
Light Field Compression using Eigen Textures

Marco Volino Armin Mustafa Jean-Yves Guillemaut Adrian Hilton
Centre for Vision, Speech and Signal Processing

University of Surrey, UK
{m.volino,a.mustafa,j.guillemaut,a.hilton}@surrey.ac.uk

Abstract

Light fields are becoming an increasingly popular
method of digital content production for visual effects and
virtual/augmented reality as they capture a view dependent
representation enabling photo realistic rendering over a
range of viewpoints. Light field video is generally captured
using arrays of cameras resulting in tens to hundreds of im-
ages of a scene at each time instance. An open problem
is how to efficiently represent the data preserving the view-
dependent detail of the surface in such a way that is com-
pact to store and efficient to render. In this paper we show
that constructing an Eigen texture basis representation from
the light field using an approximate 3D surface reconstruc-
tion as a geometric proxy provides a compact representa-
tion that maintains view-dependent realism. We demon-
strate that the proposed method is able to reduce storage
requirements by > 95% while maintaining the visual qual-
ity of the captured data. An efficient view-dependent render-
ing technique is also proposed which is performed in eigen
space allowing smooth continuous viewpoint interpolation
through the light field.

1. Introduction
In virtual and augmented reality (VR/AR) there is in-

creasing interest in creating photo-realistic cinematic expe-
riences. The use of games engines and computer generated
imagery allow interactivity, such as head movement, but
does not achieve cinematic photo-realism, conversely 360
video and stereo capture achieve photo-realism for a fixed
location but does not allow head movement or realistic par-
allax. Light field video capture offers a potential solution
capturing a scene with full photo-realism whilst allowing
change in viewpoint (head movement) within the camera
aperture. However, the data volume associated with light
field capture prohibits transmission and rendering on com-
modity graphics hardware for consumer applications.

In this paper we introduce a compact light field repre-
sentation that enables up to a 95% decrease in data size and

(a) (b)

(c) (d)

Figure 1: Light field compression using Eigen textures. (a)
input light field, (b) scene reconstruction, (c) Eigen textures
and (d) view-dependent render.

offers efficient rendering for interactive VR/AR viewing on
commodity graphics hardware whilst maintaining the visual
quality of the captured light field. To summarize, the con-
tributions of this paper are:

1. A novel Eigen texture representation for light fields
which is compact and preserves the view-dependent
photo-realism of the captured light field.

2. Efficient light field rendering and synthesis of novel
views by interpolation in Eigen space to achieve photo
realistic rendering with real-time interactive perfor-
mance on a commodity graphics platform for interac-
tive virtual and augmented reality applications.

We evaluate on public light field datasets of static scenes
and sparse light field video frames. The approach is shown
to reduce storage requirements by > 95% whilst maintain-
ing the perceptual quality of the light field image.



2. Related Work

2.1. Light Fields

The origins of the light field can be traced back to the
notes of Leonardo Da Vinci in which he postulated that the
view of the world from any point in space is formed by
the intersection of an infinite number of radiant pyramids
from all directions [13]. This idea was later formalized by
Adelson and Bergen [1] and became known as the plenoptic
function, a seven dimensional function of 3D position, 2D
viewing direction, observed wavelength, and time. The pi-
oneering works of Levoy and Hanrahan [14] and Gortler et
al. [10] showed that the plenoptic function could be reduced
to four dimensions under the assumption that an object is
observed from outside its convex hull and the object re-
mained static. This allowed light fields to be represented by
the intersection of light rays travelling between two planes.
These assumptions reduced the dimensionality and inspired
the design of light field acquisition hardware.

Light fields can be captured by a single camera with an
array of micro lenses placed in front of a conventional im-
age sensor [19] (e.g. Lytro Illum and Raytrix cameras), a
single camera on a gantry [28,30], or using an array of mul-
tiple cameras [27]. Micro lens arrays trade off spatial res-
olution of the imaging sensor to angular resolution of the
lens array. The range that can be rendered from a light
field camera image is limited by the aperture of the cam-
era, hence grids of cameras allow capture and rendering of
intermediate viewpoints between the outer limits of the ar-
ray. Recently, arrays of cameras have been used to cap-
ture light field video consisting of grids of 200-300 cam-
eras [27]. Whilst this enables photo realistic rendering of
dynamic scenes, the volume of data in a single light field
image is 200-300 times that of a single conventional image
resulting in a prohibitive volume of data for storage, trans-
mission and rendering. It is therefore vital to develop com-
pression methods suitable for light fields to ensure that this
becomes a practical technology.

