aspects - realism and temporal consistency of the resulting 4D

performance model.
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Realism of the 4D performance model is instrumental for crossing the Uncanny valley.
The shape of the face should contain fine geometric details such as skin wrinkles and
pores. The appearance of the face should describe the complex interaction of light with
skin in terms of diffuse/specular reflectance, translucency and sub-surface scattering.
All of this data needs to be captured with adequate temporal sampling to preserve
subtle dynamics of the face such as skin wrinkling, pore deformation or changes in
skin colouring. This allows high-quality replay of the performance under different
conditions defined in post-production. The actor can be relighted according to a virtual

environment or can be observed from a novel viewpoint.

Temporal consistency of the 4D performance model means that the facial 3D mesh has
a fixed topology and its vertices correspond to the same surface points over time. This
introduces a common structure to the data captured in all frames, and therefore allows
easy modification of the performance. The temporally consistent model enables space-
time editing where a change in one frame can be directly propagated to other frames.
This applies to the facial geometry and also appearance associated with it as various
texture layers. Without temporal consistency all frames affected by an edit would have
to be laboriously modified one by one. Retiming of the performance is another use
case for the temporal correspondence across the data which allows interpolation of the

facial model for new time instances.

Temporal consistency of the captured data is also important for producing new content.
Facial animation rigs are commonly based on blend shapes [84] which require a number
of example expressions in full correspondence. This allows weighted blending between
them, and therefore creation of new expressions. Animating the rig to generate a new
facial performance with the correct motion and timing is difficult and time-consuming
even for a highly skilled artist. Therefore, the animation is often driven by a real
performance [I18] to simplify the process. The temporally consistent representation
implicitly provides natural motion of the face over time which is transformed to anim-
ation curves for the rig. The curves can be also retargeted to another actor or even a

non-human character.
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1.2 Objective

The objective of this thesis is capturing high-detail 4D models of facial performances
for film production. The model is obtained from multi-view videos of an actor’s face
recorded in a controlled studio environment. Only the geometry of the face is captured
over time because it is more difficult to create realistic facial shapes in motion than
appearance. The geometric 4D model of performance should contain all details observed

in the acquired videos and have precise temporal consistency.

There is a number of challenges involved in building the 3D capture system for facial

performance:

e Complexity of capture setup - Existing capture systems often consist of com-
plex equipment such as high-speed cameras, structured light scanners, active
illumination elements, etc. All of these components need to be synchronised
to provide consistent observations. A practical capture rig should be constructed
from standard cameras and lights which does not require complicated integration.

e Temporal sampling - Full reconstruction of facial shape often requires multiple
observations such as images under various illuminations. Individual observations
need to be acquired at high speed to ensure temporal sampling of the whole set at
standard frame-rate 25 Hz. A capture system should acquire all necessary data
at one time instant, so that a 3D model is available for every frame.

e Actor’s comfort - An actor typically has to perform under restricted conditions
such as a small capture volume or strong fast-switching illumination. Markers
or pattern are applied on their face to emphasise motion. Reduction of such
constraints would help actors to deliver a more natural performances.

e Fine skin detail - Many current methods reconstruct the medium-scale shape
of the face with only large skin folds and wrinkles. However, realistic models of
the performance should contain pore-level skin detail and fine wrinkles with all
subtle deformations over time.

e Drift - Temporal consistency of 4D performance models is usually obtained by
tracking a 3D facial model in the captured videos. The tracking accumulates

errors due to fast non-rigid movements of the face and weak skin texture varying
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over time. This results in drift of the 3D model on the actual surface of the face.
The proposed system should address drift problems without markers or patterns
painted on the face to aid the tracking.

e Data size - The level of detail required from a 4D performance model inevitably
leads to large amounts of data. A compact representation would be beneficial for
efficient storage and fast manipulation.

e Eyes, teeth, hair - The face includes features such as the eyes, teeth or hair
which have very different properties than the skin. Their accurate capture is a
long-standing problem because of the complex geometry, reflectance and motion.
However, this problem is not addressed in this work which focuses on skin areas

of the face.

1.3 Thesis outline

This thesis is structured as follows:

e Chapter 2| - Related work
A literature review is presented for facial performance capture and specific areas
related to the approaches described in this thesis.

e Chapter (3| - Geometric detail capture
Photometric stereo with colour lights is investigated for capturing skin detail. A
formulation of the photometric stereo is derived for simultaneous colour illumin-
ation. Photometric calibration of a capture setup is explained. Theoretical error
analysis of the photometric stereo is supported by simulations on synthetic data.
The quality of estimated normal maps is evaluated on real facial performance.

e Chapter [4] - Baseline surface tracking
A baseline method for dense surface tracking is developed based on the work of
Furukawa et al. [36] [37]. A patch-based model of the surface is used for tracking
a template mesh on multi-view image sequences. 3D matching of a surface patch
between frames is formulated and the matching error is empirically analysed.
Raw motion estimates from the patches constrain a Laplacian deformation of the

template between frames. The method is evaluated for 4D performance capture
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with varying amounts of painted texture on the face. This demonstrates accurate
temporal alignment with a random pattern but fails for faces without make-up.

e Chapter [5| - Robust surface tracking
A robust surface tracking method is proposed to improve over the baseline method
in Chapter 4] on weakly textured skin without make-up. The reformulated ob-
jective function for 3D patch matching includes fitting to unaligned per-frame
3D reconstructions. Cooperative optimisation of patches across the surface im-
proves accuracy of motion estimates for Laplacian deformation. Evaluation of
the method analyses the influence of varying strength of surface texture. Results
for faces without markers or patterns show significantly less drift than for the
baseline technique.

e Chapter [6] - Non-sequential surface tracking
A framework for non-sequential surface tracking is introduced which processes
an input sequence according to a tree structure across the frames. The traversal
tree is derived from the dissimilarity between frames. Several types of trees -
minimum spanning tree, shortest path tree and novel cluster tree are described
and compared to sequential traversal in terms of the quality of temporal align-
ment. The framework is generalised to any frame-to-frame alignment method with
an associated dissimilarity measure and two different combinations are assessed.
Comprehensive evaluation shows temporally consistent mesh sequences with very
little drift for facial performances. Versatility of the approach is demonstrated
for other non-rigid surfaces such as cloth and whole body.

e Chapter [7| - Facial performance capture
The processing pipeline of the proposed capture system is described and the meth-
ods from the previous chapters are tied together. Capture setup for acquisition
of multi-view image sequences and subsequent per-frame stereo reconstruction
are explained. Non-sequential surface tracking using the cluster tree approach
is combined with the photometric stereo with colour lights. Artefacts in the
photometric normals are corrected using the temporally aligned mesh sequence.
The resulting geometric models of facial performances offer pore-level detail with

high-quality temporal consistency which is comparable to the state-of-the-art.
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e Chapter [8/ - Conclusions and future work
This chapter draws the main conclusions and suggests directions for future work.
e Appendix [A] - Marker-based facial performance capture
An early marker-based version of facial performance capture system is presented.
The approach combines per-frame stereo reconstruction with photometric stereo
with colour lights. The resulting 3D models have coarse temporal consistency

based on motion of markers painted on the face.

Chapters [6] are closely related because they describe evolution of surface tracking
framework. Chapter 3| about acquisition of geometric detail is tied together with the
surface tracking in Chapter [7] presenting the whole system.

1.4 Contributions

The main contributions of this work are:

e Error analysis of photometric stereo with colour lights. Normal and albedo ac-
curacy are investigated for image noise, calibration errors in light directions and
calibration errors in interaction between lights, sensors and the surface.

e Robust patch-based alignment of a template mesh between two frames. The
correspondence is given by cooperative 3D matching of textured surface patches
to multi-view images and an unregistered geometry. The method works robustly
on plain skin without the aid of markers or pattern make-up. Sequential tracking
based on this alignment is more reliable in the presence of fast non-rigid motions
than previous techniques.

e Non-sequential surface tracking framework. A template mesh is tracked along
branches of a traversal tree calculated from a dissimilarity measure between
frames. This greatly reduces drift and impact of failure in comparison to the
conventional sequential tracking. The modular framework allows use of any dis-
similarity measure, frame-to-frame alignment method and algorithm for calculat-
ing the traversal tree. It is possible to align together multiple sequences of the
same surface. Versatility of the approach is demonstrated on facial performances,

whole-body performances and cloth deformation.
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Cluster tree representation taking into account temporal order of frames to limit
the number of alignment jumps introduced by non-sequential traversal. This
improves over the minimum spanning tree and shortest path tree used previously
in whole-body tracking. The cluster tree enables balancing between sequential
accumulation of drift and non-sequential jump artefacts. Remaining jumps in the
resulting mesh sequence are eliminated with multi-path temporal fusion.
Marker-based approach combining photometric stereo with colour lights and ste-
reo reconstruction. This work was proposed to enhance a medium-scale shape
from stereo with skin details from the photometric stereo at every frame of a
facial performance. Markers painted on the face provide coarse temporal consist-
ency of the resulting mesh sequence.

Markerless approach combining photometric stereo with colour lights and non-
sequential surface tracking based on the cluster tree. This is one of the first
techniques using non-sequential traversal for alignment of facial performances.
This achieves high-quality temporal consistency of the final models with minimal
drift in comparison to previous sequential methods.

Practical capture setup consisting of several HD cameras and three colour lights.
This does not require high-speed recording or active illumination as used in many
previous methods.

3D capture system for facial performance capture with a full pipeline from cap-

turing an actor to rendering 4D model of a performance.
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e M. Klaudiny, Ch. Budd, and A. Hilton. Towards optimal non-rigid surface
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e C. Budd, P. Huang, M. Klaudiny and A. Hilton. Global non-rigid alignment
of surface sequences. In International Journal of Computer Vision, pages 1-15,
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e M. Klaudiny and A. Hilton. High-detail 3D capture and non-sequential alignment
of facial performance. In Proceedings of the International Conference on 3D
Imaging, Modelling, Processing, Visualization and Transmission, pages 17-24,
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e M. Klaudiny, A. Hilton and J. Edge. High-detail 3d capture of facial perform-
ance. In Proceedings of the International Symposium on 3D Data Processing,
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e M. Klaudiny and A. Hilton. Cooperative patch-based 3D surface tracking. In
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e M. Klaudiny and A. Hilton: High-fidelity facial performance capture with non-
sequential temporal alignment. In Proceedings of the International Symposium
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e C. Budd, J.-Y. Guillemaut, M. Klaudiny and A. Hilton. Reconstruction and
tracking within the SCENE project. In Proceedings of the Networked € Electronic
Media Summit, 2012. (Chapter@



Chapter 2

Related work

This chapter presents a survey of work in the area of facial performance capture. It also
includes a brief overview of related work in the areas of photometric stereo and dense

motion capture which are important for the approaches developed in this research.

2.1 Facial performance capture

This survey of techniques for facial performance capture is organised according to two
key challenges pursued by researchers: realism and temporal consistency of the 4D
model of a performance. Solving both challenges is crucial for the creation of a digital

copy of a performance for use in film and television production.

2.1.1 Realism of the 4D performance model

Systems for facial performance capture differ in the amount of shape and appearance
detail present in the 4D performance model acquired. This section categorises the
systems according to underlying methods for shape reconstruction - stereo, structured
light, shape from shading, photometric stereo with colour lights and Light Stage. Some
of the systems combine two methods but they are categorised according to the method

providing finer geometric information.

11
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Stereo

Stereo reconstruction has been widely used for obtaining 3D models of the face [30]
19, 122]. A capture rig in the minimal configuration needs only two standard cameras.
Typically, more cameras together with lighting elements are used to increase facial
coverage and reconstruction quality. Facial shape can be reconstructed by matching
image patches in stereo camera pairs and fusing the resulting depth maps into a single
mesh. Alternatively, the whole surface is computed at once by multi-view stereo (MVS)

which jointly matches the image patches across views.

Passive stereo techniques rely on the facial appearance under diffuse white illumination
for 3D reconstruction and tracking. Therefore, they do not use any active lighting
elements and 3D models of the face can be acquired at camera frame-rate. Furukawa
et al. [36], [37] paint random pattern on the face to enhance weak skin texture in 1Mpx
images. This yields accurate mesh sequence exhibiting skin wrinkling but natural
appearance of the face is obscured. An alternative to the pattern is an increase of the
camera resolution, such that skin pore structure of skin is clearly visible. Bradley et al.
[19] construct a rig with 7 pairs of HD cameras zoomed on overlapping regions of the
face. The acquired high-resolution skin detail allows reconstruction of the geometry
comparable to the pattern-based method [37]. In addition, the meshes have extremely
detailed dynamic texture (10Mpx). DI4D capture system from Dimensional Imaging

[31] achieves similar fidelity of the facial model with less cameras.

Before the use of high-resolution cameras the weakness of skin texture was overcome
by projecting a random pattern on the face to improve stereo matching. But this
complicates simultaneous appearance capture. Zhang et al. [122] introduce space-time
stereo aided with a projected pattern to obtain accurate depth maps with little temporal
noise. Every third frame is recorded with full illumination to allow surface tracking and
appearance capture. Small deformations are not captured due to the lower resolution of
the tracked template than depth maps (Figure (b)) The texture sequence also lacks
details due to the use of 640 x 480 camera sensor. Two pairs of grey-scale cameras
for shape acquisition and two colour cameras for appearance acquisition operate at

60fps and full textured meshes are produced at 20fps. Commercial system Mova
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CONTOUR Reality Capture [76] uses a random pattern painted on the face to improve
MVS reconstructions at each frame. The pattern is fluorescent and invisible under
white light which allows joint capture of the shape and appearance by fast switching
between white and ultra-violet light. The geometries are aligned to a medium-resolution
mesh sequence textured with dynamic high-resolution colour map. To achieve truly
simultaneous capture of the shape and appearance, the pattern can be projected in the
infra-red part of light spectrum [121l [I]. 3dMD dynamic system [I] has two pairs of
infra-red cameras which provide depth maps for each side of face at 60fps. They are

synchronised with two colour cameras which simultaneously obtain textures.

Structured light

Structured-light systems typically project a series of fringe patterns on the actor [124],
115]. The patterns temporally encode planes across 3D space which combined with
rays cast from the observing camera define 3D surface points. This does not allow
capture of shape at video frame-rate and simultaneous appearance acquisition. High
frame-rate cameras are required to interlace the pattern projections for geometry and
white illumination for colour texture. This results in a temporal offset between shape
and appearance capture. A capture rig typically contains a light projector, a grey-
scale camera recording the projected patterns and a colour camera recording facial

appearance.

