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ABSTRACT

State of the art sound event classification relies in neural networks
to learn the associations between class labels and audio recordings
within a dataset. These datasets typically define an ontology to cre-
ate a structure that relates these sound classes with more abstract
super classes. Hence, the ontology serves a source of domain knowl-
edge representation of sounds. However, the ontology information
is rarely considered, and specially under explored to model neural
network architectures. We propose ontology-based neural network
architectures for sound event classification. We defined a framework
to design simple network architectures that preserve an ontological
structure. The networks are trained and evaluated using the MSoS
dataset. Results show an improvement in accuracy demonstrating
the benefits of the ontology.

1. METHOD

In this section we present a framework to deal with ontological in-
formation using deep learning architectures.

1.1. Framework and Assumptions
The framework is defined to make use of the ontology structure and
to model the neural network architectures. It should be noted that we
considered ontologies with two levels, which are the most common
in sound event datasets. Nevertheless, the presented framework can
be easily generalized to more levels.

In our framework, we considered the training data
{(x1,¥1), -, (Xn,¥n)}, Where x; € X is an audio representation,
which is associated to a set of labels given by the ontology y; €
C1 X Cy X ... X C. In this case, C; is the set of possible classes at
i-level. Assuming a hierarchical relation, we can consider that each
possible class in C; is mapped to one element in C;11. The higher
the value of ¢, the higher the level in the ontology.

For an example, consider the an ontology where k = 2, C1 =
{cat , dog , breathing , eating , sneezing , violin , drums , piano ,
beep , boing , train , siren} and Cy = {nature , human , music ,
effects , urban}. Here every element in C' is related to one element
in Cy; e.g., cat belongs to nature, or drums belongs to music.

Furthermore, for a given representation x € X, if we know the
corresponding label y; in Cy, we can infer its label in Cy. This
intuition can be formalized using a probabilistic formulation, where
it is straight forward to see that, assuming p(y2|y1,x) = p(y2|y1),
the following is satisfied:

ply21x) = > ply2ly, ) - p(yi|x) )

> plnlx) ©)

y1 € children(ys)

Therefore, if we want to estimate p(y2|x) using a model, we
just need to compute the estimation of p(y1|x) and sum the values
corresponding to the children of y». This case is valid for inference
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Fig. 1. Architecture of the Feed-forward Network with Ontological
Layer. The blue column represents the acoustic feature vector, the
red columns are the output probabilities for both levels.

time, however, it is not clear that using the representation and label
(x,y1) should be enough to train the model. If at training time we
can make use of knowledge to relate the different classes in yi, it
should improve the performance of the model, specially at making
predictions for classes y2. In the following sections we take our pro-
posed framework and use it to design ontology-based neural network
architectures.

1.2. Feed-forward Network with Ontological Layer

A Feed-forward Network (FFN) with Ontological Layer consists of
a base network (Net), an intermediate vector z, and two outputs, one
for each ontology level. The base network weights are learned at ev-
ery parameter update and utilizes an input vector of audio features x
and generates a vector z. This vector is used to generate two outputs,
p(y1]x) a probability vector for C1 and p(y2|x) a probability vector
for Cs. First, the vector z is passed to a softmax layer of the size of
(1. Second, the same vector z is multiplied by the ontological layer
M and generates a layer of size of C. Once the FFN is trained, it
can be used to predict any class C and C5 for any input x.

The ontological layer reflects the relations between classes and
sub classes given by the ontology. To describe how we used this
layer, we refer to Equation 2, where p(y2|x) is the sum of all the
values of p(y1|x) corresponding to the children of y». If we con-
sider this equation as a directed graph where M is the |C3| x |C\|
incidence matrix, then, it is clear that Equation 2 can be rewritten as,

p(y21x) = M - p(ylx) 3)

Note that the ontological layer M defines the weights of a
standard layer connection. Although we do not consider that these
weights are trainable, they are part of our training data.

In order to train this model, we simply propose to apply gradient-
based method to minimize the loss function £, which is a convex
combination between two categorical cross-entropy functions; £
the categorical cross entropy corresponding to p(y1|x) and L2 cor-
responding to p(y2|x). Formally,

L = Mi+(1-X) L “
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Fig. 2. Architecture of the SNN that is used to learn ontological em-
beddings. The SNN is trained with three types of pairs depending on
whether the inputs are from the same subclass, or different subclass,
but same super class, or different super class.

1.3. Ontology-based embeddings

In this section, we describe how we learned the ontology-based em-
beddings. The embeddings are computed using a Siamese neural
network (SNN), shown in Fig. 2, consisting of twin networks that
have the same base architecture (Net) with shared weights. The
weights are learned simultaneously at every parameter update. Each
base network utilizes an input vector of audio features x. Then, for
the inputs x; and x2, we obtained the outputs p(y1|x1), p(y1]|x2),
p(y2|x1) and p(y2|x2). In addition, we considered as output the
similarity metric between the hidden vectors z; and z as illustrated
Figure 2.