2.2. Light Field Compression

Light field images obtained from multiple camera views
inherently contain a large amount of redundancy. As such
light field coding and compression has been well studied,
see Viola et al. [25] for an overview of a number of tech-
niques. Numerical methods that are commonly employed
to compress light fields include vector quantization [14,28],
wavelet transforms [7], non-negative matrix factorization
[6] and principal component analysis (PCA) [6, 28] . Here,
we focus on light field compression schemes that utilize
scene geometry to aid compression [6, 21, 28].

Surface light fields are an alternative approach to param-
eterize a 4D light field that define the radiance with respect
to every point on a surface in all directions [6,17,28]. Wood

et al. [28] extract and compress lumispheres, which store
the directional radiance for every surface point mapped onto
the surface of a sphere, using both vector quantization and
PCA. Light Field Mapping [6] partitions the surface light
field based on the elementary shape primitives of the 3D
surface. Appearance variation is resampled on a per primi-
tive basis, compressed using PCA and stored in surface and
view map images giving further reduction through standard
image compression.

Other light field compression techniques have been in-
spired by video coding and compression [5, 16, 21]. These
works treat a subset of the sampled light field images as ref-
erence frames, or i-frames. Images within the local neigh-
bourhood of each i-frame image of the light field array are
compressed via predicted video frames or p-frames. These
methods are capable of achieving high compression ratios
and capitalize on work in video compression.

2.3. Multiple View Appearance Representation

More generally, an open research problem is how to effi-
ciently represent appearance from multiple cameras. Light
fields captured from large camera arrays make this a par-
ticularly challenging problem given the number of cameras
and resulting size of the captured data. For an array of 10-
100 cameras with UHD resolution and 8-bit colour depth,
the raw image data requires approximately 240-2400 MB of
storage at each time instance. Currently, there are no open
standards for compression and transmission of light fields.

One method of appearance representation and compres-
sion that has not yet been explored for use with light fields is
Eigen textures. Using PCA, a linear subspace can be com-
puted from a set of images, enabling compression through
dimensionality reduction. Appearance modelling through
PCA was used as a method for face recognition [24]. Later,
Nishino et al. [20] proposed the Eigen texture method that
allowed compression and synthesis of novel views from a
sparse set of viewpoints. More recently, Boukhayma et al.
[4] extended this idea to handle dynamic objects by project-
ing the object’s dynamic appearance onto a dynamic struc-
tured geometric proxy at each time instance. This approach
considers dynamic appearance but does not preserve view-
dependent surface appearance in the representation that is
captured with light fields.

In this paper, we use a scene model and resample the
light field appearance into a set of per camera UV maps.
We process the per camera UV maps into Eigen textures
to provide a compact representation for light fields that
enables efficient storage and rendering whilst maintaining
photo-realism and view-dependent appearance of the cap-
tured light field. This is achieved through the construction
of a linear subspace that models the variation of the surface
appearance across all viewpoints.



Input: Light Field Scene Reconstruction UV Parameterisation Camera UV Maps

Mean UV MapHole Filled UV MapsWarp CorrectionOutput: Eigen Textures

{I(c)}NC
c=1 S = {M, {C(c)}NC

c=1} U {T (c)}NC
c=1

T̄{T̂ (c)}NC
c=1{TW (c)}NC

c=1{TE(j)}NE
j=1

R3 → R2

Figure 2: Eigen texture representation of light fields

3. Eigen Texture Representation
In this section we describe how the Eigen texture rep-

resentation is extracted from a time instance in a multiple
camera light field dataset. An overview of the pipeline is
shown in Figure 2. Given the input light field images, a
geometric proxy is reconstructed and UV coordinates are
generated. Camera parameters and the geometric proxy are
used to generate a UV map for each camera in the light
field. Camera UV maps are processed to ensure there are
a consistent number of pixels by filling in any holes from a
mean UV map. The filled camera UV maps are used in a
PCA based framework to generate the Eigen texture repre-
sentation for light fields. Each of the stages are described in
further detail throughout this section along with the view-
dependent rendering pipeline.