Zhang et al. [124] proposed the phase-shifting method which cycles only three sinusoidal
fringe patterns at 120H z. 3D reconstruction is performed in real-time for each pattern
cycle independently. Colour texture is obtained using a long exposure on the colour
camera over the multiple patterns. The system provides textured meshes with temporal
sampling of 40 fps (Figure[2.1[(a)). Wang et al. [112] fits a template mesh to geometries
from Zhang’s scanner. The final performance model contains large skin folds and
wrinkles and has a low-resolution dynamic texture. Walder et al. [I11] achieves a
similar quality of shape but better appearance due to higher image resolution of cameras
in their scanner. Weise et al. [II5] present for a system with an additional grey-

scale camera which combines phase-shifting with stereo matching to improve depth
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discontinuities. Partial scans of the face are produced at 25fps. An actor-specific PCA
deformable model with fixed appearance is fitted to the scans and images but its shape
space does not model any skin wrinkles. Li et al. [64] enhance a warped template
mesh with details over time. Shape details such as medium-sized wrinkles are encoded
as displacement coefficients along vertex normals. They dynamically change over time

but the stable features are gradually aggregated and preserved in the model. Thus,

these features are present in the mesh even if a current scan does not contain them.

Figure 2.1: Structured-light method [124] - fringe images, a shaded and textured model
of the face (a). Stereo-based method [122] fitting a template mesh to depth maps (b).

Shape from shading

Shape from shading derives surface normals and reflectance of an object lit by direc-
tional light from a single image. This is inherently an under-constrained problem for
a single surface point, therefore various global regularisation constraints have been
introduced [123]. General regularisation terms such as surface smoothness do not
yield correct shape for faces. Thus, statistical model of facial normals is used as a
shape prior for the regularisation of normal map [95, 96] [97]. Another option for the
prior can be 3D morphable facial model [83]. Local shading constraints from pixel
intensities can be modelled according to different reflectance models - Lambertian [95],

Torrance-Sparrow[96] or general bidirectional reflectance distribution function (BRDF)
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[97]. Facial shape integrated from normals contains larger wrinkles but no pore-level

skin structure. All mentioned methods provide static capture from a single viewpoint.

Dark-is-deep concept represents an approximation of shape-from-shading formulation,
such that a darker/brighter pixel intensity indicates a valley/bump on the surface
[63, 42]. This is valid especially under diffuse white illumination which is problematic
for standard shape from shading assuming collimated light. The reason is that a pixel
intensity depends more on the amount of light reaching a surface point than on a
surface normal. A large intensity change with respect to neighbourhood means that
the surface point is largely occluded and is inside a valley. Based on this simplified
interaction between illumination and surface, it is possible to hallucinate fine details
such as skin wrinkles or pores. Their shape can be be visually pleasing but is not

accurate.

Passive capture systems use dark-is-deep concept to enhance the medium-scale meshes
with approximate skin detail. This approach is suitable because passive setups typically
rely on white diffuse illumination. Bickel et al. [I4] build a high-detail model of the
neutral face using 3dMD system [I] for base shape and the method by Weyrich et al.
[117] for normals and skin reflectance. This model is then deformed throughout the
performance using markers painted on the face. Shape of large wrinkles is inferred from
shading under diffuse illumination at every frame. They are painted by distinct diffuse
colours to simplify their tracking and improve the shape inference (Figure (a)). The
reconstructed wrinkles dynamically enhance the template model but fine skin geometry
and appearance remains fixed over time. Borshukov et al. [17] used a similar approach
for facial performance capture in The Matrix sequels but without use of any make-up.
A high-detailed laser scan of the neutral expression is stripped of fine details which are
stored in a static bump map. Medium-sized wrinkles are extracted from shading in the
images and added onto the scan as a dynamic displacement map. Five HD cameras

capturing the performance provide time-varying high-resolution texture map.

Beeler et al. [10] present a static capture system which acquires images of an actor under
white diffuse light by 7 DSLR cameras. MVS reconstructs a base shape of the face which

is further refined by the dark-is-deep approach. The approximate mesoscopic layer
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(b)

Figure 2.2: Marker-driven technique enhanced by dark-is-deep concept [14] - one input
image, a deformed template mesh, a template with added wrinkles and a final textured
model (a). High-quality MVS reconstruction augmented with dark-is-deep approach
[10] - one input image, a shaded and textured final mesh (b).

displaces vertices of the base mesh to include small wrinkles and pores (Figure [2.2b)).
This system has been extended to dynamic capture using 7 cameras with frame-rate
46 fps [13]. The output is a high-resolution mesh sequence which contains fine skin

deformations.

Photometric stereo with colour lights

Hernandez and colleagues introduced a photometric stereo with colour lights (PSCL)
which obtains normal maps of dynamic surfaces [20]. An actor is simultaneously lit
by red, green and blue directional light from different angles. A normal map is com-
puted for every frame captured by a single camera without any time-multiplexing of
the illumination. An assumption of Lambertian surface with constant albedo requires
application of uniform make-up on the face. Integration of normal maps results in
detailed but distorted facial shape. This is a consequence of low-frequency bias in
normals which is a common issue of photometric stereo methods. Self-shadows due
to directional illumination also bias affected normals. A simple correction in [20] can

handle pixels with one occluded light assuming constant albedo. Hernandez et al. [49]
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offer more robust scheme for the shadow correction which permits varying grey-scale
albedo but uniform chromaticity. A normal map is optimised jointly to enforce surface

continuity in shadowed regions.

Vogiatzis et al. [I10] alleviate restrictions on the reflectance by incorporating Phong
model. Chromaticity and specular reflectance parameters are assumed constant but
grey-scale albedo can vary across the face. Photometric calibration selects a dominant
chromaticity on the face, so that normals are calculated precisely for most of the surface.
Integration of normal maps produces visually plausible meshes with fine skin detail even
for faces without uniform make-up (Figure . However, regions with other than the
dominant chromaticity are distorted to some extent. Anderson et al. [3] combine
PSCL with depth acquisition by Kinect sensor [72]. Available depth maps enable
normal calculation for multiple chromaticities because image pixels can be associated
with a particular chromaticity based on orientation estimate. The obtained normal

maps augment the depth maps with geometric detail at every frame using [77].

Figure 2.3: Meshes integrated from normal maps by PSCL [I10].

Light Stage

Debevec and colleagues introduced the Light Stage technology [27, 116, 69, [39] which
captures an actor under many different illumination conditions. High-resolution normal
map and reflectance of the face are calculated from changing appearance due to the
illumination changes. This is facilitated by complex lighting setup synchronised with
typically a single camera which records the face during cycles of illumination patterns
at high frame-rate. Effective frame-rate of the resulting facial models depends on the

number of illumination patterns and the camera frame-rate.



18 Chapter 2. Related work

The first Light Stage approach [27] records an actor in still pose while a single light
source moves around on a spherical trajectory for one minute. This samples facial
reflectance under 2048 light directions and allows relighting of the actor’s pose under
different environmental illumination. Hawkins et al. [45] improve the capture process
by rotating an arc of lights around the actor in 8s. Reflectance of the face is scanned
under 480 light directions for 60 different facial expressions and visemes. A blend-shape
model of the face is constructed together with the sampled reflectance which allows
relighting of the actor for any created pose. Actor’s performance can be captured by

deforming the model according to motion of markers on the face.

Wenger et al. [116] take the Light Stage concept to truly dynamic capture. A spherical
light dome with 156 LEDs enables quick changes between complicated illumination
patterns (Figure (a)). The dome is synchronised with high-speed camera recording
cycles through different patterns at 2160 fps. A Hadamard illumination basis is used
instead of a cycle through individual lights to give improved signal-to-noise ratio (SNR)
by capturing the face under greater illumination for each sample image. Actor’s motion
during capturing the full basis is compensated by optic flow between fully lit tracking
frames inserted at 120H z. Surface normals together with diffuse albedo and ambient
occlusion are computed from the sampled reflectance. A full set of observations is

acquired at effective rate of 24 fps for very short performances which can be realistically

relighted afterwards.

Figure 2.4: The Light Stage capture rig from [2] (a). A static capture with the polarised
Light Stage [67] - a high-resolution mesh and renderings with reflectance (b).
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The previous methods do not allow relighting with directional spatially-varying illumin-
ation because a facial shape is not recovered. Jones et al. [59] address this problem by
combining the reflectance sampling [116] with the structured light. A scanner projects
24 horizontal and vertical patterns to reconstruct the mesh. The Light Stage illuminates
an actor by 29 basis conditions which are used in photometric stereo to obtain diffuse
normals and albedo. The whole system runs at 1500 fps and outputs high-resolution
meshes at 24 fps. Motion correction between the basis images is not applied in con-
trast to [116], hence speed of facial movements is restricted. A static capture method of
Weyrich et al. [I17] combines the Light Stage with stereo reconstruction [I]. The face
is recorded by 16 cameras during illumination cycles through 150 light directions. This
yields a comprehensive model of the face consisting of diffuse and specular normals,
diffuse albedo map and specular BRDF map. Parameters of sub-surface scattering in
the skin are measured separately by a fibre optic spectrometer. This results in highly

realistic renderings of the face.

To reduce a number of illumination conditions, Ma et al. [67] propose a new photomet-
ric stereo technique based on spherical gradient illumination (PSGI). Three illumination
conditions - X, Y, Z gradients are required for normal calculation and a constant il-
lumination provides colour albedo (Figure [2.5(a)). Because gradient illumination is
specularly reflected across the whole face, it is possible to compute dense normal and
albedo map only from specular component of the light reflection. Specular normals are
more accurate than diffuse ones because the light is reflected from the outer surface
of the skin and is not subject of sub-surface scattering. Diffuse and specular compon-
ent of the reflection are separated using linearly polarised illumination and a polariser
switching between parallel and cross orientation in front of the camera. The obtained
normal and albedo map are combined with a mesh from pattern-aided stereo to create

realistic static model of the face (Figure [2.4(b)).

To extend the combination of pattern-aided stereo and PSGI to dynamic capture [69],
polarisation cannot be used due to technical limitation of switching the camera polariser
at high speed. Therefore, photometric normals embossing the mesh reconstructed by
the stereo [77] are less crisp. The textured meshes in Figure 2.5(b) are acquired at

24 fps by processing groups of 12 images under different light patterns (a subset in
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Figure (a)). The images are motion-corrected by optic flow between constantly lit
frames assuming linear motion. These techniques [67) [69] have been used for building
high-detail blend-shape rig in The Digital Emily Project [2]. Realistic digital copy of a

real performance is created by driving this rig according to an original video.

X-gradient Y-gradient Z-gradient Full-on

Stripe #1 Stripe #2 Stripe #3

Albedo Normal Displacement Geometry

(a)

Figure 2.5: A combination of PSGI and structured light by Ma et al. [69] - gradient
images, a subset of stripe patterns and different layers of the model (a); a shaded and
textured final model (b).

Wilson et al. [119] improves accuracy of normals on darker side of gradient patterns
in PSGI by introducing complement gradient patterns with opposite direction. Every
tracking frame with constant illumination is flanked by three original X, Y, Z gradients
and their three complements. The pairs of complement frames are jointly aligned with
the tracking frame using an optic flow algorithm handling gradient shading. This en-
hances crispness of normal map which is merged with 2.5D mesh computed by stereo at
the tracking frame. Replacement of the structured light with the stereo reconstruction
reduces a number of images required for a full 3D model in contrast to [69]. Dir-
ect temporal alignment of gradient images also enables accurate model interpolation
between the tracking frames, so that full facial models are available at every frame
captured. Fyffe et al. [39] extend [119] with MVS which improves fine details around
eyes and mouth. Also, better coverage of the face is achieved with 5 high-speed cameras
(264 fps). Diffuse and specular reflectance are heuristically separated, so that normals,

diffuse and specular albedos can be obtained. Final models of the face are available
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at standard 24 fps. Drawbacks of the diffuse/specular separation through polarisation
[67] are alleviated in the static capture system by Ghosh et al. [41]. Instead of mech-
anical rotation of a camera polariser, linear polarisation of the illumination changes
between latitude and longitude orientation by alternating two sets of lights. This also
lifts a single-view restriction imposed by a fixed polarisation pattern across the Light
Stage which is optimised for the specific camera position. Thus, multi-view capture can
be combined with the polarisation which improves MVS by utilising diffuse/specular

normal maps.

Discussion

The described categories of performance capture systems differ in several important key
listed in Table They are compared in terms of lighting conditions during capturing,
level of geometric detail in the facial 3D model, type of appearance data acquired and

the number of observations required for obtaining one instance of the model.

Category Lighting Geometry Appearance No. of
conditions observations

Stereo diffuse white medium-scale | colour texture | 1
illumination facial shape

Structured | multiple fringe medium-scale colour texture | 3-4

light patterns facial shape

Shape from | directional/diffuse | approximate BRDF / 1

shading white illumination | skin structure | colour texture

PSCL directional colour | accurate skin | grey-scale 1
illumination structure albedo

Light Stage | multiple illumina- | accurate skin | BRDF 7-156
tion patterns structure

Table 2.1: Categories of capture systems according to realism of the 4D facial perform-
ance model.

Stereo-based approaches usually use a random pattern painted or projected on the
face to improve the reconstructed shape. Use of high-resolution cameras in recent
methods has eliminated need of the pattern because skin structure provides enough

image information for accurate matching. However, the camera resolutions are not

large enough to reconstruct pore-level details. A capture rig can be constructed from
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standard cameras and lighting equipment. The advantage of the stereo is reconstruction
of a 3D model at every frame. Passive white illumination also enables simultaneous

acquisition of colour texture of the face.

Inaccuracy of stereo matching on skin texture under low image resolution was circum-
vented using structured-light 3D reconstruction at the expense of active illumination.
This requires several observations with different fringe patterns projected on the face
at high frame-rate which can be distractive for an actor. Facial colour texture can be
captured in additional frame or extracted from the pattern frames. 3D models of the
face contain shape details up to larger skin wrinkles which is comparable to the current

stereo-based systems.

Standard shape from shading has been used for static facial capture under a single
directional light source. Statistical model of the face used as a regularisation prior
enables reconstruction of facial shape up to large wrinkles and estimation of different
parametric BRDFs. For diffuse white illumination the dark-is-deep concept approxim-
ates the shape-from-shading approach which is useful for dynamic capture systems with
passive illumination. At each frame the estimated normal maps and colour textures en-
hance medium-scale facial meshes from less accurate 3D reconstruction methods. This
provides approximate skin structure which is visually pleasing but less accurate than

photometric stereo.

Approaches using photometric stereo with colour lights acquire accurate pore-level geo-
metric detail at every frame. However, the obtained normal maps contain low-frequency
bias which distorts facial meshes integrated from the normals. PSCL has also a restric-
tion of single or few constant chromaticities across the surface which is not entirely
valid for the face. This allows only acquisition of grey-scale albedo maps. The capture
setup contains three passive directional colour lights which is considerably simpler than

the Light Stage.

Light Stage systems capture accurate facial shape up to fine skin details together with
extensive reflectance data. This requires complex capture rig alternating between many
illumination conditions which can be uncomfortable for the actor. High-speed cameras

record cycles of the conditions to ensure standard frame-rate of full facial models. Use
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of the Light Stage for photometric stereo with gradient illumination has reduced the
number of illumination patterns to seven and therefore necessary camera frame-rate
has decreased. However, optic-flow alignment of images under different illumination

patterns is still necessary and can be imprecise under fast facial motion.