For training, first, we needed to associate a loss function to ev-
ery output. The innovation of this model is the loss for the similarity
metric. Our attempt is that the similarity metric describes the on-
tology; the difference of the embeddings z; and z; should indicate
how different x; and x5 are with respect to the ontology. In a 2-level
ontology there are 3 possible distances, for this work we chose 0 or
1 or 10 depending on whether the inputs are from the same subclass,
or different subclass, but same super class, or different super class.
These values can be tuned. Hence, the model attempts to approx-
imate the distance within the ontology using the distance between
embeddings.

In order to train the full model, we need to provide pairs of audio
examples and apply a gradient-based method to minimize the loss
function £. We propose to use a linear combination between four
categorical cross-entropy functions: £1 and £7 the categorical cross-
entropy corresponding to p(y1|x1) and p(y1|x2) respectively, and
L£3 and L3 corresponding to p(y2|x1) and p(y2|x2), and finally the
similarity metric D,, given by Euclidean Distance. Formally,

L = M(L1+LTY)+ XLy + L3) + AsDy, 5)

2. EXPERIMENTS AND RESULTS
In this section, we evaluate the sound event classification perfor-
mance of the ontological-based neural network architectures.

2.1. Dataset and Audio Features

We used the Making Sense of Sounds Challenge daataset. For the
audio we used state-of-the-art Walnet features [1] to represent au-
dio recordings. For each audio, we computed a 128-dimensional
logmel-spectrogram vector and transformed it via a convolutional
neural network (CNN) that was trained separately on the balanced
set of AudioSet. The network comprised 8 convolutional layers, re-
sulting in an output feature vector of dimensionality 527. To this, we

System ID Model Level 1 Level 2
Accuracy  Accuracy
Baseline (Challenge) - 0.810
MLSP_ONTLAYER._1 FF + Ontology 0.740 0.913
MLSP_ONTEMB._1 Ontology Embeddings 0.736 0.886

Table 1. Both proposed methods outperformed the baseline

concatenated intermediate outputs from the 8" layer of the CNN
with 1024 dims.

2.2. Base Network Architecture (Net)

The architecture of the base network (Net) considered in this exper-
iment, shown in Fig. 1, is a feed-forward multi-layer perceptron net-
work. It consists of 4 layers: the input layer of dimensionality 1024,
which takes audio feature vectors, 2 dense layers of dimensional-
ity 512 and 256, respectively, and the output layer of dimensionality
128, which is the dimensionality of the vector z. The dense layers
utilize Batch Normalization, a dropout rate of 0.5 and the ReLU ac-
tivation function; max(0, z), where x is input to the function. We
tuned the parameters in the ‘Net’ box as well as the parameters that
transform z into p(y1|x).

2.3. Performance of Feed-forward Model with Ontological layer
To validate the architecture presented in Section 1.2 and analyze the
utility of the ontological layer, we trained models taking different
values of . In general, we observe that considering values different
from O and 1 helps to increase the performance. The best perfor-
mance was obtained using A = 0.8, getting 74.0% and 91.3% of
accuracy in level 1 and 2 respectively. Thus, using the ontological
structure we can get an absolute improvement of 5.4% and 6% re-
spect baseline models.

2.4. Performance of Ontology-based embeddings

We tested the architecture described in Section 1.3 to evaluate the
performance of the ontology-based embeddings for sound event
classification.

We processed the Walnet audio features and chose different su-
per and sub class pairs to train the Siamese neural network to pro-
duce the ontology-based embeddings. The architecture of the base
network (Net) is the same as the one used in the previous section.
We trained the SNN for 50 epochs using the Adam algorithm. We
also tuned the hyper-parameters of the SNN to achieve good perfor-
mance with the input features that are described in the next section.
We also tried different number of pairs for the input training data,
from 100 to 1,000,000 pairs and found that 100,000 yielded the best
performance. For the loss function we used the considered the val-
ues computed in the previous experiment. We used the value of 0.8
for the lambda of the classifiers of level 2 and 0.2 for the classifiers
in level 1, and 0.2 for the similarity metric. Modifying the lambdas
in the loss function affected the overall performance.

The results in Table 1 show that the accuracy performance of
MSoS as follows, in level 1 73.6% and in level 2 88.6%. Based
on these results we make the following conclusions. The perfor-
mance of this architecture is better than the baseline, but slightly un-
der performs the original method of FF+Ontology. Nevertheless, the
ontology-based embeddings have the added benefit of better group-
ing in contrast to the plain base network output vectors.
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