3.1. Input Data and Pre-processing

The input to our approach is a collection of images
{I(c)}NC

c=1 captured from NC cameras arranged in a rect-
angular array, as is common in light field video capture
[23,27]. Scene geometry is modelled through explicit chart-
based camera calibration, dense multiple view stereo and
Poisson surface reconstruction. If calibration is not avail-
able, photogrammetry is employed to estimate camera cal-
ibration and model scene geometry [3, 9, 29]. Scene geom-
etry, S = {M, {C(c)}NC

c=1}, consists of a triangular mesh
model M and cameras {C(c)}NC

c=1. C(c) represents the cth

camera ofNC cameras consisting of a 3x4 projection matrix
that maps 3D world coordinates to 2D image coordinates.
The triangular mesh model is defined as M = {V,W,U},
where V is the 3D mesh vertices, W is the mesh connectiv-

ity and U defines a R3 → R2 mapping from mesh vertices
to UV coordinates. U are generated automatically using
least-squares conformal maps [15].

3.2. Camera UV Map Processing

Using the reconstructed scene model M and camera pa-
rameters {C(c)}NC

c=1, we resample the observed surface ap-
pearance for each camera into a set of UV maps {T (c)}NC

c=1

based on the UV coordinates U of M . To achieve this, a 3D
mesh vertex is projected into the image domain of camera
c using the camera projection matrix and the colour of the
pixel copied to the UV coordinate location associated with
the vertex. To handle occlusions in the scene, depth testing
is performed using a depth map rendered using the scene
geometry and camera parameters. A binary value is stored
in the alpha channel (α) of the UV map which indicates if a
vertex is visible from the camera’s viewpoint. This encodes
surface appearance and visibility into the cth camera UV
map T (c), an example of which shown in Figure 3b. This is
performed in a custom graphics shader that interpolates ver-
tex and UV coordinate values to give appearance and visi-
bility across the complete mesh surface in each camera UV
map, see Figure 3 for an example. This process results in
NC UV maps in which observations of a point on the 3D
surface are mapped into the same pixel location in the 2D
texture domain across all UV maps.

As each camera has variations in surface visibility, each
UV map has a different number of visible pixels. To con-
struct the Eigen texture representation, described in Section
3.3, it is required that all UV maps have an equal number
of visible pixels. To this end, we first construct an average



(a) (b) (c) (d)

Figure 3: Examples of (a) Camera UV maps {T (c)}NC
c=1, (b) binary visibility map (stored in the alpha channel of the camera

UV maps), (c) mean UV map T̄ and (d) filled camera UV map T̂ (c, i), with pixel that require filling highlighted in red.

UV map T̄ which is then used to fill holes in T (c). An av-
erage UV map T̄ is generated as shown in Equation 1. This
is computed on a per-pixel basis and results in a UV map
in which the pixel values have been averaged over all vis-
ible pixels, resulting in an appearance value for all surface
points in all UV maps T (c).

T̄ (i) =
1∑NC

c=1 v(c, i)

NC∑
c=1

v(c, i)T (c, i) (1)

where T̄ is the average over all NC camera UV maps, T̄ (i)
is the average value for the ith pixel, v(c, i) is a binary value
determined by the visibility encoded in the alpha channel of
the camera UV map. Hole filling of the T (c) takes place
according to the conditions in Equation 2.

T̂ (c, i) =

{
T (c, i), if v(c, i) = 1

T̄ (i), otherwise
(2)

where T (c, i) and T̂ (c, i) are values of the ith pixel of cam-
era c for the camera UV map and hole filled UV map, re-
spectively.