2.1.2 Temporal consistency of the 4D performance model

Systems for facial performance capture can be divided into several categories depending
on how they achieve temporal consistency of 4D performance model. This section de-
scribes independent per-frame 3D reconstruction, 3D deformable models, systems using

markers, a dense pattern, geometry-based alignment and image-based alignment.

Independent per-frame 3D reconstruction

Static facial reconstruction performed independently at regular time steps is the simplest
way of capturing dynamic performance. However, lack of temporal consistency in the
data limits use to replay and does not allow spatio-temporal editing. For relighting
the actor in the video according to a new virtual environment, it is sufficient to obtain
time-varying surface normals and reflectance [116] 67]. To change the viewpoint or
cast shadows, the full 3D shape of the face needs to be reconstructed. This can be
obtained by stereo matching at every frame of multi-view image sequences [121} [].
An alternative for reconstruction of the medium-scale geometry is a structured-light
approach [124]. Ma et al. [69] and Jones et al. [59] improve the geometric resolution of
structured-light reconstruction with normal and reflectance data provided by PSGI. A
similar enhancement with the photometric detail can be done for MVS reconstructions
[39]. Vogiatzis et al. [110] compute dynamic normal maps using PSCL and integrate

them into meshes in real-time.

Deformable models

Temporal consistency over a performance can be achieved using a 3D deformable model

of a face which is fitted to the captured data. A single mesh topology of the facial model
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and its possible deformations are designed before the performance alignment. Model
deformations are controlled by a set of parameters which is significantly smaller than a
number of mesh vertices. Thus, there is far less variables to optimise during the model
fitting to data constraints coming from images and/or geometry. Global optimisation
across the whole model helps to overcome missing strong constraints for parts of the

face (e.g. smooth skin regions).

Widely used deformable models for the face are based on a dataset of example facial
shapes which represents a space of possible deformations. These examples typically
include various facial expressions, visemes and eye poses. This is often inspired by
Facial Action Coding System (FACS) [35] which describes all possible states of the
face. The dataset can include faces of multiple people to create a person-independent
model. All example meshes are usually textured, so facial appearance can change
together with shape. A new instance of the face is created as a linear combination of
the examples comprising the model. Blending of the textured meshes is possible only
if they are in full correspondence. Mesh registration across different facial expressions

obtained by static 3D capture is complicated and often semi-automatic process.

Figure 2.6: Blend-shape model driven by markers [51].

The first type of linear statistical deformable model is a blend-shape model used in
facial animation [84]. Control parameters are blending weights used for interpolation
between example shapes. Because they are directly associated with them, they have
semantic meaning interpretable by an animator. The model is typically person-specific

due to nature of the application. The blending weights can be estimated for all frames
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of a real performance to aid the animation process or just track the actor’s face. This
is often based on motion of markers applied on the face [45, [5I]. Huang et al. [51]
analyse the marker motion of a recorded performance to find the most compact set of
example expressions representing the data (Figure . The model is built from high-
detail laser scans which enable capturing medium-sized wrinkles. Although the dataset
is optimised for a particular performance, details are not completely correct for some
blended poses. Other methods exploit full image information instead of sparse marker
locations. Pighin et al. [85] optimise the weights so that rendering of the interpolated
textured mesh resembles a target image. To increase flexibility of the blend-shapes,
the face is also split into regions which are deformed separately. Alexander et al. [2]
has achieved impressive results with semi-automatic image-based method from Image

Metrics [57] which drives the blend-shape model by a single-view video.

The second type of linear model is the 3D morphable facial model by Blanz and Vetter
[15] which is derived from 2D Active appearance model [25]. Similarly to the blend-
shapes, it is built from a dataset of faces which vary in expressions and also in a person’s
identity. Control parameters are derived by Principal component analysis (PCA) on
the input dataset. This allows a reduction of parameters by selecting a number of the
most significant principal components. Although, PCA coefficients influence the face
independently from each other, they lack semantic meaning. This can be alleviated
by mapping them to semantic facial attributes but this involves manual labelling of
the examples. Fitting the morphable model to a 3D laser scan or images from several
viewpoints in [I5] showed a potential for the facial performance capture. This is fully
demonstrated by recent work of Weise et al. [I15] where a person-specific model is
tracked on-line on the raw geometries from a real-time structured-light scanner. An
extension [114] using the Kinect sensor [72] tracks the model on depth maps and images
simultaneously. Optic flow constraints from a single-view video stabilise the fitting in

the presence of high noise levels in the captured geometries.

The third type of linear model is based on multi-linear algebra [108]. It is created from
a set of 3D scans [I] of various people performing different expressions and visemes.
The model has three separate modes for identity, expression and viseme which provide

independent groups of control parameters not influencing each other. During facial
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Figure 2.7: A subset of facial expressions used for building a 3D morphable model [115]
(a). Example of fitting the model to geometry from a structured-light scanner (b).

tracking only the expression and viseme parameters are estimated according to optic
flow constraints from 1000 selected mesh vertices. The identity mode of the multi-linear

model can be used for transfer of the performance to another actor.

The 3D deformable model can be also based on physical deformation operators instead
of shape interpolation in an example space. Control parameters then describe various
types of mesh deformations such as scaling, stretching, bending etc. DeCarlo et al.
[28] proposed a multi-part facial model where different sets of operations are defined
by a user over individual parts or groups of the parts. The deformation parameters
are directly incorporated into a model-based optic flow which estimates motion of the
face. Huang et al. [55] uses a multi-resolution model for the whole face where a coarse
mesh is deformed by simple operations to capture large movements. This is refined
on dense resolution by Free Form Deformations which are better suited for local non-
rigid motions. The model is tracked according to point clouds from a structured-light

scanner.

Markers or pattern

Free-form tracking of the face is desirable because deformations are not restricted by
any prior model. However, finding reliable correspondences for all vertices of a tem-

plate mesh is difficult and the mesh usually starts to drift on the face after short period
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of time. The reasons are fast non-rigid deformations and relatively uniform skin ap-
pearance in standard image resolution. A pragmatic solution to this problem has been
the application of markers pioneered by Williams [I18] which is still widely used in

industry.

Up to several hundred passive markers are glued or painted on the face. They can
be observed by several cameras [44], [70, [14], a single camera combined with side-view
mirrors [66] or head-mounted camera rig (VICON Cara [107]). Because of their dis-
tinct appearance it is much easier to find correct correspondence across views and over
time in comparison to the skin. Correspondence algorithms have to be robust against
occlusions and mismatches due to fast motion. This is addressed by adaptive Kalman
filters [66] or graph matching [44]. 3D trajectories of the markers drive deformation of
a template mesh over time (typically a laser scan of the face). The resulting temporally
aligned meshes do not contain small surface deformations because of the limited num-
ber of markers. This is partially alleviated by Bickel et al. [14] who track large wrinkles
and synthesise their shape in the final mesh sequence in post-processing (Figure [2.2{(a)).
Because the markers occlude the natural appearance of the face, the majority of meth-
ods capture the texture and reflectance data beforehand [66] [70) [14]. This results in
static appearance over time which is not visually pleasing. Guenter et al. [44] obtain

time-varying textures by erasing the markers and filling holes with synthesised skin.

Figure 2.8: Temporally consistent mesh from a pattern-based method [37] - a sample
image, shaded mesh, motion field and a textured mesh.

To achieve better sampling of facial motion, a dense random pattern can be painted on
an actor instead of markers. Work by Furukawa and Ponce [36] [37] tracks a dense mesh

reconstructed by MVS in the initial frame. The mesh is deformed directly according to



28 Chapter 2. Related work

multi-view image sequences without prior computation of unregistered meshes or optic
flow fields. The results show accurate temporal alignment of medium-sized wrinkles.
The Mova CONTOUR Reality Capture system [76] uses fluorescent pattern visible
under ultra-violet light to improve optic flows computed across multiple cameras. The
multi-view flows together with MVS meshes accurately drive deformation of a user-

designed mesh.

Geometry-based alignment

Instead of enhancing skin texture by markers or pattern, some approaches achieve tem-
poral consistency by focusing on the shape of the face. Input data are typically unre-
gistered point clouds or meshes coming from structured-light scanners. The geometries
often carry colour texture which can provide sparse constraints from strong appearance
features [I12] 87]. The raw meshes in successive frames can be cross-parametrised by
mapping into the 2D domain and aligned there using the appearance constraints. Wang
et al. [I12] unwrap the whole meshes onto a 2D disk using harmonic maps. Popa et al.
[87] segment the surfaces into regions which are unwrapped by local low-stretch maps.
The region-based approach allows handling topology changes and missing data. Drift

is restricted by hierarchical merging of sub-sequences which are aligned independently.

Li et al. [64] warp a template mesh in 3D space without any appearance constraints.
The warping is controlled by a deformation graph associated with the template which
is refined over time to accommodate new deformations observed in per-frame scans. In
contrast, motion of template vertices can be optimised directly based on the distance

from scans, acceleration, surface rigidity and colour variance as in [111].

Image-based alignment

Many techniques infer temporal correspondence from facial appearance rather than
shape because there is intuitively more information variance. Especially with increasing
resolution of cameras, the captured skin texture starts to contain fine details such as

pores and blemishes which create distinct patterns. However, it is still challenging
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to match skin patches over time because their appearance changes dramatically with

surface deformations. This commonly leads to drift during temporal alignment.

The input is image sequences from multiple cameras which are first processed separately
to obtain frame-to-frame 2D optic flows (widely used Brox’s method [82]). A template
mesh is fitted to the first frame and is sequentially propagated between frames accord-
ing to the multi-view flows [17, [03]. Sibbing et al. [93] compute sparse optic flow using
2D mesh where displacements are interpolated within mesh triangles. Surfel anchors
attached to the template are moved to the next frame according to the flows but their
position and orientation is refined afterwards according to MVS objective. The tech-
nique used for the Matrix sequels [17] includes a semi-automatic process for correcting

pre-computed optic flows to meet high quality of temporal consistency required.

The majority of methods also reconstruct facial shape using MVS at every frame.
The 3D reconstructions do not provide motion estimates as in the geometry-based
approaches but they rather constrain deformation of the template to the correct shape.
Vertices of the template mesh are moved according to flow fields in individual views and
conform to unregistered geometries [31], 122} 19, 13]. Zhang et al. [122] aid stereo with
a projected pattern but every third frame is recorded without it to allow computation
of optic flow. Deformation of the template is defined as a global optimisation over all
vertices. Data terms force the vertices to follow flow fields and stay close to depth

maps. A regularisation term penalises different motion in adjacent vertices.

Passive performance capture techniques [31], 19, [I3] rely on a high image resolution to
acquire enough skin detail for reliable surface tracking (Figure . Frame-to-frame
alignment of the template mesh in [19] 13] differs from Zhang et al. [122]. Each vertex
is projected into individual views to obtain 2D positions in the next frame from flow
fields. The new 2D positions are back-projected onto a raw mesh in the next frame and
fused into a new vertex 3D position. After displacing all vertices separately the whole
mesh is regularised by Laplacian deformation to filter outliers. Quality of the alignment
and shape of small features can be improved by cancelling ambient occlusion in concave
regions (e.g. valleys in between wrinkles). Beeler et al. [I2] remove estimated ambient

occlusion from input images. The recalculated optic flow is more accurate because skin
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appearance change is smaller between frames. The shape is refined according to the

difference between the current frame and a neutral expression warped by optic flow.

Figure 2.9: A temporally consistent mesh sequence from [19] - a fixed UV texture (a)
and time-varying real appearance (b).

Systems capturing the geometric structure of the skin exploit this for temporal align-
ment because of richer detail than skin appearance [68], [119]. The combination of ori-
ginal images with normal/displacement maps improves accuracy of optic flow. Ma et al.
[68] unwrap meshes from a structured-light scanner in a common texture space using
several markers on the face. Each mesh is textured with a fine displacement map from
PSGI which is used for dense mesh alignment by optic flow in the texture space. Wilson
et al. [I19] combines PSGI with stereo reconstruction using one HD camera pair. Optic
flow is calculated between full-lit tracking frames in one view leveraging also normal
maps which are computed for them from adjacent gradient-lit frames. The full-lit im-
ages, normal maps and 2.5D meshes are interpolated between the tracking frames to

provide complete models for all captured frames.

Despite the high image resolution and the augmentation with skin geometry, motion
estimation still contains some amount of error. Sequential concatenation of frame-to-
frame estimates inevitably leads to the accumulation of errors (e.g. significant drift
after ~ 200 frames in [119]). Bradley et al. [19] apply drift correction on the resulting
temporally consistent mesh sequence. Their assumption is that textures projected on
the meshes in every frame should be stable in texture space if the temporal alignment

has been accurate. Additional optic flow computed in the texture space measures
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shifts with respect to the initial frame and enables correction of the drift in 3D space.
However, there is still some amount of inaccuracy around lips which undergo the most
complex deformations (Figure . Non-sequential tracking of the face is proposed
by Beeler et al. [13] which relies on the frequent occurrence of the neutral expression
in any performance. The neutral expression is detected throughout the sequence and
so-called anchor frames are created. The template mesh is first tracked between the
initial frame and the anchor frames which contain similar neutral expression. The
tracking then continues sequentially between the anchor frames. This significantly
limits the possibility of drift due to shorter chains of frame-to-frame alignments towards
each frame. Impressive results demonstrate temporal consistency up to skin pore level
(Figure. The non-sequential approach is adopted by the commercial DI4D capture
system developed by Dimensional Imaging [31]. Anchor frames are selected by a user

which allows flexibility and control in terms of traversal through the data.

Figure 2.10: A temporally consistent mesh sequence from [I3] - a fixed UV texture (a)
and time-varying real appearance (b).

Discussion

The described categories of capture systems differ in terms of temporal alignment used.
Temporal consistency of the 4D performance model has varying accuracy depending
on the amount of drift and resolution of motion estimation. Independent per-frame 3D
reconstruction of the face is the simplest way of capturing dynamic performance but

there is no temporal consistency in the captured data.
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Fitting a 3D deformable model to the input data at every frame implicitly yields tem-
poral consistency across the frames. The deformable model of the face needs to be
created before performance tracking but it is deformed according to a relatively small
number of parameters compared to the number of mesh vertices. Example-based de-
formable models require building a dataset of example facial shapes which need to be
fully registered. Another limitation is capturing facial expressions which are quite dif-
ferent from the example dataset. Also, the amount of shape and motion detail which
can be obtained depends on the resolution and number of examples. Enlarging the
dataset can partially alleviate these issues but it is time-consuming to create a complex
model. In the case of deformable models with defined deformation operators, the model

design is a manual task requiring a good understanding of facial dynamics.