To account for small errors in camera parameters and
geometry estimation we employ optical flow image warp-
ing [8]. We compute the optical flow field between a given
camera UV map T̂ (c) and a defined reference camera UV
map T̂ (cref ), typically a camera located in the centre of
the camera array, resulting in an optical flow field per cam-
era {TW (c)}NC

c=1. The flow fields are then applied to each
T̂ (c) to correct for small errors and bring all {T̂ (c)}NC

c=1 into
alignment with T̂ (cref ).

3.3. Eigen Texture Construction

In this section, we describe the construction of the Eigen
texture representation for light field data. We define the
function T̂ (c, i, λ) which returns a scalar value for the ith

pixel of wavelength λ in the hole filled UV map T̂ (c) for

camera c. As the input of the proposed method is RGB im-
ages, λ refers to the red, green and blue image channels.
However, the approach is independent of colour representa-
tion and could also be used to compress other attributes. A
pixel in a UV map T̂ (c) is represented in row-vector form,
as shown in Equation 3.

x(c, i) =
[
T̂ (c, i, r)− T̄ (i, r), T̂ (c, i, g)− T̄ (i, g),

T̂ (c, i, b)− T̄ (i, b)
] (3)

where x(c, i) returns intensity values for the red (r), green
(g) and blue (b) image channels for the ith pixel of the cth

camera in row-vector form. A complete image can then be
represented in row-vector form, as shown in Equation 4.

x(c) = [x(c, 1),x(c, 2)...,x(c,NP )] (4)

where x(c) returns a row-vector consisting of the RGB pixel
intensities for all NP visible pixels (i.e. v(c, i) = 1) in the
hole filled UV map T̂ (c). Subsequently, NC UV maps can
be compiled into matrix X where rows represent all valid
pixels in a UV map and columns represent all samples of
a point on the model’s surface captured by NC cameras, as
shown in Equation 5.

X =


x(1)
x(2)

...
x(NC)

 (5)

where X is a matrix of the RGB pixel intensities with di-
mensions NC rows by 3Np columns. Prior to vectorization
of T̂ (c), the mean texture T̄ is subtracted allowing PCA to
be performed. In this form, a UV map can be thought of as
a point in a 3NP dimensional space. To compute the Eigen
texture representation, singular value decomposition (SVD)
is performed on the matrix X>X to find the Eigen vectors
and Eigen values, as shown in Equation 6. As the number



Input: Eigen textures Select Viewpoint Select Cameras

Compute WeightingReconstruct TextureOutput: View-dependent render

T̄ +
NE∑
j=1

ωb(j)TE(j)

(x,y) (x,y)
c1 c2

c3

ω(c1, j) ω(c2, j)

ω(c3, j)

ωb(j)

c1 c2

c3

Figure 4: Light field Eigen texture rendering

of UV maps is less than the number of pixels, NC < 3NP ,
there are NC − 1 rather than 3NP non-zero values [24].

X>X = WΣW> (6)

where W is the orthogonal Eigen vectors and Σ =
diag(σ)1≤i≤NC

are the Eigen values. The rows of W are
sorted in order of the magnitude of the Eigen values. The
high amount of redundancy in the light field images allows
the number of Eigen textures NE to represent the view-
dependent variation with NE � NC .

Back projecting the vectorised input filled camera UV
maps into the Eigen space results in weighting coefficients
{{ω(c, j)}NC

c=1}
NE
j=1 required to reconstruct the input. The

weights are computed for each camera and stored for use at
render-time. Eigen textures {TE(j)}NE

j=1 are stored as image
files along with the weighting coefficients to reconstruct the
UV map from each camera.

3.4. Eigen Texture Rendering

Here we discuss the Eigen texture rendering pipeline,
an overview is shown in Figure 4. The Eigen tex-
tures {TE(j)}NE

j=1 and per camera reconstruction weights
{{ω(c, j)}NC

c=1}
NE
j=1 are first loaded into memory. A view-

ing position (x, y), constrained to lie on an estimated plane
and within the bounds of the camera array, is selected by
the user. The three closest cameras to the viewing position
measured by Euclidean distance are selected for rendering,
denoted as c1, c2 and c3. Given the viewing position and po-
sitions of the selected rendering cameras, a weighting based
on barycentric coordinates is computed. These barycentric
weights are then combined with the Eigen texture recon-
struction weight for the selected cameras to give the inter-

polated reconstruction weights, as shown in Equation 7.

ωb(j) = b1ω(c1, j) + b2ω(c2, j) + b3ω(c3, j) (7)

where b{1,2,3} are the barycentric weights, ω(c{1,2,3}, j)
are the Eigen texture reconstruction parameters for cameras
c{1,2,3} and ωb(j) is the barycentric weighted reconstruc-
tion parameters. The use of a barycentric weighting scheme
ensures a smooth transition between camera reconstruction
weights in both the horizontal and vertical directions. An
alternative weighting scheme could be used, e.g. bi-linear.
However, in the current implementation it would be subject
to

∑3
i=1 bi = 1. The final view-dependent texture TV for

viewpoint v is computed by the linear combination of the
mean texture, Eigen textures and Eigen texture reconstruc-
tion weights, shown in Equation 8.

Tv = T̄ +

NE∑
j=1

ωb(j)TE(j) (8)

where T̄ is the mean texture, TE(j) are the computed Eigen
textures, ωb(j) are the barycentric weighted reconstruction
weights corresponding to the jth Eigen texture, and Tv is
the resulting view-dependent texture. This enables efficient
view-dependent rendering directly from the Eigen texture
representation.

4. Results and Evaluation
In this section, we present a quantitative evaluation of the

proposed approach. We compare UV maps reconstructed
from the Eigen texture representation to the camera UV
maps extracted from the scene model and camera images.



The storage requirements of the Eigen texture representa-
tion are also compared against the camera UV maps. Light
field data was captured by a 5x4 camera array made up of
5MP PointGrey Grasshopper3 cameras (Boy and Girl se-
quences). To test the limits of the algorithm, we also use
scenes from the Stanford light field dataset [23] captured by
a single camera on a robotic gantry resulting in the equiva-
lent of a 17x17 camera array.

Scene geometry and camera parameters from the 5x4
camera array were computed using a chart-based calibra-
tion pipeline [2, 11], multiple view stereo [22] and Poisson
surface reconstruction [12]. For the Stanford datasets [23],
scene geometry and camera parameters were estimated us-
ing photogrammetry [3]. Scenes were chosen to give a mix-
ture of objects and materials, e.g. Bunny is a Lambertian
surface with few specular highlights whereas Amethyst and
Chest contain metal and glass structures with strong specu-
lar highlights. In the case of the Tarot dataset, the scene was
reconstructed with photogrammetry and the glass ball was
manually modelled with a sphere as it is not currently pos-
sible to geometrically reconstruct such a complex object.

All presented results were generated using a desktop
PC with an Intel i7 CPU, 64GB of RAM and a Nvidia
Geforce GTX 1080 GPU. All code is written in C++ and
makes use of Eigen, OpenCV and OpenSceneGraph li-
braries. OpenGL Shading Language (GLSL) are used to
render depth maps, camera UV maps and to perform Eigen
texture rendering.

4.1. UV Map Reconstruction Quality

The evaluation is performed by comparing the hole filled
UV maps {T̂ (c)}NC

c=1 to the UV maps reconstructed from
the Eigen texture representation using the per camera re-
construction parameters. This is a direct comparison of the
reconstructed output TV to expected output {T̂ (c)}NC

c=1. The
UV maps are compared using the structural similarity index
measure (SSIM) [26] which is considered across all visi-
ble foreground surface points. SSIM values range from ±1
with +1 achieved only when comparing identical images.