Model-free methods for dense facial tracking do not restrict the captured motion by a
prior model but they are less robust to weak skin texture and fast non-rigid motions.
This problem is usually circumvented by enhancing the skin texture with sparse markers
or dense pattern. A sparse set of markers provides accurate alignment at their positions
but surface points in between have approximate temporal consistency. A dense random
pattern allows higher resolution of motion estimation which yields temporal alignment
of detail such as skin wrinkling. Limiting factors for using the markers or pattern are

inconvenience of their application on the face and occlusion of skin appearance.

To avoid uniformity of skin appearance, some approaches perform geometry-based align-
ment of per-frame 3D reconstructions without using image information. A drawback
is the level of shape detail in geometries which amounts to medium-sized wrinkles and
skin folds. Therefore, there is a limit to accuracy of the alignment working with the fea-
tures of this scale. Moreover, large regions of the face are fairly smooth at the majority

of frames which leads to drift of the tracked mesh.

With increasing camera resolution, many techniques pursue image-based alignment of
the facial performance without use of markers or a pattern. Surface tracking leverages
the large amount of skin detail present in images. Fine skin structure calculated by
some approaches can augment the original image information to further increase the

amount of detail. Despite the high image resolution and the augmentation with fine
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skin geometry, concatenation of frame-to-frame alignments inevitably leads to accumu-
lation of errors. Sequential tracking cannot also recover from a complete failure during
complicated motions. The drift and failure problems are addressed by non-sequential
tracking of the performance according to similarity between frames. However, the cur-
rent methods use fairly simple non-sequential traversal of frames by jumping to neutral

expressions occurring during the performance.

2.2 Photometric stereo

This section provides a brief overview of photometric stereo techniques which are useful
for 3D capture of facial detail. Photometric stereo recovers normals and reflectance
properties of surface points by analysing their image appearance under different lighting
conditions. The approach works locally on a per-pixel basis, so fine geometric details

visible in images can be reconstructed (e.g. skin wrinkles or pores).

Woodham [120] proposed the original photometric stereo with white lights (PSWL) for
Lambertian surfaces which allows a linear formulation of the problem. An object is sep-
arately illuminated by three white lights from different known directions. Each light
defines one linear constraint on the surface normal given the observed pixel intensity.
Three gray-scale images from the same viewpoint provide enough constraints to de-
termine the normal and gray-scale albedo at every pixel. In practice, pixel intensities
can be corrupted by image noise, shadows, specular highlights, inter-reflections or sub-
surface scattering of light. These can bias the normal and albedo estimation but use of
more lights solves some of these problems. Barsky and Petrou [8] employ 4 known light
sources to detect shadows and specular highlights in individual images. A corrupted
pixel in one image still allows correct estimation from three remaining images. This
technique uses colour images which enables estimation of colour albedo for every pixel.
Non-Lambertian surfaces are tackled by a higher number of lighting conditions [50, 43],
so that shape and spatially-varying BRDF of multiple materials can be estimated across

the surface.

Standard photometric stereo with time-multiplexing of lights is not suitable for dy-

namic capture due to surface motion between observations. An engineering solution is



34 Chapter 2. Related work

high-speed image acquisition and light switching which requires specialised hardware
to achieve satisfactory temporal sampling of the surface [94]. Image alignment is also
necessary between individual observations to maintain accuracy of the result. Further-
more, a common drawback of photometric stereo methods is sensitivity to photometric
calibration errors which cause low-frequency bias in estimated normals. Nehab et al.

[77] eliminate this bias using a coarse shape by other 3D reconstruction techniques.

2.2.1 Photometric stereo with colour lights

Photometric stereo with colour lights separates illumination conditions spectrally rather
than in time. Therefore, all illumination conditions can be recorded simultaneously in
a single colour image. This is the crucial property for dynamic capture because normal
maps of the surface can be reconstructed at every frame with no motion limitation. The
initial concept was presented by Drew [33] which considers a Lambertian surface with
unknown colour albedo and three spectrally different lights with unknown directions.
A pixel colour changes only with the orientation of a surface normal assuming uniform
colour albedo of the surface. Therefore, a single linear mapping between normals and
pixel colours can be derived for the whole surface. It is possible to estimate the mapping

from a single image up to an unknown global rotation of the normals.

Hernandez et al. [47, 20] recover the exact mapping for a given object from example
normal-colour pairs by least-squares fitting. The example pairs are obtained by captur-
ing a calibration board with a flat patch of the object material at various orientations.
Normal orientation is fully calculated but material and light properties are not ex-
plicitly determined (included in the normal-colour mapping). The constant albedo
assumption is alleviated to uniform surface chromaticity and varying grey-scale albedo
in [48]. Subsequently, Hernandez et al. [46] propose self-calibration by capturing a
short sequence of the object undergoing rigid motion. The normal-colour mapping is
optimised for dominant chromaticity on the surface. Vogiatzis et al. [I10] incorporate
the Phong reflectance model which allows normal map computation for surfaces with
mixed diffuse and specular reflectance. Monochromatic specular albedo of the surface

is assumed to be constant together with the chromaticity.
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The assumption of uniform chromaticity is restrictive for objects such as faces where
normals in regions with non-dominant chromaticities would be biased. Anderson et al.
[4] extend PSCL to Lambertian surfaces with multiple piece-wise constant chromati-
cities. This is achieved using a coarse normal map from stereo 3D reconstruction.
Kim et al. [62] eliminate the uniform chromaticity assumption by resorting to time-
multiplexing of three mixed colour illuminations. This enables estimation of normal
and colour albedo maps of moving object at a half frame-rate of the camera. The
captured images need to be aligned by optic flow but pixel accuracy is not required.
Fyffe et al. [40] obtain per-pixel normal and colour albedo of the surface from a single
image without time-multiplexing illumination. This is achieved by constructing camera
system with 6 colour channels (bright and dark RGB). A multi-spectral pixel colour

provides enough constraints for 5 degrees of freedom in the normal and colour albedo.

2.2.2 Photometric stereo with gradient illumination

Photometric stereo with gradient illumination has been developed in the context of
facial capture with the Light Stage, thus some information are mentioned in Section
Gradient illumination avoids self-shadowing of the surface which is a problem
of directional lights in PSWL and PSCL. Also, the light reaches the surface from all
directions and is specularly reflected across the whole surface. This provides an option
to separate diffuse and specular component of the reflection and compute dense spec-
ular reflectance data as well. The limitations are complex lighting setup and multiple
observations under different gradient patterns. This requires high-speed recording and

illumination switching for capturing dynamic objects.

Ma et al. [67] proposed original PSGI with three gradient and one constant illumination
pattern. These patterns are captured twice under linearly polarised light to separate
diffuse and specular reflection from the surface. Normals and albedos varying across
the surface are computed for both reflection components. Efficient normal calculation
by Vlasic et al. [109] adds three complement gradient illumination patterns. This also
improves accuracy of diffuse normals because corresponding pixels are well exposed in

at least one image from each complementary pairs. Wilson et al. [119] use complement
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gradient patterns combined with light polarisation. Instead of doubling the number of
observations only one additional image is necessary to approximately extract specular

normal and albedo map.

2.2.3 Error analysis

Photometric stereo is susceptible to several kinds of error in the capture process which
have an impact on accuracy of normals and albedos. Error analysis published in this
area is focused on PSWL. Initial work by Ray et al. [89] compiles a comprehensive
list of potential sources of imprecision and identify two major factors - image noise and
calibration error in the light directions. Formulas describing the sensitivity of estimated
surface gradient with respect to pixel intensity and light direction errors are derived.
Jiang and Bunke [58] simplify this formulation by expressing surface orientation as a
unit normal. Spence and Chantler [I00] search for the optimal configuration of three
light sources which minimises error in the estimated normal in the presence of image
noise. Positions of the lights are optimised to decrease the ratio between uncertainty of
the normals and the measured intensities which results in orthogonal light directions.
Sun et al. [102] also confirm that the orthogonal light configuration minimises the
impact of image noise and note that the normal error is largely dependent on surface
albedo. Drbohlav and Chantler [32] theoretically derive the optimality of the orthogonal
set of three lights and provide the optimal configuration for more than three lights.
Multiple lights should be placed equidistantly on a circle with uniform slant ~ 54.74°.
Barsky and Petrou [9] focus error analysis on shadow and specular highlight detection

in their method [§].

2.3 Dense motion capture

This section provides a brief overview of dense motion capture which is necessary for
achieving temporal consistency of facial performance capture. The focus is on image-

based motion capture for non-rigid surfaces observed by multiple cameras.
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2.3.1 Frame-to-frame scene flow

Dense motion capture of non-rigid surfaces was initially approached as independent
estimation of 3D motion fields between consecutive frames. Vedula et al. [105] [104]
introduced scene flow - a 3D vector field describing motion of the surface between two
frames. They estimate the scene flow by fusion of 2D flow fields from multiple views
for a volumetric model of the object. This requires pre-computation of 2D optic flows
and 3D geometry at every frame. Latter work [106] does not require the geometry
beforehand but works only for moving parts of the surface. Accuracy of the scene
flow can be improved by incorporating error statistics of input optic flow and shape
estimates [65]. Zhang et al. [125] integrate the scene flow estimation from 2D optic

flows with MVS reconstruction.

Other methods estimate the scene flow directly without pre-computing 2D optic flows.
They typically use a variational formulation of matching image information across views
and between consecutive frames. Pons et al. [86] alternate between MVS and scene
flow estimation in the same framework using a global image-based matching score. The
shape and 3D motion of an object are discretised over a volumetric level set. Several
approaches [120, [73], 56, 113] address calculation of a disparity flow which is a reduced
definition of the scene flow for the binocular case. The 2D flow field and disparity
change map are optimised over the reference image in the stereo pair. The approaches

differ in construction of the energy functional in the variational framework.

The result of these techniques is a sequence of 3D shapes and instantaneous scene flows
for the moving surface. There is no explicit temporal consistency in these data because
the shape and motion are typically sampled at each frame over a regular grid in the
3D space or image domain. This is not suitable for facial performance capture which

requires temporally consistent 3D models of the moving face.

2.3.2 Sequential surface tracking

Dense motion capture can use a common surface model for an object. The model is

deformed over time by surface tracking according to multi-view image sequences. The
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tracking is conventionally performed sequentially and scene flows between consecutive
frames are calculated for control points of the deformed model. This brings temporal

consistency into the resulting sequence of model instances.

A more tractable approach is to compute per-frame 3D geometries and 2D optic flows
beforehand. A template mesh is deformed to fit the sequence of unaligned geometries
and multi-view optic flows. Motion of vertices is optimised jointly subject to constraints
given by the optic flows and raw geometries. Scene flows are usually regularised by
enforcing smooth mesh deformation which suppresses incorrect motion vectors. This
type of tracking has been demonstrated for a single camera [47, 119] where a 2.5D
template mesh is warped between two frames by an optic flow and then back-projected
onto a depth map. To reduce accumulation of errors in the optic flows, Wilson et al.

[119] regularise the mesh warping by a local rigidity term.

Multi-camera tracking is presented by Zhang et al. [122] where the mesh deformation
is constrained using 3D shapes by MVS. Regularisation of vertex motion is included
in the scene flow estimation. In contrast, Bradley et al. [I9] estimate a raw scene
flow between two frames and then regularise it by Laplacian deformation. Despite
various regularisation schemes, errors in frame-to-frame optic flows are propagated to
the estimated 3D motion which leads to drift of the mesh. Bradley et al. [19] address the
drift by additional optic flow estimation in the UV domain of the mesh after the initial
deformation. The residual flow corrects the final positions of the vertices. However,

the results are not satisfactory in regions undergoing fast and complex motion.

A disadvantage of the previous methods is pre-computation of 3D shapes and optic
flows at all frames. Also, independent optic flow computation in every view results
in inconsistencies of 2D flows which decrease accuracy of the resulting scene flow. 3D
tracking approaches overcome these disadvantages by joint estimation of shape and
motion directly in the 3D space. Courchay et al. [26] extend the variational frame-
work by Pons et al. [86] with mesh representation of the surface. They merge MVS
and scene flow estimation to a single energy functional which is optimised across the
whole mesh and over a temporal window. This results in a large optimisation which is

computationally expensive and susceptible to local minima. To achieve more tractable
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optimisation, the scene flow can be estimated using relatively small 3D patches at-
tached to the surface. The surface patches can be completely independent and produce
3D trajectories for a sparse set of surface points [23, 29]. Another option is to associate

the patches with control points of the surface model to deform it over time [79] 36].

Carceroni and Kutulakos [23] propose a comprehensive representation for the sur-
face patches which consists of 3D position and orientation, curvature coefficients, dif-
fuse/specular reflectance and linear transformation over time. This results in a complex
optimisation scheme with a high number of parameters. A simpler approach [29] ex-
tends the Lucas-Kanade 2D tracking algorithm [5] to the 3D domain which aligns a tex-
tured planar surfel with images from multiple cameras. The surfel has a single texture
template which has limited update over time to minimise the risk of drift. Neumann
and Aloimonos [79] use a multi-resolution subdivision model for the surface instead
of a collection of standalone patches. Deformation of the subdivision model between
frames is iteratively refined by shape and motion optimisation of surface patches around
its control points. Furukawa and Ponce [36] associate the patches with triangle fans
around vertices of a surface mesh. The textured patches are tracked independently
between two frames and raw motion vectors update vertex positions. Afterwards, the
whole mesh is regularised by Laplacian smoothing combined with local mesh rigidity.
The patch textures have fixed appearance from the reference frame which limits drift

of the mesh over time.

A common problem of these approaches is inaccurate motion estimation for surfaces
with weak and time-varying texture such as skin. Good temporal alignment of facial
performances is shown only for faces with a painted pattern [36] or for high camera
resolutions [19) 119]. However, significant drift of the surface model still appears after

fast non-rigid motions and longer periods of time.

2.3.3 Non-sequential surface tracking

Recently, surface tracking methods have tackled the drift problem by non-sequential
traversal of the input sequence. The template mesh is tracked from the initial frame

along tree structure of paths leading to all frames. Shorter chains of frame-to-frame
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alignments compared to sequential traversal reduce the amount of drift and the impact

of a complete failure.

A simple approach is presented by Beeler et al. [13] for tracking facial performances.
A traversal throughout a performance jumps directly from the initial frame to anchor
frames with a similar neutral expression and then continues sequentially between them.
Huang et al. [52] address global alignment of multiple un-registered mesh sequences
of whole-body performances. At first, individual sequences are tracked separately by a
geometry-based alignment method. Subsequently, frames from all sequences are com-
pared in terms of shape dissimilarity of the original meshes. The sequences are linked
through a few pairs of the least dissimilar frames which forms a sparsely connected graph
among all frames. The shortest path tree is calculated on this graph which is weighted
by frame-to-frame shape dissimilarities. The tree establishes a traversal according to
which a template mesh is propagated to all frames using the temporal correspondences
already computed. Budd et al. [22] construct a fully connected graph among frames in
all sequences with edge weights given by the shape dissimilarity. The traversal is optim-
ised by the minimum spanning tree which minimises the total path length through the
dissimilarity space. In contrast to [52], this provides more optimal traversal tree which
directly guides the actual surface tracking. Although, the tree-based non-sequential
tracking reduces the drift, it suffers from alignment inconsistencies where different tree

branches meet.