Figure 5a and 5b show SSIM values versus the number
of Eigen textures used for rendering NE for the evaluation
of the datasets. We see that as NE is increased, the differ-
ence between the reconstructed UV map TV and the cam-
era UV map decreases. In the Amethyst, Bunny and Chest
dataset, there is an increase in quality, up to an SSIM 0.98,
until NE = 15 after which it is a linear increase. This
represents a 20:1 reduction in the number of textures re-
quired. The same relationship is also observed in the Boy
and Girl datasets, but in a less dramatic fashion requiring
7 and 9 Eigen textures for an SSIM of 0.98 for the Boy
and Girl datasets, respectively. The reason for this is that
the Amethyst, Bunny and Chest light field datasets consist
of 289 images compared to the relatively sparse light field

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 2 4 6 8 10 12 14 16 18 20

SS
IM

Eigen Texture Count (NE)

Boy
Girl

(a)

0.94

0.95

0.96

0.97

0.98

0.99

1

1 15 50 100 150 200 250 289

SS
IM

Eigen Texture Count (NE)

Bunny - No Warp
Bunny - Warp

Amethyst - Warp
Amethyst - No Warp

Tarot - No Warp
Tarot - Warp

(b)

0

20

40

60

80

95
100

1 15 50 100 150 200 250 289

St
or

ag
e

R
ed

uc
tio

n
(%

)

Eigen Texture Count (NE)

Amethyst
Bunny
Chest
Tarot

(c)

Figure 5: Quantitative evaluation of the proposed approach:
(a) Rendering quality against the number of Eigen tex-
tures with and without optical flow correction using scenes
from the Stanford light field gallery [23]; (b) Rendering
quality against the number of Eigen textures for 5x4 light
field dataset; (c) Storage reduction for Stanford light field
dataset.



with 20 images in the Boy and Girl datasets. This results in
increased redundancy that is exploited by the Eigen texture
representation and results in less Eigen textures to represent
the variation in the captured images. Rendering results from
the evaluation datasets can be found in Figure 6 and in the
supplementary video.

4.2. Warping

An inaccurate geometric proxy and errors in camera
parameters result in misalignment in the texture domain.
These errors affect compression as they lead to a require-
ment for more Eigen textures to represent the surface vari-
ation. Figure 5b demonstrates this by comparing the eigen
texture representation using the evaluation datasets with and
without optical flow correction applied. It can be seen that
performing the optical flow based warping allows a higher
UV map reconstruction quality with fewer Eigen textures.
This is due to the appearance being in alignment minimiz-
ing the surface variation.

4.3. Rendering Performance

A trade off must be considered between rendering qual-
ity and rendering complexity. As more components are
added to the Eigen texture representation, the more com-
putationally complex the rendering pipeline becomes. An
evaluation of the rendering efficiency was performed by
monitoring the rendering frame rate against NE . The pro-
posed approach is able to achieve and maintain interactive
frame rates (> 60 fps) for NE <= 40 At NE >= 40 the
frame rate begins to fall in an almost linear fashion to 30 fps
at NE = 100.

4.4. Storage

Table 1 shows the storage requirements for the evalua-
tion datasets and Figure 5c shows storage reduction against
NE . A comparison is made between the storage require-
ments of the camera UV maps {T̄ (c)}NC

c=1 and the Eigen
texture representation consisting of a mean texture T̄ and
Eigen textures {TE(j)}NE

j=1. This ensures we are compar-
ing the data input and output to the Eigen texture represen-
tation. It can be seen that as NE is increased the storage
reduction decreases. Taking the values of NE that result in
a SSIM of 0.98, NE = 15 for Amethyst, Bunny, Chest and
Tarot datasets results in a storage reduction of > 96% and
for the Boy and Girl datasets by approximately 60%.

4.5. Limitations

In the presence of gross geometric errors the proposed
method will be unable to effectively compress the appear-
ance using the eigen texture method. In practice, it is not
possible to get accurate geometry as the light field scenes
used in the evaluation contain complex specular objects and
transparent surfaces that exhibit refraction, e.g. Amethyst,

Table 1: Storage requirements of light field datasets in rep-
resented as images, per camera texture maps and eigen tex-
tures.