2.4 Conclusion

Review of the related work hints at potential research directions in the area of fa-
cial performance capture. This section highlights the most promising approaches with

respect to the objectives of this work.

From the perspective of realism of the 4D performance model, capture methods using
photometric stereo with colour lights offer a balanced solution for obtaining accurate
pore-level skin detail [20, 110]. A capture setup from standard video equipment with
no active illumination provides high-detail normal maps at camera frame-rate. On

the other hand, appearance acquisition is limited but the focus of this work is on
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facial geometry. The problem with low-frequency bias in photometric normals can
be overcome by the combination with multi-view stereo 3D reconstruction. Multi-
view stereo provides the correct medium-scale shape of the face at every frame which
complements well the photometric stereo with colour lights. Stereo matching cannot be
aided with a strong random pattern which would interfere with the detail acquisition.
However, skin texture captured at high resolution enables accurate shape reconstruction

without any pattern [19].

From the perspective of temporal consistency of the 4D performance model, the most
practical methods calculate temporal alignment from natural facial appearance in multi-
view image sequences. The challenge is accurate tracking of the skin during fast non-
rigid facial movements without use of markers, pattern or prior deformable model.
The majority of methods [122, 19, 119, [13] sequentially deform a template mesh of
the face according to 2D optic flows in individual views and unregistered geometries.
Disadvantages of this approach are pre-computation of the 3D geometry and flow fields
at each frame and inconsistency of independent optic flow estimation across views. In
contrast, 3D tracking techniques such as [36, B7] directly compute shape and motion

of the mesh in the 3D space between consecutive frames.

Drift of the tracked mesh over time is the main limitation of recent capture systems for
facial performances. This has been tackled by high-resolution capture to acquire more
skin texture [I9]. Another approach [I19] is to use fine skin geometric detail together
with image information for mesh tracking. These advances improve frame-to-frame
temporal alignment but do not eliminate sequential accumulation of errors over longer
periods of time. Non-sequential tracking proposed for whole-body performance capture

[52], 22] offers an interesting mechanism to reduce the drift.



Chapter 3

Geometric detail capture

To create a realistic digital double of an actor it is crucial to capture the finest nuances
of their performance. The system for facial performance capture has to be able to
obtain a time-varying representation of facial shape up to fine skin structure. Our
focus is on the geometry of skin detail rather than its appearance because it is much
more difficult to manually model and animate believable dynamics of skin deformation

than create a realistic skin texture.

Photometric stereo methods are suitable for reconstructing fine surface geometry for a
wide range of materials. They estimate surface normals on a per-pixel basis which allows
recovery of all detail visible in the input images. The only limit on scale of the obtained
geometry is the resolution of the cameras used. Standard photometric stereo recovers
normals of surface points by analysing their appearance under different directional
illumination [120]. This is not suitable for analysing fast-moving objects such as a
human face because it requires time-multiplexing of lighting conditions. The issue with
surface motion between measurements can be circumvented by high frame-rate image

acquisition with fast switching of light sources but requires specialised hardware [94].

Photometric stereo with gradient illumination [67] allows reconstruction of separate
normals from the diffuse and specular component of light reflection but also requires
switching between different illumination patterns. The reconstructed normal maps

provide a great amount of skin detail for facial performance capture [69], but the main

42
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disadvantage is the complex capture setup with high-speed cameras, projectors and
a light stage. Photometric stereo with colour lights provides an alternative with a
relatively simple light setup and standard cameras [20, 110]. Individual directional
lights are separated spectrally rather than in time, thus all lighting conditions can
be recorded simultaneously in a single colour image. Rapid actor motion does not
pose a problem because normal maps are reconstructed independently for each frame.
Approaches using shape-from-shading principle [14] 10] recover geometric detail from

a single image but the normals are not metrically correct as in the photometric stereo.

In this chapter photometric stereo with colour lights is assessed in the context of detail
capture for facial performance. A formulation of the classic photometric stereo with
white lights is extended to colour illumination. Calibration for light directions and
interaction between illumination, camera sensors and surface material is explained. A
novel error analysis of this photometric technique is presented in terms of theoretical
formulation and simulation on synthetic data. Finally, evaluation on real face data

from performance capture is performed.

3.1 Photometric stereo with white lights

Following the work by Barsky and Petrou [§], photometric stereo with time-multiplexed
white lights (PSWL) is based on several assumptions. The observed surface is assumed
to be Lambertian resulting in a linear dependency between the observed intensity of
an image pixel and the associated normal. To preserve this linearity, the camera sensor
must have a linear response to incoming radiance. Moreover, the lights are modelled as
point light source at a large distance which guarantees constant direction of light rays

across the capture volume.

The grey-scale images {I; }37:1 of the surface are taken from the same viewpoint. The
image I; captures the surface illuminated by the light j with a direction vector 1;
(11;] = 1). Equation describes the relationship between the pixel intensity g; in I;

for a particular surface point and its corresponding normal n.

g; = lfn/E()\)S()\)R()\)d)\ =1]an (3.1)
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The interaction between the light source, surface material and camera sensor is ex-
pressed by the integral over wavelength A\. The function F(\) is the light spectrum
which is assumed to be the same for all light sources. The function S()\) is the spectral
sensitivity of the grey-scale camera sensor. The function R(\) is the reflectance of the
material which varies across the surface. The integral is represented by a scalar factor
a which is commonly referred to as an albedo [8]. This expresses the appearance of the
surface point with the given material in the camera sensor used which is independent
from the spatial relationship between the surface and the light sources. However, the
true surface albedo is different because it depends solely on the material reflectance
R(X). The final intensity g; is obtained by scaling o with the Lambertian dot product

between 1; and n.

For a stationary surface and camera, the intensities g; of the same pixel across {I; }3]:1
are measurements for the same surface point. This allows straightforward combination
of constraints from individual images to estimate a per-pixel normal and albedo. Equa-
tion defines a linear system constructed for every pixel by stacking Equation (3.1
across {Ij}}]:r A vector g contains the image intensities g; and a 3 x J illumination

matriz L consists of the light direction vectors 1;.

C1 1{
g=Lan — l=1:1an (3.2)
cy 17;

In the case of 3 lights, a single solution is calculated by inversion of the known illumin-
ation matrix (Equation . Note that for L to be invertible, 1; have to be linearly
independent (they should not lie on the same 3D plane). Because n is a unit vector,
the albedo a equals |[L~!'g|. In the case of more than 3 lights, the linear system is
overdetermined and is solved in a least squares manner.

L-lg, J=3

an = . (3.3)
(LL) LTg, J>3

Barsky and Petrou [8] extended PSWL formulated above to colour images. The RGB
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triples of a pixel in images {I; }3-]:1 should form a line in RGB space. However, Principal
component analysis (PCA) is used to find its principal direction due to image noise. The
direction is given by a chromaticity of the corresponding surface point. The grey-scale
intensities g; are obtained by projection of the RGB triplets onto the line. Afterwards,
the normal n and albedo a can be calculated as in Equation [3.3] The benefit of this
method is that appearance of the surface is described by colour albedo on a per-pixel

basis by scaling colour direction with a.

3.2 Photometric stereo with colour lights

The main drawback of PSWL is time-multiplexing of lights which requires the camera
and surface to be stationary until all illumination conditions are captured. Any mo-
tion of either of them causes errors in the estimated normal and albedo. This issue is
addressed by photometric stereo based on colour lights (PSCL) [20]. Different lighting
conditions are separated in wavelength rather than time. Therefore, the surface can be
illuminated by all lights simultaneously. The number of lighting conditions is effect-
ively limited to three by the number of sensors in a conventional colour camera (red,
green, blue). A single colour image contains all the information necessary for the recon-
struction of normal and albedo map. Therefore, this technique is suitable for moving

surfaces because the surface detail can be reconstructed at each frame independently.

A single colour image I of the surface is captured under simultaneous illumination by
spectrally different colour lights j € [1..3]. Because of the independent reflection of
different lights incident upon the surface, an observed RGB colour c of a surface point
is the sum of contributions from the individual lights. This preserves the linearity of
photometric calculation defined for PSWL in Equation [3.1l Equation defines an
observed intensity in the red channel ¢, as the sum of intensities contributed by 3 lights

with different spectra Ej.

3
S / B (NS, (V) R(A)dA (3.4)
j=1

The red camera sensor has its own spectral sensitivity S5, different from the green
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and blue sensor. Each combination of sensor and light has a specific interaction, thus
the integral is not constant for different light conditions as for PSWL (Equation [3.1)).
Therefore, the term albedo « from PSWL needs to be reformulated in the context of
PSCL. Surface reflectance can be separated into wavelength-dependent chromaticity
p(A) and spatially varying grey-scale albedo a (R(A) = ap())). In Equation the

albedo a is factored out of the integral and scales the unit normal n.
3
e =Y 1Tan / E;(N)S-(N)p(N)dA (3.5)
j=1

To simplify the formulation, Equation defines a coefficient v,; which encapsulates
the integral from Equation (similarly for the green and blue sensor).

oy = [ SN (3.6)

A vector v = [vy) vg; vbj]T is then a response of the red, green and blue sensors to the
light j given the surface material. Equation shows a full relationship of the RGB

colour ¢ with the albedo-scaled normal an (later referred to as a scaled normal).

Cr 17
c=VLan — cq| = [Vl Vo Vg] lg an (37)
Cp lg

The illumination matrix L has the size 3 x 3 and V denotes a 3 x 3 interaction matrix
which consists of v; for individual lights. A unique solution for the normal and albedo
is calculated according to Equation if V and L are known. Note that the vectors
v; cannot be linearly dependent so that V is invertible (similar condition as for L in

Equation .
an =L 'V~lc (3.8)

An important assumption of the technique is that the chromaticity p(A) is uniform
across the surface, thus one matrix V can be estimated for the whole surface. If p(\)
varies across the surface, V would be an additional unknown for each pixel which

leads to an under-constrained problem. The uniform chromaticity assumption allows
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independent per-pixel estimation of an using Equation which yields a normal and
grey-scale albedo map for the single image I. The presented formulation of PSCL allows

correct calculation of the scaled normals only for surfaces with uniform chromaticity.

3.3 Calibration

The purpose of calibration is to determine the illumination matrix L. and interaction
matrix V. The calibration of L. means determining the light directions 1; with respect
to the world coordinate system (WCS) in which the surface normals are expressed.
The technique used is inspired by the work of Zhou and Kambhamettu [129]. A white
specular sphere with known radius is placed at the centre of capture volume. The
3D location of the sphere is calculated from the centres of its projection in all views.
The specular highlights on the sphere indicate the directions towards individual light
sources. The ray back-projected through user-located image coordinates of specular
highlight is reflected according to the normal at the point of incidence on the sphere.
The reflected rays calculated from the highlights in all views for the light j are averaged
to obtain a robust solution for 1;. The resulting L is constant across the capture volume

because the light sources are assumed to be distant and directional.

The technique by Hernandez et al. [48] has been modified for calibration of the inter-
action matrix V which is specific for the object captured. A calibration image 1:3 of the
object is acquired under each colour light j separately (Figure (a—c)). The object is
assumed stationary, so that the same pixel p in all three images corresponds with the
same surface point with the scaled normal an. In the case of illumination by the single
light 4, a colour ¢ of the pixel p in I ; is given by Equation which is reduced from
Equation [3.7

c =v;(1Tan) (3.9)

The vector v; from V cannot be exactly calculated because an is unknown during the
calibration. However, a direction of v; is given by the vector ¢ which is a scaled version

of v;. Equation shows estimation of the direction over multiple pixels in I; which
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has robustness against image noise and varying surface chromaticity.

> e =vi(1] ) apny) (3.10)
peP peP
The set of used pixels is defined by a binary mask P which is the same for all images I;
(Figure [3.1](d)). The mask P segments the maximal part of the object with dominant
chromaticity which is not shadowed (provided by a user). A colour c, of the pixel p
is observed for a scaled normal a,n,. The direction of v; is obtained by normalising

the accumulated vector > cp. This is repeated for every image I; to form the full

peP

matrix V.

(a) (b) (c) (d)

Figure 3.1: The image I ; of an actor with painted white make-up captured under each
colour light j separately (a,b,c). A mask P marks unshadowed facial region covered
with the make-up (d).

The object is illuminated by each light from the same direction during the calibration.
This differs from the spatially distributed positions used for the actual normal estim-

ation. The reason is that the term 1;‘-F Y e p Gphy from Equation is unknown but

pePr
the same for all images I_J Thus, ratios between magnitudes of v; are equal to ratios

between magnitudes of their > cp. After establishing relative ratios the final mag-

pPEP
nitudes are given by setting the largest v; to a unit vector. This calculation provides
more accurate V than Hernandez et al. [48] who illuminate the object by individual
lights from different directions. They estimate the directions of v; the same way but

the final magnitudes of v; are given by ratios between the magnitudes of the largest c,

under individual lights. This means that the strength of sensor response for a particular
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light depends on a colour of the brightest pixel which is sensitive to image noise and

specular highlights.

3.4 FError analysis

Quality of detail reconstruction using PSCL is influenced by image noise or errors in the
parameters describing capture setup (illumination and interaction matrices). The error
analysis published in the literature (Section has been in the context of PSWL and
does not consider the interaction matrix. The majority of previous work is focused on
finding optimal light configuration in the presence of image noise [89] 58|, 100} 32} [102].
There is limited analysis of small inaccuracies in light direction vectors for few example
normal directions [89, 58]. The aim of this analysis is to understand how errors in the
estimation of illumination and interaction matrices affect the reconstructed normals
(secondarily albedos). Influence of image noise is also investigated to validate the

previous research.

3.4.1 Error in the illumination matrix

The theoretical analysis of PSCL is initially performed with an arbitrary matrix L
and the identity matrix V on an object with white uniform chromaticity (equivalent
to PSWL with 3 lights of the same intensity). The simulation-reconstruction chain in
Equation firstly calculates a colour c for a scaled normal ng = agng using the
actual parameters of a capture setup (index S). Secondly, the scaled normal np = agrng
is reconstructed from c using estimated parameters (index R). The error between the

original ng and the reconstructed ng is expressed as a difference vector d.

c=Lghg — fp=Ly'c — d=fg-ig=Ly(Ls—Lg)is (3.11)

Assume a discrepancy in estimation of the blue light direction ls, thus the illumination
matrices Lg and Ly have different rows 114 and 11 ;. Figure (a) illustrates an example

case where the discrepancy (114 —117) is in the tilt ¢ of blue light direction (the slant
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6 is unchanged). Equation expands the expression of d from Equation and
simplifies it for the case of error in 13. Equation [3.12] can be rearranged into Equation

to separate the direction of d (term C') and the magnitude of d (term A-term B).