Dataset NC
Storage (MB)

{I(c)}NC
c=1 {T̂ (c)}NC

c=1 {TE(j)}NE
j=1
†

Amethyst 289 769.4 359.6.2 13.4 (96%)
Bunny 289 770.3 276.5 9.5 (97%)
Chest 289 756.4 387.7 14.8 (96%)
Tarot 289 1100 425.5 12.0 (97%)
Boy 20 97.7 16.4 5.7 (65%)
Girl 20 105 21.7 7.2 (67%)
†For Amethyst, Bunny, Chest and Tarot datasets NE = 15,
for Boy and Girl datasets NE = 7.

Chest and Tarot. Despite the approximate geometric re-
construction, the proposed approach is able to achieve high
quality renderings with a > 95% reduction in data size for
dense light fields. This can be observed in the supplemen-
tary video particularly in the Tarot dataset where the com-
pressed Eigen texture representation is able to reproduce the
complex refraction within the glass ball.

5. Conclusions
In this paper, we have proposed and demonstrated for

the first time that Eigen textures can be effectively used to
represent and render light fields. We have described how to
construct an Eigen texture representation from a light field
camera array and how this Eigen texture basis can be used
to perform view-dependent rendering. A quantitative eval-
uation was performed in which it was shown that a stor-
age saving of > 95% could be obtained for dense light
fields using the Eigen texture representation with a mini-
mal loss in quality. It was also shown that in datasets that
used large numbers of cameras, a higher storage reduction
was achieved as the representation was able to exploit the
increased redundancy.

Future work will investigate extending this approach to
dynamic scenes in a way that exploits the large redundancy
both spatially and temporally while preserving both dy-
namic and view-dependent surface appearance. This re-
quires solving the challenging problem of surface corre-
spondence [18] to enforce a consistent mesh topology over
time.

Acknowledgements
This work was supported by the following sources

’ALIVE: Live action light fields for immersive virtual real-
ity experiences’ (InnovateUK 102686), ’Polymersive: Im-
mersive Video Production Tools for Studio and Live Events’
(InnovateUK 105168), EPSRC Audio-Visual Media Re-
search Platform Grant (EP/P022529/1) and Royal Academy
of Engineering Research Fellowship (RF-201718-17177).



Figure 6: Results: Rows (top to bottom) show Amethyst, Bunny, Chest, Tarot, Boy, and Girl datasets, respectively. From left
to right, selected image from dataset, scene reconstruction model, render using camera UV map, Eigen texture render using
NE = 15 for Amethyst, Bunny, and Chest, and NE = 7 for Boy and Girl datasets. Heat maps show the normalized error in
RGB pixel values, for illustrative purposes this error has been scaled 5 times.



References
[1] E. H. Adelson and J. R. Bergen. The plenoptic function and

the elements of early vision. Computational Models of Visual
Processing, 1991. 2

[2] S. Agarwal, K. Mierle, and Others. Ceres solver. http:
//ceres-solver.org. 6

[3] Agisoft. Agisoft Photoscan v1.3.2. 3, 6
[4] A. Boukhayma, V. Tsiminaki, J.-S. Franco, and E. Boyer.

Eigen Appearance Maps of Dynamic Shapes. In B. Leibe,
J. Matas, N. Sebe, and M. Welling, editors, European Con-
ference on Computer Vision, Lecture Notes in Computer
Science, pages 230–245. Springer International Publishing,
2016. 2

[5] Cha Zhang and Jin Li. Compression of lumigraph with mul-
tiple reference frame (mrf) prediction and just-in-time ren-
dering. In Proceedings DCC 2000. Data Compression Con-
ference, 2000. 2

[6] W.-C. Chen, J.-Y. Bouguet, M. H. Chu, and R. Grzeszczuk.
Light field mapping: Efficient representation and hardware
rendering of surface light fields. In Proceedings of the 29th
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’02. ACM, 2002. 2

[7] Chuo-Ling Chang, Xiaoqing Zhu, P. Ramanathan, and
B. Girod. Light field compression using disparity-
compensated lifting and shape adaptation. IEEE Transac-
tions on Image Processing, 15(4):793–806, 2006. 2

[8] G. Farneb. Two-Frame Motion Estimation Based on Poly-
nomial Expansion. Lecture Notes in Computer Science,
2749(1):363–370, 2003. 4