-1

I 1 I
1
d = |1 17— (17| | fs = (155 — Lp)hs(l x 1) (3.12)
IBR(ll X 12)
17 17 17
3R 35 3R
1
d = lT — lT n 3.13
0573 I35 — I3gITis|cos B3 ms3 ( )
N—— term B term C
term A

The vector mg3 is the normalised vector (1; x13) and ~y3 is the angle between m3 and l3p.
The term A is a scalar coefficient which scales d according to the spatial configuration of
lights. The term B defines a zero-error plane whose normal is given by the discrepancy
(14 — 11) and which always crosses the origin of WCS (illustrated in Figure (a)).
On this 3D plane |d| vanishes because the angle 33 between fig and (11 —11,) becomes
90° (cosPB3 = 0). The magnitude |d| linearly increases outside the zero-error plane with
the distance between the tip of ng and the plane which is expressed by |fig|cos/3. The
slope of this dependency is given by the magnitude of discrepancy llgs — lgR\. The
term B also flips the direction of d depending which side of the zero-error plane ng is

on (illustrated by vectors d,d’ in Figure .

Equation expands Equation for the general case where there are discrepancies

in all light directions.

-1

g | |17,
T Ls| = |lg| | Bs =i+ datdy (3.14)
Lk P8 I
! 1
d = (g —1p)hs(lar x l3g) = T
1 T (o % lgR)( 15 — lip)ng(lag x 13R) s 71\ 1g — 1 ||fig|cosBim;
= 1
dy = (s — Lp)fs(lsr x lig) = 135 — 155D
2 7 (Isr x 11R)( 25 — lp)ns(l3r X Lig) o 72\ Ts — 11| |hg|cosBamy
1 i . ]
G = gy (s~ Bl ban) = s — T fis cosfms

l?;R(llR X 12R> COS Y3
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Figure 3.2: Spatial relationship between an error d for a scaled normal ng, actual light
directions Lg and estimated light directions Lr in WCS (viewed against the Z-axis).
A discrepancy between Lg, Ly in the tilt of blue light (a), in the tilt of all lights (b).

An important observation is that d is a vector sum of the difference vectors d; intro-
duced by errors in individual 1; (as defined by Equations . Because of this
combination the direction and magnitude of the resulting d can vary across the space
of scaled normals in a complex way. This depends on the spatial configuration of light
sources and location of the zero-error planes created by the respective discrepancies in
their estimated direction. Figure (b) illustrates an example situation with all lights
tilted in one direction by the same angle. The final difference vector d vanishes only
for ng aligned with the Z-axis where the zero-error planes cross each other. Otherwise,

its magnitude increases with distance from Z-axis.

Note that |d| for any fig directly depends on the spatial relationship between L;z. Each
contribution d; is scaled by L_ (term A in Equation j which is independent of

CoS Y4

the magnitude of discrepancy. The term A is minimal for each light (Coslvj =1)if g

is an orthonormal set of vectors. Therefore, there is no additional scaling of d due to

positioning of lights when their directions are perpendicular to each other.
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3.4.2 Error in the interaction matrix

The analysis in the previous section can be expanded to include discrepancies in an
arbitrary interaction matrix V. In this case it is assumed that only the estimation
of V is incorrect (Vg # Vgr,L = Lg = Lg). The simulation-reconstruction chain in

Equation [3.15]is therefore modified to reflect this.
c=VsLlig — g =L"'V3'e — d=izp—iis=L"'V;(Vs—Vy)Lig (3.15)

A formula for d with individual vector components is shown in Equation

-1

17 » 17
d=|1T ViR V2R V3R] [Vls — VIR V2§ — V2r V3§ — VSR} 17| ns (3.16)
13 1

By decomposition of matrix (Vg — V) it is possible to separate error contributions
made by discrepancies in individual vectors v;. This results in the sum d = d; +d2+d3
as for the illumination matrix L in Equation The difference vector d; expressed
in Equation is related to a discrepancy in vj.

d, =
(var X var)"

i e xl xh L xb| oo |(var x vig)T | (Vis — vig)hiid

T(loxly) |28 X X 3T pxvar) [\VBR X VIR 18 1r)ling

T
(ViR X V2R)
uf
[vigr|cosdr
[ J it
= | _m mp m3 u;

n Vi — V
CcOSy1  COS7y2  COS7Y3 [vag|cos b2 | S‘COS’I]l( 1s 1R)

u3T term B term C

|[vag|cosds

term A

(3.17)
The magnitude |d;| linearly increases from a zero-error 3D plane as for errors in the
illumination matrix L. The normal of the plane is 1; and term B defines the distance of
ng from it where 7, is an angle between fig and 1;. The increase of |d;| depends on the

discrepancy vector (term C') but the final scaling coefficient is given by the magnitude
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of this vector after transformation by the matrices in term A. The direction of d; is
also set by the transformed discrepancy vector and is the same for all ng apart from
opposite sign on each side of the zero-error plane. The matrix VI_%1 in term A can
be expressed in terms of unit vectors u; in a similar manner to L~! in Equation
with the difference that the original v; do not have to be unit vectors. The vector u;
is the normalised vector vorp X vsgr and the angle §; is defined between u; and vig
(respectively for other u;). Equation for the aggregate error vector d reformulates
Equation [3.16] according to inference in Equation

UT
1
|V1R|:CFOS51
d = di+dy+ds= { m; mp m3 } "2 . (3.18)

COS7y]  COS7Y2  COS73 [var|cos da

T
us

|[vaRr| cosds

(Ing|cosmi(vis — vir) + |Dg| cosn2(vas — var) + |Dig| cosn3(vas — Var))

The zero-error planes are perpendicular to the light directions 1; and intersect at the
origin of WCS. Each discrepancy vector (v;s — v;g) is multiplied by common factor
L*1VI_%1 (term A in Equation i and scaled by a distance from the respective zero-

error plane (term B in Equation [3.17)). As was mentioned in Section the scaling

1

sy, are minimal when the light directions are orthogonal. In this case,
J

coeflicients

the length of any vector is not changed by multiplication with L~!. Equivalently,

coefficients I in V;Ll are minimal when v;p is an orthogonal set of vectors and

1
vjRr|cosd;
their magnitudes are large. Under these conditions for Vi and L, |d| is scaled the least

for any ng regardless of the magnitude of discrepancies in the interaction matrix.

3.4.3 Image noise

The last source of imprecision in reconstructed normals is the image noise. Assume for
this case that the estimation of both V and L is correct (V = Vg = Vi, L = Lg = Lp).
The simulation-reconstruction chain is then defined as Equation[3.19|where A is a noise
vector from a Gaussian distribution N'(0,0?). Note that d does not depend on fig as

in other sources of errors.
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c=VLig > hr=L"'Vic+A) - d=np-ng=-L'V'IA (3.19

Optimality of light directions with respect to the noise in intensities has been invest-
igated in the context of PSWL [102] [100, B2]. The conclusion is that L has to be
orthogonal to minimise the impact of image noise. The theoretical proof by Drbohlav
and Chantler [32] can be generalised in a straightforward manner to include the inter-
action matrix V from the formulation for PSCL. As the result, the combined matrix
VL has to be formed by orthogonal vectors. Assuming L to be orthonormal, v; need to
be perpendicular to each other as well. Note that entries in V are all positive (integrals
over wavelength in Equation , therefore V needs to be diagonal to fulfil the ortho-
gonality criterion. In practice, this means that the light spectra and spectral sensitivity

of sensors should be matched (E1(A\) = Sp(X), E2(X) = Sg(N), E3(A) = Sp(N)).

3.4.4 Experiments

The presented theoretical formulations are investigated by a set of experiments on
synthetic data. A white hemisphere is chosen as a test object in a virtual capture setup
because it provides all possible normal directions visible from a single camera. The
white albedo is uniform across the hemisphere to fulfil the chromaticity assumption
(Ins| = 255). The virtual capture setup is illustrated in Figure The hemisphere
is placed at the origin of WCS and the camera points along the Z-axis towards the
origin. The light directions have the same slant 6 = 26° and are equidistantly spaced
tilts @1 = 330°, P2 = 210° and ¢3 = 90°. Note that this is not the optimal set of light
directions, however it is similar to the real setup used for facial performance capture.
The spectra of lights are matched with spectral sensitivity curves of the camera sensors
(V is the identity matrix), thus red, green and blue light are used. A ground-truth
normal and albedo map of the hemisphere is generated for the virtual camera assuming

orthographic projection.

The simulation-reconstruction chain initially creates an image of the hemisphere from

the ground-truth albedo-scaled normal map using actual parameters of the capture
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setup (Vg,Lg). Afterwards, the map is reconstructed back from the image using es-
timated parameters (Vg,Lg). The matrices Vi and Ly correspond to the description
of the capture setup because it is assumed that the system is built precisely according
to the specification. The matrices Vg and Lg deviated from Vi and Ly represent
the actual construction of the setup. The difference between the albedo-scaled normal
maps is examined for different types of discrepancies. Patterns of |d| over the hemi-
sphere show how the error vector spatially varies depending on the normal direction.
Different root mean square (RMS) statistics across the whole hemisphere are plotted for
increasing magnitude of individual discrepancies. They include RMS of the magnitude
of the difference vector |d|, RMS of the angle between actual and reconstructed normal
Z(ng,ng) and RMS of the difference between actual albedo and reconstructed albedo
(as — ar). The angle Z(ng,ng) and the difference (ag — ar) are added to illustrate
a split of d between the normal direction and the albedo. Note that shadows are not
modelled during the simulation and negative RGB values in areas occluded from any

light do not affect correct reconstruction of normals.

Error in the illumination matrix

The first set of experiments is focused on discrepancies in light directions and the
simulation-reconstruction chain follows Equation (note that V is fixed). In Exper-
iment A the actual direction of blue light l3g is tilted away from the estimated direction
I3k by an angle A¢ as shown in Figure (a). The pattern in Figure (a) corresponds
to theoretical expression in Equation [3.13] The black belt across the hemisphere in-
dicates the zero-error plane. The magnitude |d| increases linearly as normals tilt away
from this plane. With changing A¢ the plane rotates because (114 —11,) changes its dir-
ection. There is a linear dependency between [IZ¢ —127.| and |d| according to Equation
However, the relationship between |12y —11,| and A¢ is sinusoidal. Therefore, the
RMS of |d| in Figure [3.4(a) increases sinusoidally but the trend is effectively linear for
small angles. The magnitude |d| is symmetrical around Af = 0, so the error does not
depend on the direction of tilt. The graph also shows that the error in normal direction
and albedo has a similar trend as the error in scaled normal. The RMS of Z(ng,ng)

is lower than the introduced angular discrepancy in the light direction. The remaining
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inaccuracy is propagated to the albedo which is proportionally more affected than the
direction of normal. In Experiment B lgg is slanted away from the estimated l3g by
an angle Af. In comparison to Experiment A the position of the zero-error plane is
different but |d| changes across the hemisphere in a similar way (Figure [3.3(b)). The
RMS curves in Figure (b) depict more severe impact on the quality of reconstruction
than for a tilt. This is due to spatial location of the zero-error plane with respect to

the hemisphere.

(a) (b) (c) (d)

Figure 3.3: The magnitude of error in scaled normal |d| across the hemisphere: Exp.
A - the change A¢ = —10° in the tilt of blue light (a), Exp. B - the change A9 = —10°
in the slant of blue light (b), Exp. C - the change A¢ = —10° in the tilt of all lights
(c), Exp. D - the change A# = —10° in the slant of all lights (d). The magnitude |d|
is encoded in grey-scale - black = 0, white = 255 coordinate units.

All light directions 1;5 are tilted in the same direction by an angle A¢ in Experiment C
as depicted in Figure (b) The error vector d is theoretically expressed in Equation
The pattern of |d| in Figure [3.3|c) shows that the only zero error is on top of the
hemisphere and |d| increases radially from the Z-axis. This reflects the theoretical for-
mulation of three zero-error planes crossing each other along the Z-axis. The graph in
Figure [3.4]c) depicts that the dependency between the RMS of |[d| and A¢ is again ef-
fectively linear for small angular discrepancies (reflecting Equation . Interestingly,
the albedo error is zero regardless of A¢. This is caused by the fact that scaled normals
only change direction opposite to the rotation of the light setup and their scale is not
modified. In Experiment D all light directions 1l;5 are slanted in the same direction by
an angle Af. The zero-error planes for individual lights cut through the hemisphere
in the same manner as in the single-light case (Experiment B). They intersect at the

origin of WCS, therefore none of the normals in Figure (d) is completely accurate.
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The magnitude |d| is smallest along the Z-axis and decreases radially towards the edges
of the hemisphere. The graphs in Figure (b, d) show that a discrepancy in the slant
angle generally has a stronger impact on the quality of the result than in the tilt angle.
In all experiments apart from C the albedo has higher error compared to its maximal
possible value than a deviation in the normal. Angular error of normal is always the

same or smaller than the discrepancy in light directions.

Tilt of blue light 50 - Slant of blue light 0 Tilt of all lights 80 Slant of all lights
15 + . 40 7 s 30 60
0 2 20 / 40 .
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Figure 3.4: The RMS graphs across different magnitudes of discrepancy for Exp. A - D
(a-d): RMS of |d| - green (in coordinate units), RMS of (as — ar) - red (in grey-scale
levels) and RMS of angle(fig,ng) - blue (in degrees).

Error in the interaction matrix

The second set of experiments is focused on discrepancies in the interaction matrix V
and the simulation-reconstruction chain follows Equation [3.15] (note that L is fixed). Vg
is deviated in individual coefficients from the ideal identity matrix V. In Experiment
E only the coefficient vp3¢ which describes the interaction between the blue light and
blue camera sensor is changed. A decrease of vy3g from the original value 1 simulates
lowering intensity of the blue light. Equation [3.18] describing the general discrepancy
between Vg and Vg has a simpler form of Equation because only the contribution
ds for the blue light is non-zero.
m;

d= ng|cosn3(vess — 1) (3.20)
COS Y3

Equation [3.20]is an equivalent of Equation for the vector vg. The term A in Equa-
tion is simplified to —=23- because V;il is the identity matrix and the discrepancy

cos Y3

(vp3s — 1) selects only the last column from L~!. The normal of zero-error plane equals
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13 (stems from the term cosmns). The vector |d| linearly increases with distance from
the plane as shown in Figure (a). The direction of d is given by mg across whole

hemisphere and does not change with (vp3s — 1).

Intensity of blue light Sensitivity of blue

sensor

(a) (b)

Figure 3.5: The magnitude of error in scaled normal |d| across the hemisphere: Exp. E
- intensity of blue light where (vp35 — 1) = —0.5 (a), Exp. F - sensitivity of blue sensor
where (vp3g —1) = —0.5(b). The RMS graphs across different magnitudes of (vpzs — 1)
for Exp. E (c) and Exp. F (d).

The coefficients vp5 and vpgg are changed simultaneously in Experiment F. Their sum
remains equal to 1, thus the discrepancy is expressed as (uvp3s — 1) (as in Experiment E).
This experiment simulates a blue sensor sensitive to both green and blue light which
shifts the sensitivity curve from the blue to green light spectrum with decreasing vy3g.
The inference from Equation simplifies the terms do and dj3 in a similar way as
for Equation The combination of these two zero-error planes in Equation

creates a single zero-error plane due to the constraint vyg + vpzs = 1.

ms - -
d = (|ng| cosne(vpes — 0) + |ng| cosnz(vess — 1))
CoS Y3
d ™ s ( )( 1) (3.21)
= ngl(cosns — cos Vp3g — )
oS 73 S 3 72)(Ub3s

The normal of the joint plane is (13 — 12) represented by (cosns — cosnz). The plane is
visible in Figure [3.5(b) and the pattern of |d| is similar to the single-light tilt because

of a similar direction of (13 —1s).

In both Experiments E, F the zero-error plane does not move with the enlarging dis-
crepancy (vp3s —1) because the discrepancy does not change the orientation of the plane
normal. However, a change of (35 — 1) influences |d| in a linear manner which is il-

lustrated by RMS curves in Figure [3.5]c,d). Notice that a discrepancy in the intensity
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of blue light leads to more severe errors than a discrepancy in the spectral relation-
ship between blue sensor, green and blue light. RMS of (as — ar) and Z(ng,ng)
show proportionally similar error for the albedo and the normal direction in the both

experiments.

Image noise

The third set of experiments is focused on the image noise where the simulation-
reconstruction chain follows Equation [3.19] The same matrices V, L are used for the
simulation and reconstruction of scaled normals. After simulating the captured image
an RGB noise vector generated from a Gaussian distribution N(0, 02) is added to every
pixel. In Experiment G an orthogonal light configuration is used instead of the config-
uration from previous experiments (the tilt angles ¢; are the same but the slant angle
is § = 54.73°). This configuration is optimal with respect to image noise according to
theoretical findings. The identity matrix V represents ideal light-sensor interaction.
Figure [3.6(a) shows uniform noise in |d| across the hemisphere which proves no de-
pendency of the error on a normal direction. The same observation can be made for
Experiments H and I as well. RMS of |d| has a linear relationship with the standard
deviation of noise o (Figure [3.7(a)). The graph also confirms theoretical formulation
of this relationship RM S(|d|)? = 302 presented in [32].

(a) (b) ()

Figure 3.6: The magnitude of error in scaled normal |d| across the hemisphere for
o = 10: Exp. G - optimal light setup (a), Exp. H - suboptimal light setup (b) and
Exp. I - suboptimal light-sensor interaction (c).

The original light configuration which has suboptimal light directions and the identity V

are used in Experiment H. Figure (b) demonstrates amplified noise in comparison to
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the optimal configuration. The fact that a noise vector A is enlarged by non-orthogonal
L~! is also proven by the increased RMS of |d| in Figure (b) Experiment I models
suboptimal light-sensor interaction by setting the coefficients vpag = vp3g = 0.5 in 'V
(sensitivity of blue sensor spans spectra of green and blue light as in Experiment F).
The matrix L is set according to the optimal light setup to examine solely an influence
of V. Similarly to Experiment H, the errors in scaled normals are higher than in the
case of ideal matching between sensors and lights (Experiment G). It can be seen for
all experiments that the error in albedo and normal direction also linearly depend on

0. The noise is propagated more to the albedo than to the normal direction.

20 Image noise - 60 Image noise - 60 Image noise -
optimal light setup | suboptimal light setup suboptimal light-sensor
interaction
20 40 a 40
[22) ‘ - 2] [22)
= = =
& 10 . ~ 20 & 20 °
0 . 0 — 0 .
0 5 10 15 0 5 10 15 0 5 10 15
o o o

Figure 3.7: The RMS graphs for different o of image noise for Exp. G, H, I (a,b,c).

3.4.5 Discussion

The theoretical inference and the experiments on synthetic data showed that the error in
scaled normal d varies depending on surface orientation in the presence of an inaccuracy
in the illumination matrix L and interaction matrix V. Complex behaviour of d across
the hemisphere depends on the magnitude and direction of the discrepancy present.
This indicates that the uncertainty of the scaled normal should vary with respect to
its orientation given the uncertainty in the capture setup parameters. However, the
direction of d changes smoothly over the hemisphere which suggests a low-frequency
bias in the reconstructed normal and albedo map. This bias affects the overall shape of
the surface represented by the normal map but it does not threaten the reconstruction of
small geometrical detail. Only large calibration errors could cause significant flattening
of the detail in some ranges of normal orientation. The magnitude of discrepancy

vectors in L and V has a linear relationship with the overall RMS error of |d| for all
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experiments. RMS errors related to V cannot be directly compared to the errors for
L due to the different nature and magnitude of introduced discrepancies. Experiments
E, F work with wider range of inaccuracy because it is more likely to make larger
error in the estimation of V than L in practice. Image noise is propagated into scaled
normals and their RMS error is linearly dependent on the standard deviation of noise.
Unit normals are proportionally less affected than albedos when scaled normals are
decomposed. This also holds for the majority of discrepancies in V and L. Since the
main interest is in reconstructing correct shape rather than appearance, this observation

has positive implications.

The magnitude and spatial distribution of d is significantly influenced by the form of
L and V. In the presence of image noise, the orthogonality of vectors forming both
matrices guarantees minimal amplification of noise according to theoretical proofs. The
overall error in scaled normals is minimal under these conditions for discrepancies in
V and L as well. Two important guidelines can be identified on constructing a cap-
ture setup for PSCL from the theory and experimental evaluation. The directions of
lights should be perpendicular and their spectral characteristics should match sensit-

ivity curves of corresponding camera sensors.

3.5 Evaluation

Evaluation of the photometric stereo is conducted for facial performance capture. The
capture setup described in Section [7.2] consists of multiple HD cameras, red, green and
blue light source. The light configuration is not completely orthogonal (slant angle
~ 24°, deviations from equidistant spacing 120° between the lights). This is because of
spatial limitations and trade-off between the orthogonality and a size of shadows on the
illuminated face. Therefore, the matrix L is sub-optimal in terms of image noise and
calibration errors. The spectra of colour lights are well matched with spectral sensitivity
of corresponding camera sensors which results in almost diagonal V. Thus, the image
noise and calibration errors are not amplified through sensor-light-material interaction.
The error analysis in Section is conducted using a virtual setup similar to the real

one. Thus, this provides useful information about the magnitude of potential error in
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normal estimation given discrepancies in the calibrated setup parameters.

The calibration of L assumes distant, directional light sources. However, in practice
the used light sources do not provide perfectly directional illumination as they are
relatively close given the size of capture volume. The direction of incident lights can
deviate on edges of the capture volume from L estimated in the centre. This does not
pose a significant problem since small imprecision in L does not have noticeable effect
on reconstructed normals. The matrix V is estimated independently for each camera
because of different sensor characteristics and colour balancing. The calibration of V
requires all colour lights to be in the same position. In practice, only colour filters are
changed on one of the light sources while the actor stays still. This assumes that all

sources have the same light spectra.

281.

Figure 3.8: Example frames from normal map sequence by PSCL for the dataset Martin-
makeup?2 - colour-coded (top row) and rendered with grey diffuse material (bottom
row). Colour coding of normal coordinates in WCS: z - red (left to right), y - green
(bottom to top) and z - blue (far to near).
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3.5.1 Reconstruction of facial performance

Experiments are focused on reconstruction of facial normals rather than albedos because
the focus of this work is geometry of the face. A time-varying normal map sequence
is reconstructed by applying PSCL estimation (Equation to one of the image
sequences from the dataset Martin-makeup2 (described in Appendix. The captured
actor is uniformly painted with diffuse white make-up (Figure a)) to comply with
the assumption of uniform chromaticity. Other benefits of the make-up over plain skin
are higher signal-to-noise ratio (SNR), no sub-surface scattering of light and reduction

of specular highlights. The latter two interfere with the assumed Lambertian model of

the surface. Markers are painted on the face for tracking purposes (more explanation

in Appendix [Al).

(a) (b)

Figure 3.9: Reconstruction of the face by PSCL in frame 100 from the dataset Martin-
makeup? - input image (a), albedo map (b), colour-coded normal map (c), normal map
rendered with grey diffuse material (d).

Figure 3.8 shows normal maps from one of the views in the dataset at example frames
(the whole sequence in the supplementary video). Facial geometry is captured up to
skin pore detail and fine wrinkles. The geometric detail is coherent over time and
image noise is not very noticeable because of good SNR. The normal maps across
the views are not completely aligned because of different low-frequency bias which is

introduced by errors in view-dependent photometric calibration. The major artefacts
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present in normal maps are caused by self-shadows (e.g. around nose, under chin).
Missing constraints from occluded lights lead to incorrect calculation of normals in
shadow regions shown by relighting of the face in Figure bottom row). Incorrect
normals are also noticeable on the eyes or inside of the mouth which are areas with non-
Lambertian reflection of light. Lastly, markers are inconsistent with the rest of normal
map because of dark appearance and different colour than the make-up. Figure [3.9
depicts PSCL result in more detail for a single frame. The albedo map in Figure b)
is fairly uniform across the face with some residual of local shading which indicates
good separation between shape and appearance. However, the appearance of the face

is not useful in practice due to the make-up covering the skin.

3.5.2 Comparison to photometric stereo with white lights

The method by Barsky and Petrou [§] working with colour images is used for PSWL
(described in Section. The same three light sources without colour filters are used to
secure comparable conditions with PSCL. Both methods use the same calibration data
for L and assume the same intensity of light sources without colour filters (effectively
V is the identity matrix for PSWL). A stationary actor with the neutral expression is
captured under simultaneous colour illumination for PSCL (Figure (a)) and time-
multiplexed white illumination for PSWL (Figure (b,c,d)). No make-up is applied

on the face for PSWL because it does not assume uniform surface chromaticity.

Figure |3.11| compares the results from both techniques. The geometrical detail recon-
structed by PSCL has similar quality to PSWL. Amount of noise in normals is similar
in spite of lower intensity of colour illumination. This is due to the fact that white
make-up preserves good SNR in the input image. PSWL suffers from shadow artefacts
as well and additionally there are incorrect normals in regions with specular highlights
(tip of nose and lips in Figure (bottom row)). The main disadvantage of PSWL
is a risk of detail corruption because of actor’s motion between measurements under

individual lights. But real appearance of the face is obtained in colour albedo map.
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()
Figure 3.10: Input images - PSCL (a), PSWL (b-d).

3.5.3 Effect of facial make-up

To improve the performance of PSCL on fine skin details, white uniform make-up is
applied on the face. PSCL on plain skin produces a significantly worse outcome than
on white make-up as can be seen in Figure[3.12] This is also demonstrated by relighting
with moving light source in the supplementary video. Several sources of imprecision
prevent reconstruction of the finest level of skin detail. Firstly, the assumption of
uniform chromaticity does not hold completely for human skin. Therefore, skin patches
with chromaticities which deviate from the global mean given by the estimated V have
different biases in the normal and albedo map. This can be perceived as coarse noise.
Secondly, image noise has a larger impact because SNR is lower for the skin. Thirdly,
normals are a bit blurred due to subsurface scattering of light in the skin. This affects
mostly the red light, therefore the red channel of the image contains less high-frequency
information. Lastly, specular reflections cause incorrect surface orientation (tip of the

nose and the lips).

3.6 Conclusion

This chapter has investigated suitability of the photometric stereo with colour lights for

geometry capture of dynamic facial detail. The geometrical detail is reconstructed up
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™

(a) | (b) ©

Figure 3.11: Comparison of PSCL (top row) and PSWL (bottom row) - colour-coded
normal map (a), normal map rendered with grey diffuse material (b), albedo map (c).
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(a) (b) ()

Figure 3.12: Comparison of PSCL without make-up (a), PSCL with make-up (b) and
PSWL (c) - colour-coded normal map (top row), normal map rendered with grey diffuse
material (bottom row).

to fine skin structure such as small wrinkles, pores. The normal maps are temporally
coherent and obtained at the camera frame-rate. The quality of normals is comparable
with standard photometric stereo with white lights if uniform make-up is applied on
the actor’s face. The calibration of light-sensor-material interaction has been improved

over Hernandez et at. [48)].

Error analysis of the photometric stereo with colour lights has been conducted which
has not been previously addressed in the literature. In terms of image noise influence
the optimality of an orthogonal illumination matrix is confirmed [32, 100} [102] and the
same conclusion is drawn for a diagonal interaction matrix. Exact formulation of the
relationship between calibration errors in the illumination and interaction matrices and
the error in albedo-scaled normal is presented (in contrast to approximation through
partial derivatives in [89, [58]). The form of this relationship suggests that orthogon-
ality of vectors in the illumination and interaction matrices minimises the impact of
discrepancies in their calibration. The theoretical conclusions with simulations of vari-
ous errors provide valuable guidelines for design of a capture setup. They show that the
calibration errors introduce only low-frequency bias in normals which does not hinder

detail reconstruction. The normals are also proportionally less affected than albedo.
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The main limitation of the presented technique is the assumption about uniform chro-
maticity of the surface and the resulting requirement of make-up on actor’s face stem-
ming from it. Another problem is low-frequency bias present in normals caused by
photometric calibration errors which also differs across cameras. This prevents recon-
struction of the correct facial shape by normal map integration. Furthermore, normal
maps contain artefacts caused by shadows and very dark surface appearance. The low-
frequency bias and shadow artefacts are addressed by a normal map correction using a

reconstructed 3D mesh of the face which is presented in Section [7.5]

Photometric stereo provides a stream of normal maps in a common coordinate system
from each camera at native frame-rate and resolution. This representation encodes all
geometrical detail visible in original video streams, however it is still in the 2D domain.
Therefore, stereo 3D reconstruction is employed to obtain a 3D mesh of the face with
less detail at every frame. This mesh is combined with high-resolution normal maps to
form high-detail facial 3D model as described in Chapter The sequence of normal
maps also lacks temporal consistency which is addressed in Chapters and [6]



Chapter 4

Baseline sequential surface

tracking

In the previous chapter the photometric stereo with colour lights is used to capture
fine skin geometry at every frame but there is no temporal consistency across the data.
Moreover, sequences of normal maps from multiple views do not form a full 3D model
of the face. This chapter is focused on obtaining medium-scale facial geometry which

has temporal consistency throughout the performance.