[9] S. Fuhrmann, F. Langguth, and M. Goesele. MVE-A Multi-
View Reconstruction Environment. Eurographics Workshop
on . . . , pages 11–18, 2014. 3

[10] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
The Lumigraph. In SIGGRAPH, pages 43–54, 1996. 2

[11] Itseez. Open source computer vision library v2.4.
http://opencv.org/, 2017. 6

[12] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface
reconstruction. In Proceedings of the Fourth Eurographics
Symposium on Geometry Processing, SGP ’06, pages 61–70.
Eurographics Association, 2006. 6

[13] M. Kemp. Leonardo on painting : anthology of writings by
Leonardo da Vinci, with a selection of documents relating to
his career as an artist. New Haven ; London : Yale Nota
Bene, 2001., 2001. 2

[14] M. Levoy and P. Hanrahan. Light field rendering. In Pro-
ceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques - SIGGRAPH ’96, pages 31–
42. ACM Press, 1996. 2

[15] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares
conformal maps for automatic texture atlas generation. ACM
Transactions on Graphics, 21(3):362–371, 2002. 3

[16] M. Magnor and B. Girod. Data compression for light-field
rendering. IEEE Transactions on Circuits and Systems for
Video Technology, 10(3):338–343, 2000. 2

[17] G. Miller, S. Rubin, and D. Ponceleon. Lazy decompression
of surface light fields for precomputed global illumination.

In G. Drettakis and N. Max, editors, Rendering Techniques
’98. Springer Vienna, 1998. 2

[18] A. Mustafa, M. Volino, J. Guillemaut, and A. Hilton. 4d
temporally coherent light-field video. In 2017 International
Conference on 3D Vision (3DV), pages 29–37, 2017. 7

[19] R. Ng, M. Levoy, G. Duval, M. Horowitz, and P. Hanrahan.
Light Field Photography with a Hand-held Plenoptic Cam-
era. Computer Science Technical Report CSTR, 2005. 2

[20] K. Nishino, Y. Sato, and K. Ikeuchi. Eigen-texture method:
Appearance compression and synthesis based on a 3D
model. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(11):1257–1265, 2001. 2

[21] R. S. Overbeck, D. Erickson, D. Evangelakos, M. Pharr, and
P. Debevec. A system for acquiring, processing, and render-
ing panoramic light field stills for virtual reality. ACM Trans.
Graph., 37(6):197:1–197:15, 2018. 2

[22] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo recon-
struction algorithms. In CVPR, pages 519–528, 2006. 6

[23] Stanford Graphics Laboratory. The (New) Stanford Light
Field Archive. 3, 6

[24] M. Turk and A. Pentland. Eigenfaces for recognition. J.
Cognitive Neuroscience, 3(1):71–86, Jan. 1991. 2, 5

[25] I. Viola, M. ebek, and T. Ebrahimi. Comparison and evalu-
ation of light field image coding approaches. IEEE Journal
of Selected Topics in Signal Processing, 11(7):1092–1106,
2017. 2

[26] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image
Quality Assessment: From Error Visibility to Structural Sim-
ilarity. IEEE Transactions on Image Processing, 13(4):600–
612, 2004. 6

[27] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez,
A. Barth, A. Adams, M. Horowitz, and M. Levoy. High per-
formance imaging using large camera arrays. ACM Trans.
Graph., 24(3):765–776, 2005. 2, 3

[28] D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless,
T. Duchamp, D. H. Salesin, and W. Stuetzle. Surface light
fields for 3D photography. Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Tech-
niques, pages 287–296, 2000. 2

[29] C. Wu. Towards linear-time incremental structure from mo-
tion. Proceedings - 2013 International Conference on 3D
Vision, 3DV 2013, pages 127–134, 2013. 3

[30] K. Yücer, A. Sorkine-Hornung, O. Wang, and O. Sorkine-
Hornung. Efficient 3D Object Segmentation from Densely
Sampled Light Fields with Applications to 3D Reconstruc-
tion. ACM Transactions on Graphics, 35(3):1–15, 2016. 2

http://ceres-solver.org
http://ceres-solver.org