Temporal correspondence of 3D shape was initially addressed by scene flow methods
[104] 65, 127, 86]. However, they rely on pre-computation of 2D optic flow in each
view and provide only instantaneous flow field between a pair of frames. To acquire
temporally consistent mesh sequences over longer periods of time, a template mesh
can be deformed according to multi-view 2D optic flows and an unregistered geometry
computed at every frame [122, 19, 47, [119]. A disadvantage is pre-computation of 3D
geometries and optic flows at all frames. Also, independent optic flow computation in
every view results in inconsistencies of 2D flows which decrease accuracy of the mesh
deformation. 3D tracking approaches [79) 23] [36] overcome these disadvantages by
joint estimation of shape and motion directly in the 3D space. To achieve tractable
optimisation, motion and shape of the surface are estimated using small 3D patches

attached to the surface.

069
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The best current 3D tracking method by Furukawa and Ponce [36] associates the surface
patches with triangle fans around vertices of the mesh. Each patch has a fixed multi-
view texture initialised at the reference frame. 3D tracking aligns each patch with
images at the current frame using this texture. Independent optimisation of individual
patches is aided by multi-view stereo initialisation and simple motion expansion across
the surface. New locations of vertices are regularised by Laplacian smoothing combined
with local mesh rigidity. The patch reference textures shrink and stretch together
with the mesh deforming over time. This improves their sequential alignment with
the images in all frames. The fixed texture limits drift of the mesh on the surface by
referring back to the reference frame (track-to-first concept [21]). This method captures
fairly complex motions of patterned surfaces and is able to recover from tracking errors
and moderate occlusions. In the extension of this work for faces [37], a rigidity term
in the regularisation is relaxed to accommodate extensive stretching and shrinking of

human skin. Good results were reported only for faces with dense pattern make-up.

This chapter describes a baseline surface tracking method inspired by the work of
Furukawa et al. [36, B7]. Building of a surface patch model for a template mesh at
the reference frame is explained. 3D matching of a surface patch to another frame
in multiple views is formulated and characteristics of the defined matching error are
analysed. Optimisation of 3D patch matching providing surface motion estimates is
described. The motion estimates constrain a weighted Laplacian deformation of the
template mesh between two frames. Sequential tracking of the mesh chaining the
frame-to-frame alignments yields a temporally consistent mesh sequence. The method
is evaluated on facial performances under various conditions to identify limitations of

the state-of-the-art in the surface tracking.

4.1 Problem formulation

The input is a sequence of observations {O;}X; of a deforming surface for frames
{1,...,T} where T is a number of frames in the sequence. Each observation O; for a
frame ¢ consists of a set of images {If}<_,. They are captured from multiple viewpoints

by synchronised and calibrated cameras where C'is a number of cameras. It is assumed
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that each part of the surface to be reconstructed is observed by at least two cameras in
time. The output is a mesh sequence {Mt}thl where a triangular mesh M; represents
the surface at the frame ¢. The mesh M; = (X, I') consists of a set of vertex 3D
positions X; and a set of undirected edges I'. The vertex positions X; = {v;|Vi € [1..N]}
are defined in the world coordinate system (WCS) set by camera calibration (NN is the
number of vertices). The mesh topology I' C {(4,5)|Vi,j € [1..N];i # j} is defined as

a subset of all possible undirected edges among the vertices.

The output sequence {Mt}thl is temporally consistent, therefore the vertex positions
X, correspond to the same set of surface points at every frame ¢ and the topology I is
fixed throughout the sequence. Initial placement of vertices on the surface and the mesh
topology are designed by a user for the reference frame r (r = ¢ = 1). The sequence
{M}L | is obtained by sequential tracking which concatenates frame-to-frame non-
rigid alignments between successive frames ¢t — 1 and ¢. The frame-to-frame alignment

estimates correspondence between observations O;_1 and Oy.

4.2 Surface patch model

A model of the observed surface is constructed at the reference frame r according to
the concept presented by Furukawa and Ponce [36]. The surface is represented as a
triangular mesh M where 1-neighbourhood of the vertex i is denoted V; = {j|V(i,j) €
I'}. Every vertex has a surface patch associated with it which is used to estimate
motion of the vertex between frames (Figure . The pose of a patch in WCS needs
to be represented independently from the mesh for estimation purposes. Therefore, each
patch 4 has its own local coordinate system (LCS). The 4 x 4 transformation matrix T;
between LCS and WCS is formed from a translation vector p; and a rotation vector
r; in axis-angle representation. The patch pose is initially defined in such a way that
the origin of LCS coincides with the respective vertex i (p; = v;). The orientation r;
of LCS is such that aligns Z-axis with the vertex normal given by surrounding faces.
Xy and Y-axes are on the tangent plane such that Y, = Z; x Xw, Xy, =Y X Zp,
where Xy is an axis of WCS. The pose T; = (p;, r;) changes during motion estimation

and the patch moves away from its corresponding vertex.
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Figure 4.1: Surface patches attached to every mesh vertex (a). Central vertex 1 has
neighbours V; = {2,3,4,5,6}. Its patch is formed by sample grid G; (b) which lies on
the triangle fan with V;. The grid G; has size O = 5 and spacial spacing d,. LCS of
patch 1 (index L) is related to WCS (index W) through the transformation T}.

A patch i is formed by a vector of 3D points G; (size 3 x |G;|) which forms an irregular
grid centered around the vertex i. The sample grid G; is shaped according to immediate
triangle fan given by V; of the vertex ¢ (example in Figure . The sample points lie
on the adjacent faces along N, rings with increasing radius from the central vertex.
Corner samples on mesh edges are spaced with a fixed distance d,, from p; in 3D space.
A value of d,, is chosen such that rings of any patch do not project further than 1 pixel
apart in every view ensuring the sampling of image information without aliasing. The
number of sample points increases with ring index o (central sample has o = 1). The
ring o contains o — 2 uniformly spaced points between the corner samples on every face.
Sample grids can extend beyond the boundaries of the adjacent triangle fans but it still
follows the triangle planes. Point locations are stored in barycentric coordinates with
respect to the triangles they lie in. Benefits of this representation are that the sample
grid automatically changes shape with a modification of V; and actual 3D positions in
G; can be easily recomputed. The 3D positions are expressed in LCS, so that a change

of p; and r; leads to a movement of the entire sample grid in a rigid manner.

Each patch has a visibility set Q); = {c|c € [1..C]} which initially contains view indices
where the vertex i is not self-occluded by the mesh. The set is further restricted by
the angle between the vertex normal (Zp-axis) and the flipped viewing direction of a

camera which has to be lower than 70°. This avoids poor sampling of image information
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when projecting the patch grid into side views. Each patch has a multi-view texture
{BC _, which models its appearance across views at the reference frame r. Each
vector B € [O..255]‘Gi| contains grey-scale pixel values for the sample points G; from
the image I¢. The 3D points G; are first converted to WCS using T; and then they are
projected into the view c to sample Bf = S(If, T;G;). The function S() encapsulates
the projection of 3D points T;G; onto image plane of the camera ¢ using its calibration
data and the sampling of an image I at the frame r. The obtained pixel values are
bi-linearly interpolated at the projected sample points. The textures {BC _, are valid

only for the views ¢ € Q);.

In the context of surface tracking the variables related to the vertices and patches
change over time (such as v;). Thus, they are denoted as a function of time v;(¢) when

required. For brevity of notation, note that v; = v;(t) where t is the current frame.

4.3 Frame-to-frame non-rigid alignment

Alignment of surface observations O;_1 and O; between successive frames is achieved
in two stages. Firstly, displacements of individual mesh vertices are estimated by 3D
matching of their respective patches to image information in O;. Secondly, the resulting

motion field for the whole mesh is regularised by global Laplacian deformation.

4.3.1 3D matching of surface patch

Finding a correspondence for the patch ¢ between the frames ¢t — 1 and ¢ is posed as
a problem of aligning multi-view patch texture {BC}C from the reference frame with
images at the frame ¢. This problem is formulated as an optimisation task where the
patch sample grid G; is rigidly moved in 3D space from its initial pose T; at frame ¢ — 1
to match its texture with the images {If}<_,. Equation |4.1|defines an error function E;
for assessing multi-view alignment of {B¢}¢ | with {I¢}¢ | given a local modification

of patch pose by p;, #; (illustrated in Figure [4.2|(a)).

E;i(pi, ;)

Z NCC(S(I7, T:TGs), By) (4.1)

IQZ .



74 Chapter 4. Baseline sequential surface tracking

The 4 x 4 transformation matrix Ti is formed from p;, £; where a local translation p;
shifts G; from the origin of LCS along its axes. A rotation vector #; with Euler angles
defines rotation of G; around axes of LCS (order of rotations is X1, Y, Zp-axis). The
vectors p;, r; (the matrix T;) are not directly optimised since they represent a global
pose with respect to the WCS. To achieve a more meaningful movement of the patch
grid reflecting local surface orientation, it is better to define a change of pose with
respect to the patch LCS (Figure (b)) After the local modification T; the sample
points GG; are expressed in the WCS through the transformation T;. The vectors of pixel
values S(If, TiTiGi) are obtained by projecting them to each view c in the visibility set
Q;. The grey-scale values sampled at the frame t are compared to the reference texture
B¢ using normalised cross-correlation (NCC). Note that NCC = 1— (NCC +1)/2 is
the inverted function which represents an error. The sum of matching errors across
views is normalised by the size of the visibility set. The function F;(p;, ;) cannot be

evaluated if Q; = ) or T, T:G; projects outside the image in any view from @);.

S’ TT.G)™

7S TAG)

s T1,G)

(a) (b)

Figure 4.2: Multi-view alignment of patch textures { B¢}¢ ; with images {If}< ; where

Q; = {1,2,4} (a). Global patch pose T; with respect to WCS is modified by local
transformation T; in LCS (b). Translation and rotation vectors p;, #; forming T; can
be decomposed into normal components (green) and tangential components (blue).

4.3.2 Analysis of matching error

The error function E; (Equation |4.1]) is analysed for an example patch to establish the

complexity of its profile in various circumstances. The size of patch is O = 20 and
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3D sampling distance d, = 0.2mm. Sampling of parameters p;,#; evaluates E; for
local deviations from initial patch pose T;. The function F; is computed separately in
the 3D space of local rotations #; and local translations p; for clarity of visualisation.
In the first case, Euler angles in #; are sampled with the step 0.017ad in the range
(—1rad, 1rad) and p; is fixed as a zero vector. In the second case, the components of p;
are sampled with the step 0.1mm in the range (—10mm, 10mm) and t; is fixed as a zero
vector. The function F; is displayed across the 3D spaces of rotations and translations
for the following experiments in the supplementary video. It can be assumed that the
profile of E; with p;, ; varying simultaneously is more complex than in the separate

cases.

The error profiles for local rotation and translation are computed in two situations.
Firstly, the patch is matched at the reference frame r where its multi-view texture
{B£}¢., is sampled (using the initial pose T;). This is the ideal situation since the
patch texture matches the images perfectly at T;. Secondly, the patch is matched
using the reference texture at a frame t in which the surface has a different shape than
at the frame r. The starting pose T; is roughly estimated to place the patch over the
same surface region as at the frame r. The estimate is not perfect to reflect a real
scenario where the initial pose of patch is not completely correct before 3D matching

at a particular frame.

(a) (b) () (d)

Figure 4.3: Example image from one of 4 views - the face with a random pattern at
the reference frame r (a) and the frame t (b); the face with plain skin at the reference
frame r (c) and the frame ¢ (d). The patch used in experiments is visualised in red.
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Face with a random pattern

Figures (a,b) show two frames from a facial performance of a subject painted with
a random pattern which are used for the error analysis (the dataset Martin-patternl).
The error function E; for the frame r is visualised in Figures [4.4[a-f). Figures [.4|(a-c)
are slices of Ej; for #; at the global minimum [000]%rad (the centre of slices). The value
of the minimum is zero in this ideal case. The profile of E; for #; is clear with the size of
convergence basin approximately —0.2 — 0.2rad (—11.5° — 11.5°). The error E; is more
rugged for p; where the global minimum at [0 0 0]7mm is clear but quite localised.
Its basin is around —0.7 — 0.7mm wide and is surrounded by many local minima.
This suggests that any gradient-based optimisation will require a good initialisation
to converge to the global minimum. The error E; for frame t is visualised in Figures
(g—l). The global minima are located at #; = [—0.14 0.33 —0.08]7rad (value 0.226)
and Pp; = [-0.2 —0.5 —1.0]Tmm (value 0.198). They are placed a bit off the centre
since the initial T; is not correct. The global minima in both spaces are weaker and
have smaller basins around them in comparison to the frame r. This is caused by a
change of surface appearance between the frames r and ¢ due to a deformation. Thus,
the patch texture does not perfectly match the information in individual images. If the
surface deformation alters its appearance significantly, F; becomes ambiguous with no

clear global minimum.

Face with plain skin

To evaluate the influence of the amount of surface texture, the tests are performed on a
facial performance without any make-up (the dataset Martin-skinl). Example images
from the dataset are shown for the frames r and ¢ in Figures [£.3|c,d). The function
E; for the reference frame r is visualised in Figures [£.5(a-f). The zero global minima
for no rotation #; and no translation p; are easily identifiable. However, the extent
of convergence basins is smaller than for the random pattern texture: the rotation
around —0.1 — 0.1rad (—6.25° — 6.25°) and the translation around —0.3 — 0.3mm.
Therefore, the initial pose of patch needs to be quite close to the global minimum

for an optimisation algorithm to find it. The error FE; for the frame ¢ is visualised in
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(a) (b) () (d) () (f)
(8) (h) (i) 4 (k) )

Figure 4.4: Slices through the error function E; for the face with a random pattern at
the reference frame r (top row) and at the frame ¢ (bottom row). Local rotation of
patch at r - slice with #;[x] = 0 (a), £;[y] = 0 (b) and #;[2] = 0 (c¢). Local translation of
patch at r - slice with p;[z] = 0 (d), Pi[y] = 0 (e) and p;[z] = 0 (f). Local rotation of
patch at ¢ - slice with #;[x] = —0.14 (g), ¥;[y] = 0.33 (h) and #;[2] = —0.08 (i). Local
translation of patch at ¢ - slice with p;[z] = —0.2 (j), Pi[y] = —0.5 (k) and P;[z] = —1
(1). Range of error values (0,1) is mapped into grey scale (0 - black, 1 - white).

Figures (g—l). The global minima are located at #; = [0.21 —0.84 —0.33]"rad (value
0.228) and p; = [~4.8 1.3 3.7]Tmm (value 0.208). There is a large shallow basin across
the range of ¥; but the location of the global minimum is not obvious. The error F;
with respect to p; has a complicated profile and contains multiple minima of similar
value. Larger decrease in clarity of E; between the frames r and ¢ than for the random
pattern is due to weaker skin texture which changes more dramatically with surface
deformation (e.g. small wrinkles, skin folds, pore stretching). In general, weaker surface
texture significantly increases ambiguity of the error function, so that matching using

the fixed re